

APPLIED GENERAL TOPOLOGY © Universidad Politécnica de Valencia Volume 7, No. 2, 2006 pp. 203-209

Generalized independent families and dense sets of Box-Product spaces

WANJUN HU

ABSTRACT. A generalization of independent families on a set S is introduced, based on which various topologies on S can be defined. In fact, the set S with any such topology is homeomorphic to a dense subset of the corresponding box product space (Theorem 2.2). From these results, a general version of the Hewitt-Marczewski-Pondiczery theorem for box product spaces can be established. For any uncountable regular cardinal θ , the existence of maximal generalized independent families with some simple conditions, and hence the existence of irresolvable dense subsets of θ -box product spaces of discrete spaces of small sizes, implies the consistency of the existence of measurable cardinal (Theorem 4.5).

2000 AMS Classification: 03E05, 05D05; Secondary: 54A25.

Keywords: Generalized independent family, box product.

1. INTRODUCTION

Following notation in [5], a (θ, κ) -independent family on S is a subfamily $\mathcal{I} \subseteq \mathcal{P}(S)$ such that for any two disjoint subfamilies $\mathcal{I}_0, \mathcal{I}_1 \subseteq \mathcal{I}$ with $|\mathcal{I}_0 \cup \mathcal{I}_1| < \theta$, the set $\bigcap \{A : A \in \mathcal{I}_0\} \cap \bigcap \{S \setminus A : A \in \mathcal{I}_1\}$ has cardinality κ . Given a space $\langle X, \mathcal{T} \rangle$, it is *irresolvable* ([9]) if X does not have two disjoint dense subsets. Following [3], let $S(\langle X, \mathcal{T} \rangle)$ be the smallest cardinal κ such that every family of pairwise disjoint nonempty open sets has size strictly less than κ . Please refer to [10] about cardinals and ideals, and [6] and [3] for topological terminologies.

The Hewitt-Marczewski-Pondiczery theorem and Hausdorff's theorem (i.e., there are uniformly independent families of size 2^{κ} on any set S of size κ . See [8], [6] for more details) are equivalent, since each separated (θ, κ) -independent family of size $2^{|S|}$ on a set S induces a Tychonoff topology on S which is homeomorphic to a dense subset of $\{0, 1\}^{2^{|S|}}$. Such kind of topologies induced

by independent families appeared in a different form in van Douwen's paper [4] and then the paper [5] by F.W. Eckertson.

On the other hand, Kunen [11] established the equiconsistency between the existence of maximal σ -independent family and the existence of measurable cardinals. Later Kunen, Szymanski and Tall in [12] (see also [14]) studied the properties of the ideal of nowhere dense subsets of a λ -Baire irresolvable space, and also gave a method to construct a λ -Baire open-hereditarily irresolvable (the term "strongly irresolvable" was used. We follow the notation in [4]) topology from a λ -complete ideal with a lifting. In [14], it was shown that a λ -complete ideal on λ with certain conditions has a lifting.

In this paper, we study a generalization of independent families and its relation to box product spaces. We provide a generalization of the equivalence between Hausdorff's theorem and the Hewitt-Marczewski-Pondiczery theorem to generalized independent families and dense subsets of box product spaces (Theorem 3.2) (See also [7]). We show, in Section 2, that various topologies can be defined on a set S by any generalized independent family on S, and any such topology is homeomorphic to a dense subset of the corresponding θ -box product spaces. This general equivalence enables us to obtain similar work (Section 4) like that in [11] and [12] by substituting Baire irresolvable dense subsets with irresolvable dense subsets of box product spaces.

2. Generalized independent families and induced topologies

An independent family can be viewed as a family of partitions on some set S, in which each partition consists of two subsets. In general, we can consider the following generalized version.

Definition 2.1. Let $\mathcal{I} = \{\{I_{\alpha}^{\beta} : \beta < \lambda_{\alpha}\} : \alpha < \tau\}$ be a family of partitions on an infinite set S with each $\lambda_{\alpha} \geq 2$, and let $\kappa, \lambda, \theta \geq \omega$ be three cardinals.

