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On σ-starcompact spaces
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Abstract. A space X is σ-starcompact if for every open cover U
of X, there exists a σ-compact subset C of X such that St(C,U) = X.

We investigate the relations between σ-starcompact spaces and other
related spaces, and also study topological properties of σ-starcompact
spaces.
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1. Introduction

By a space, we mean a topological space. Let us recall that a space X is
countably compact if every countable open cover of X has a finite subcover.
Fleischman [3] defined a space X to be starcompact if for every open cover
U of X , there exists a finite subset F of X such that St(F,U) = X , where
St(F,U) =

⋃
{U ∈ U : U ∩ F 6= ∅}, and he proved that every countably

compact space is starcompact. Conversely, van Douwen-Reed-Roscoe-Tree [1]
proved that every Hausdorff starcompact space is countably compact, but this
does not hold for T1-space (see [7]). As generalizations of starcompactness, the
following classes of spaces were given:

Definition 1.1 ([1, 6]). A space X is star-Lindelöf if for every open cover U
of X, there exists a countable subset F of X such that St(F,U) = X.

Definition 1.2. A space X is σ-starcompact if for every open cover U of X,
there exists a σ-compact subset C of X such that St(C,U) = X.

Definition 1.3 ([3, 6, 8]). A space X is L-starcompact if for every open cover
U of X, there exists a Lindelöf subset L of X such that St(L,U) = X.
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In [1], a star-Lindelöf space is called strong star-Lindelöf, in [3], L-starcompactness
is called sLc property.

From the above definitions, we have the following diagram:

star-Lindelöf ⇒ σ-starcompact ⇒ L-starcompact.

In the following section, we give examples showing that the converses in the
above Diagram do not hold.

Thorough this paper, the symbol β(X) means the Čech-Stone compactifica-
tion of a Tychonoff space X . The cardinality of a set A is denoted by |A|. Let
ω be the first infinite cardinal, ω1 the first uncountable cardinal and c the car-
dinality of the set of all real numbers. As usual, a cardinal is the initial ordinal
ordinals. For each ordinals α, β with α < β, we write (α, β) = {γ : α < γ < β},
(α, β] = {γ : α < γ ≤ β} and [α, β] = {γ : α ≤ γ ≤ β}. Every cardinal is often
viewed as a space with the usual order topology. Other terms and symbols
follow [2].

2. σ-starcompact spaces and related spaces

In this section, we give two examples which show the converses in the above
diagram in the section 1 do not hold.

Example 2.1. There exists a Tychonoff σ-starcompact space which is not
star-Lindelöf.

Proof. Let D be a discrete space of the cardinality c. Define

X = (β(D) × (ω + 1)) \ ((β(D) \ D) × {ω}).

Then, X is σ-starcompact, since β(D) × ω is a σ-compact dense subset of X .
Next, we show that X is not star-Lindelöf. Since |D| = c, then we can

enumerate D as {dα : α < c}. For each α < c, let Uα = {dα} × [0, ω]. Then
Uα ∩ Uα′ = ∅ for α 6= α′. Let us consider the open cover

U = {Uα : α < c} ∪ {β(D) × ω}.

of X . Let F be a countable subset of X . Then, there exists a α0 < c such
that F ∩ Uα0

= ∅. Since Uα0
is the only element of U containing the point

〈dα0
, ω〉 and Uα0

∩F = ∅, then 〈dα0
, ω〉 /∈ St(F,U), which shows that X is not

star-Lindelöf. �

Example 2.2. There exists a Tychonoff L-starcompact space which is not
σ-star-compact.

Proof. Let D = {dα : α < c} be a discrete space of the cardinality c and let

Y = D ∪ {∞}, where ∞ /∈ D

be the one-point Lindelöfication of D. Then, every compact subset of Y is
finite by the construction of the topology of Y . Hence, Y is not σ-compact.
Define

X = (Y × (ω + 1)) \ (〈∞, ω〉).