- If for any $J \in [\tau]^{<\theta}$ and any $f \in \prod_{\alpha \in J} \lambda_{\alpha}$ the intersection $\cap \{I_{\alpha}^{f(\alpha)} : \alpha \in J\}$ has size at least κ , then \mathcal{I} is called a " (θ, κ) -generalized independent family" on S, and a " $(\theta, \kappa, \lambda)$ -generalized independent family" when $\lambda_{\alpha} = \lambda$ for all $\alpha < \tau$.
- \mathcal{I} is called "separated" if for any $\{x, y\} \in [S]^2$, there exists an $\alpha < \tau$ and $\beta < \lambda_{\alpha}$ such that $x \in I_{\alpha}^{\beta}$ and $y \notin I_{\alpha}^{\beta}$.

A $(\theta, \kappa, 2)$ -generalized independent family is a (θ, κ) -independent family, and a σ -independent family defined in [11] is an $(\omega_1, 1)$ -independent family.

Let $\mathcal{I} = \{ \{I_{\alpha}^{\beta} : \beta < \lambda_{\alpha}\} : \alpha < \tau \}$ be a (θ, κ) -generalized independent family on some infinite set S, and let $\{ \langle X_{\alpha}, \mathcal{T}_{\alpha} \rangle : \alpha < \tau \}$ be a family of topological spaces such that $|X_{\alpha}| = \lambda_{\alpha}$ for each $\alpha < \tau$. For each $\alpha < \tau$, index the α -th partition of \mathcal{I} by $\{I_{\alpha}^{x} : x \in X_{\alpha}\}$, and for each nonempty open subset $U \in \mathcal{T}_{\alpha}$, define $B_{\alpha}^{U} = \bigcup \{I_{\alpha}^{x} : x \in U\}$. Set $\mathcal{B}_{\alpha} := \{B_{\alpha}^{U} : \emptyset \neq U \in \mathcal{T}_{\alpha}\}$. The family \mathcal{B}_{α} is a sub-base for a topology on S. We denote it by $S_{X_{\alpha}}$, and we use $\mathcal{I}_{\{X_{\alpha}\}}$ to denote the topology generated by $\{S_{X_{\alpha}} : \alpha < \tau\}$. When each $\langle X_{\alpha}, \mathcal{T}_{\alpha} \rangle$ is discrete, the topology $\mathcal{I}_{\{X_{\alpha}\}}$ is called "the simple topology" induced by \mathcal{I} . It is clear that $\langle S, \mathcal{I}_{\{X_{\alpha}\}} \rangle$ is a P_{θ} -space whenever θ is regular. The space is Hausdorff if \mathcal{I} is separated and each $\langle X_{\alpha}, \mathcal{T}_{\alpha} \rangle$ is Hausdorff, and zero-dimensional if in addition each $\langle X_{\alpha}, \mathcal{T}_{\alpha} \rangle$ is zero-dimensional. In the rest of this section, we only consider Hausdorff spaces and separated families.

Theorem 2.2. Let \mathcal{I} and $\{\langle X_{\alpha}, \mathcal{T}_{\alpha} \rangle : \alpha < \tau\}$ be as above. Any space $\langle S, \mathcal{I}_{\{X_{\alpha}\}} \rangle$ is homeomorphic to a dense subset of $\Box_{\theta}^{\tau} \langle X_{\alpha}, \mathcal{T}_{\alpha} \rangle$

Proof. For each $\alpha < \tau$, define $f_{\alpha} : \langle S, \mathcal{I}_{\{X_{\alpha}\}} \rangle \to \langle X_{\alpha}, \mathcal{T}_{\alpha} \rangle$ such that $f_{\alpha}(I_{\alpha}^{x}) = x$. By our definition of $\mathcal{I}_{\{X_{\alpha}\}}$, we know that f_{α} is a continuous map. Since \mathcal{I} is separated, the family $\{f_{\alpha} : \alpha < \tau\}$ separates points in $\langle S, \mathcal{I}_{\{X_{\alpha}\}} \rangle$.

Consider the map $f = \Delta_{\alpha < \tau} f_{\alpha} : \langle S, \mathcal{I}_{\{X_{\alpha}\}} \rangle \to \Box_{\theta}^{\tau} \langle X_{\alpha}, \mathcal{T}_{\alpha} \rangle$ such that $f(s) = \{f_{\alpha}(s)\}_{\alpha < \tau}$ for all $s \in S$. Certainly f is a one-one map, and f separates points. We need to show the following: (1) f is continuous; (2) the range of f is dense in $\Box_{\theta}^{\tau} \langle X_{\alpha}, \mathcal{T}_{\alpha} \rangle$; (3) f separates points and closed sets.