Then, X is L-starcompact, since Y × ω is a Lindelöf dense subset of X .
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Now, we show that X is not σ-starcompact. For each α < c, let Uα =
{dα} × [0, ω]. Then Uα ∩ Uα′ = ∅ for α 6= α′. Let us consider the open cover

U = {Uα : α < c} ∪ {Y × {n} : n ∈ ω}.

of X . Let C be σ-compact subset of X . Then, C ∩ (D × {ω}) is countable,
since D × {ω} is discrete closed in X . On the other hand, for each n ∈ ω,
C ∩ (Y × {n}) is countable in Y × {n}, since Y × {n} is open and close in X .
Thus, C is a countable subset of X . Since C is countable, then {α : C∩Uα 6= ∅}
is countable, Hence, there exists a αω ∈ c such that

C ∩ Uα = ∅ for each α > αω.

If we pick α′ > αω. Then, 〈dα′ , ω〉 /∈ St(C,U), since Uα′ is the only element
of U containing 〈dα′ , ω〉 and Uα′ ∩ C = ∅, which shows that X is not σ-
starcompact. �

Remark 2.3. The author does not know if there exists a normal L-starcompact
which is not σ-starcompact and a normal σ-starcompact space which is not
star-Lindelöf.

3. Properties of σ-starcompact spaces

In Example 2.1, the closed subset D×{ω} of X is not σ-starcompact, which
shows that a closed subset of a σ-starcompact space need not be σ-starcompact.
In the following, we construct an example which shows that a regular-closed
Gδ-subspace of a σ-starcompact space need not be σ-starcompact.

Example 3.1. There exists a star-Lindelöf (hence, σ-starcompact) Tychonoff
space having a regular-closed Gδ-subspace which is not σ-starcompact.

Proof. Let
S1 = (Y × (ω + 1)) \ (〈∞, ω〉).

be the same space as the space X in the proof of Example 2.2. As we prove
above, S1 is not σ-starcompact. Let S2 = ω ∪ R be the Isbell-Mrówka space
[7], where R is a maximal almost disjoint family of infinite subsets of ω with
|R| = c. Then, S2 is star-Lindelöf, since ω is a countable dense subset of S2.
Hence, it is σ-starcompact.

We assume S1 ∩ S2 = ∅. Let π : D × {ω} → R be a bijection and let X
be the quotient image of the disjoint sum S1 ⊕ S2 by identifying 〈dα, ω〉 of S1

with π(〈dα, ω〉) of S2 for each 〈dα, ω〉 of D × {ω}. Let ϕ : S1 ⊕ S2 → X be the
quotient map. Then, ϕ(S1) is a regular-closed Gδ-subspace of X which is not
σ-starcompact.

We shall show that X is star-Lindelöf. To this end, let U be an open cover
of X . Since ϕ(ω) is a countable dense subset of π(S2), then

ϕ(S2) ⊆ St(ϕ(ω),U).

On the other hand, since ϕ(Y × ω) is Lindelöf there exists a countable subset
F1 of ϕ(Y × ω) such that ϕ(Y × ω) ⊆ St(F1,U). Let F = ϕ(ω) ∪ F1. Then,
X = St(F,U). Hence, X is star-Lindelöf, which completes the proof. �
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We give a positive result:

Theorem 3.2. An open Fδ-subset of a σ-starcompact space is σ-starcompact.

Proof. Let X be an σ-starcompact space and let Y = ∪{Hn : n ∈ ω} be an
open Fδ-subset of X , where the set Hn is closed in X for each n ∈ ω. To
show that Y is σ-starcompact, let U be an open cover of Y . we have to find
a σ-compact subset C of Y such that St(C,U) = Y . For each n ∈ ω, consider
the open cover

Un = U ∪ {X \ Hn}

of X . Since X is σ-starcompact, there exists a σ-compact subset Cn of X such
that St(Cn,Un) = X . Let Dn = Cn ∩Y . Since Y is a Fδ-set, Dn is σ-compact,
and clearly Hn ⊆ St(Dn,U). Thus, if we put C = ∪{Dn : n ∈ ω}, then C is a
σ-compact subset of Y and St(C,U) = Y . Hence, Y is σ-starcompact. �

A cozero-set in a space X is a set of the form f−1(R \ {0}) for some real-
valued continuous function f on X . Since a cozero-set is an open Fσ-set, we
have the following corollary:

Corollary 3.3. A cozero-set of a σ-starcompact space is σ-starcompact.

Since a continuous image of a σ-compact space is σ-compact, then it is not
difficult to show the following result.

Theorem 3.4. A continuous image of a σ-starcompact space is σ-starcompact.

Next, we turn to consider preimages. To show that the preimage of a
σ-starcompact space under a closed 2-to-1 continuous map need not be σ-
starcompact we use the Alexandorff duplicate A(X) of a space X . The underly-
ing set of A(X) is X×{0, 1}; each point of X×{1} is isolated and a basic neigh-
borhood of a point 〈x, 0〉 ∈ X×{0} is of the from (U×{0})∪((U×{1})\{〈x, 1〉}),
where U is a neighborhood of x in X .

Example 3.5. There exists a closed 2-to-1 continuous map f : X → Y such
that Y is a σ-starcompact space, but X is not σ-starcompact.

Proof. Let Y be the space X in the proof of Example 2.1. Then Y is σ-
starcompact and has the infinite discrete closed subset F = D × {ω}. Let X
be the Alexandroff duplicate A(Y ) of Y . Then, X is not σ-starcompact, since
F × {1} is an infinite discrete, open and closed set in X . Let f : X → Y be
the natural map. Then, f is a closed 2-to-1 continuous map, which completes
the proof. �

Now, we give a positive result:

Theorem 3.6. Let f be an open perfect map from a space X to a σ-starcompact

space Y . Then, X is σ-starcompact

Proof. Since f(X) is open and closed in Y , we may assume that f(X) = Y . Let
U be an open cover of X and let y ∈ Y . Since f−1(y) is compact, there exists
a finite subcollection Uy of U such that f−1(y) ⊆ ∪Uy and U ∩ f−1(y) 6= ∅ for
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each U ∈ Uy. Pick an open neighbourhood Vy of y in Y such that f−1(Vy) ⊆
∪{U : U ∈ Uy}, and we can assume that

(1) Vy ⊆ ∩{f(U) : U ∈ Uy}

because f is open. Taking such open set Vy for each y ∈ Y , we have an open
cover V = {Vy : y ∈ Y } of Y . Hence, there exists a σ-compact subset C of
Y such that St(C,V) = Y , since Y is σ-compact. Since f is perfect, the set
f−1(C) is a σ-compact subset of X . To show that St(f−1(C),V) = X , let
x ∈ X . Then, there exists y ∈ Y such that f(x) ∈ Vy and Vy ∩ C 6= ∅. Since

x ∈ f−1(Vy) ⊆ ∪{U : U ∈ Uy},

we can choose U ∈ Uy with x ∈ U . Then Vy ⊆ f(U) by (1), and hence
U ∩ f−1(C) 6= ∅. Therefore, x ∈ St(f−1(C),U). Consequently , we have that
St(f−1(C),U) = X . �

By Theorem 3.6, we have the following Corollary 3.7.

Corollary 3.7. Let X be a σ-starcompact space and Y a compact space. Then,

X × Y is C-starcompact.

The following theorem is a generalization of Corollary 3.7.

Theorem 3.8. Let X be a σ-starcompact space and Y a locally compact, Lin-

delöf space. Then, X × Y is σ-starcompact.

Proof. Let U be an open cover of X ×Y . For each y ∈ Y , there exists an open
neighbourhood Vy of y in Y such that clY Vy is compact. By the Corollary
3.7, the subspace X × clY Vy is σ-starcompact. Thus, there exists a σ-compact
subset Cy ⊆ X × clY Vy such that

X × clY Vy ⊆ St(Cy,U).

Since Y is Lindelöf, there exists a countable cover {Vyi
: i ∈ ω} of Y . Let

C = ∪{Cyi
: i ∈ ω}. Then, C is a σ-compact subset of X × Y such that

St(C,U) = X × Y . Hence, X × Y is σ-starcompact. �

In the following, we give an example showing that the condition of the locally
compact space in Theorem 3.8 is necessary.