To see that f is continuous, it is enough to show that for any set $A \in [\tau]^{<\theta}$ and any family $\{ \varnothing \neq U_{\alpha} \in \mathcal{T}_{\alpha} : \alpha \in A \}$ of nonempty open sets, the pre-image of the corresponding open set of $\Box_{\alpha \in A} U_{\alpha}$ is open. By the definition of f, a point $s \in S$ is in the pre-image of that open set if and only if $f_{\alpha}(s) \in U_{\alpha}$ for all $\alpha \in A$, and $f_{\alpha}(s) \in U_{\alpha}$ if and only if there exists some $x \in U_{\alpha}$ such that $s \in I_{\alpha}^x \subseteq B_{\alpha}^{U_{\alpha}}$. Hence $s \in \bigcap \{B_{\alpha}^{U_{\alpha}} : \alpha \in A\} \in \mathcal{I}_{\{X_{\alpha}\}}$. Therefore the pre-image of $\Box_{\alpha \in A} U_{\alpha}$ is $\bigcap \{B_{\alpha}^{U_{\alpha}} : \alpha \in A\}$, which is open in $\mathcal{I}_{\{X_{\alpha}\}}$.

For (2), we need to show that there exists a point $s \in S$ such that f(s) is in the corresponding open set of $\Box_{\alpha \in A} U_{\alpha}$. Using the same argument as above, it is enough to show that $\bigcap \{B^{U_{\alpha}}_{\alpha} : \alpha \in A\}$ is nonempty. Since \mathcal{I} is a θ -generalized independent family, it is clear that $\bigcap \{B^{U_{\alpha}}_{\alpha} : \alpha \in A\} \neq \emptyset$. Hence the range of f is dense in $\Box^{\sigma}_{\theta} \langle X_{\alpha}, \mathcal{T}_{\alpha} \rangle$.

It remains to show that f separates points and closed sets. Let s be a point and let F be a closed subset in $\langle S, \mathcal{I}_{\{X_{\alpha}\}} \rangle$ such that $s \notin F$. Since \mathcal{B} is a base for $\mathcal{I}_{\{X_{\alpha}\}}$, for some set $A \in [\tau]^{\leq \theta}$ and some family $\{ \emptyset \neq U_{\alpha} \in \mathcal{T}_{\alpha} : \alpha \in A \}$, we have $s \in \bigcap \{ B_{\alpha}^{U_{\alpha}} : \alpha \in A \} \subseteq F^{c}$. Obviously f(s) is in the corresponding open set of $\Box_{\alpha \in A} U_{\alpha}$. We show that the corresponding open set of $\Box_{\alpha \in A} U_{\alpha}$ is disjoint from f(F). Since the projection into any $|A| < \theta$ many products is open and continuous, it suffices to prove that $\Box_{\alpha \in A} U_{\alpha} \cap \Delta_{\alpha \in A} f_{\alpha}(F) = \emptyset$. But this can be proved by the same argument used before: if $f_{\alpha}(t) \in U_{\alpha}$ for some $t \in F$, then $t \in I_{\alpha}^{x}$ for some $x \in U_{\alpha}$ and hence $t \in B_{\alpha}^{U_{\alpha}}$, which implies that $t \in \bigcap \{ B_{\alpha}^{U_{\alpha}} : \alpha \in A \} \subseteq F^{c}$, contradicting our early assumption.

Since $\{f\}$ is continuous, separates points, and separates points and closed sets, it is a homeomorphism onto its range. It maps $\langle S, \mathcal{I}_{\{X_{\alpha}\}} \rangle$ onto a dense subset of $\Box_{\theta}^{\tau} \langle X_{\alpha}, \mathcal{T}_{\alpha} \rangle$.

The following corollary is clear.

Corollary 2.3. Let $\mathcal{I} = \{\{I_{\alpha}^{\beta} : \beta < \lambda_{\alpha}\} : \alpha < \tau\}$ be a (θ, κ) -generalized independent family on S, and let $\{\langle X_{\alpha}, \mathcal{T}_{\alpha} \rangle : \alpha < \tau\}$ be a family of topological spaces such that $d(\langle X_{\alpha}, \mathcal{T}_{\alpha} \rangle) \leq \lambda_{\alpha}$ for all $\alpha < \tau$. Then $d(\Box_{\theta}^{\tau} \langle X_{\alpha}, \mathcal{T}_{\alpha} \rangle) \leq |S|$.

W. Hu

The converse of Theorem 2.2 can be established for box product spaces of discrete spaces.