Example 3.9. There exist a countably compact space X and a Lindelöf space
Y such that X × Y is not σ-starcompact.

Proof. Let X = ω1 with the usual order topology. Y = ω1+1 with the following
topology. Each point α with α < ω1 is isolated and a set U containing ω1 is
open if and only if Y \ U is countable. Then, X is countably compact and Y
is Lindelöf. Now, we show that X × Y is not σ-starcompact. For each α < ω1,
let Uα = [0, α] × [α, ω1], and Vα = [α, ω1) × {α}. Consider the open cover

U = {Uα : α < ω1} ∪ {Vα : α < ω1}
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of X × Y and let C be a σ-compact subset of X × Y . Then, πX(C) is a σ-
compact subset of X , where πX : X × Y → X is the projection. Thus, there
exists β < ω1 such that

πX(C) ∩ (β, ω1) = ∅

by the definition of the topology of X . Pick α0 with α0 > β. Then, Vα0
∩C = ∅.

If we pick α′ > α0, then 〈α′, α0〉 /∈ St(C,U) since Vα0
is the only element of U

containing 〈α′, α0〉. Hence, X × Y is not σ-starcompact, which completes the
proof. �

The Theorem 3.9 also shows the product of two σ-starcompact spaces need
not be σ-starcompact. Next, we give a well-known example showing that the
product of two countably compact spaces need not be σ-starcompact. We give
the proof roughly for the sake of completeness.

Example 3.10. There exist two countably compact spaces X and Y such that
X × Y is not σ-starcompact.

Proof. Let D be a discrete space of the cardinality c. We can define X =
∪α<ω1

Eα, Y = ∪α<ω1
Fα, where Eα and Fα are the subsets of β(D) which are

defined inductively so as to satisfy the following conditions (1), (2) and (3):

(1) Eα ∩ Fβ = D if α 6= β;
(2) |Eα| ≤ c and |Fα| ≤ c;
(3) every infinite subset of Eα (resp. Fα) has an accumulation point in

Eα+1 (resp. Fα+1).

Those sets Eα and Fα are well-defined since every infinite closed set in β(D)
has the cardinality 2c (see [5]). Then, X × Y is not σ-starcompact, because
the diagonal {〈d, d〉 : d ∈ D} is a discrete open and closed subset of X × Y
with the cardinality c and σ-starcompactness is preserved by open and closed
subsets. �

Example 3.11. There exist a separable space X and a Lindelöf space Y such
that X × Y is not σ-starcompact.

Proof. Let X = Y be the same space Y in the proof of Example 2.2. Then, Y
is Lindelöf, however is not σ-starcompact. Let Y = ω∪R be the Isbell-Mrówka
space [7], where R is a maximal almost disjoint family of infinite subsets of ω
with |R| = c. Then, Y is separable. Since |R| = c, then we can enumerate R
as {rα : α < c}. To show that X × Y is not σ-starcompact. For each α < c, let
Uα = {dα}×Y and Vα = (X\{dα})×({rα}∪rα). For n ∈ ω, let Wn = X×{n}.
We consider the open cover

U = {Uα : α < c} ∪ {Vα : α < c} ∪ {Wn : n ∈ ω}

of X×Y . Let C be a σ-compact subset of X×Y . Then, πX(C) is a σ-compact
subset of X , where πX : X×Y → X is the projection. Thus, there exists α < c

such that C ∩Uα = ∅. Hence, 〈dα, rα〉 /∈ St(C,U) since Uα is the only element
of U containing 〈dα, rα〉. Hence, X ×Y is not σ-starcompact. which completes
the proof. �
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Theorem 3.12. Every Tychonoff space can be embedded in a σ-starcompact

Tychonoff space as a closed Gδ-subspace.

Proof. Let X be a Tychonoff space. If we put

Z = (β(X) × (ω + 1)) \ ((β(X) \ X) × {ω}),

then X × {ω} is a closed subset of Z, which is homeomorphic to X . Since
β(D) × ω is a σ-compact dense subset of Z, then Z is σ-starcompact, which
completes the proof. �
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