Theorem 2.4. For any dense subset D in $\Box_{\theta}^{\tau}D(\lambda_{\alpha})$, there exists a $(\theta, 1)$ -generalized independent family \mathcal{I} on D. The set D is irresolvable if and only if \mathcal{I} is a maximal $(\theta, 1)$ -generalized independent family.

3. The Hewitt-Marczewski-Pondiczery theorem for box product spaces

Definition 3.1. Let κ, θ, λ be two cardinals with κ, θ infinite. Let S be an infinite set of size κ . The cardinal $i(\kappa, \theta, \lambda)$ is the smallest cardinal τ such that there are no $(\theta, 1, \lambda)$ -generalized independent families on S of size τ .

The following generalizes the Hewitt-Marczewski- Pondiczery theorem.

Theorem 3.2. Let S be a set and let θ, τ, λ be three cardinals with θ infinite. Then the following are equivalent.

- $\tau < i(|S|, \theta, \lambda)$.
- $d(\Box_{\theta}^{\tau}\langle X_{\alpha}, \mathcal{T}_{\alpha}\rangle) \leq |S|$ holds for any family of topological spaces $\{\langle X_{\alpha}, \mathcal{T}_{\alpha}\rangle : \alpha < \tau\}$ with each $d(X_{\alpha}) \leq \lambda$.

Proof. (1) \rightarrow (2). By Corollary 2.3. (2) \rightarrow (1). Let D be a dense subset of $\Box^{\tau}_{\theta} D(\lambda)$ such that |D| = |S|. For each $\alpha < \tau$ and $\beta < \lambda$, let $I^{\beta}_{\alpha} = D \cap \{\{x_{\zeta}\}_{\zeta < \tau} \in \Box^{\tau}_{\theta} D(\lambda) : x_{\alpha} = \beta\}$. Then the family $\mathcal{I} = \{\{I^{\beta}_{\alpha} : \beta < \lambda\} : \alpha < \tau\}$ is a $(\theta, 1, \lambda)$ -independent family on D. Hence there is a $(\theta, 1, \lambda)$ -independent family of size τ on S, which implies $\tau < i(|S|, \theta, \lambda)$.

Comfort and Negrepontis in [2] showed that $|S|^{<\theta} = |S|$ is equivalent to the statement that there exists a subfamily of S^S of size $2^{|S|}$ that is of θ -large oscillation, which implies the existence of a $(\theta, 1, |S|)$ -independent family of size $2^{|S|}$ on S. On the other hand, assuming there exists a $(\theta, 1, |S|)$ -independent family \mathcal{I} of size $2^{|S|}$ on S, for each $\beta < 2^{|S|}$ let $f_{\beta} : S \to S$ be such that $f_{\beta}(I_{\beta}^s) = s$ for each $s \in S$. Then the family $\{f_{\beta} : \beta < 2^{|S|}\}$ is a family of θ -large oscillation. Hence, we have the following theorem.

Theorem 3.3. $i(|S|, \theta, |S|) = (2^{|S|})^+$ if and only if $|S|^{<\theta} = |S|$.

We show in the following theorem that, in general, the cardinal $i(|S|, \theta, |S|)$ is regular.

Theorem 3.4. Let θ , λ be two infinite cardinals such that $\theta \leq \lambda$. Then $i(\lambda, \theta, \lambda)$ is regular.

Proof. Let $\tau < i(\lambda, \theta, \lambda)$ and let $\{\tau_{\alpha} : \alpha < \tau\}$ be cardinals such that $\tau_{\alpha} < i(\lambda, \theta, \lambda)$. Let also $\mu = \sup\{\tau_{\alpha} : \alpha < \tau\}$. By Theorem 3.2, for each $\alpha < \tau$, the box product $\Box^{\tau_{\alpha}}_{\theta} \lambda$ has density λ . By Theorem 3.2 again, the space $\Box^{\mu}_{\theta} \lambda = \Box^{\tau}_{\theta}(\Box^{\tau_{\alpha}}_{\theta}\lambda)$ has density λ . Hence $\mu < i(\lambda, \theta, \lambda)$ according to Theorem 3.2. \Box

It is clear that for any infinite set S and two cardinals $\lambda_1 \leq \lambda_2$, we have $(2^{|S|})^+ \geq i(|S|, \theta, \lambda_1) \geq i(|S|, \theta, \lambda_2)$. When $|S^{<\theta}| = |S|$, we have $i(|S|, \theta, \lambda) = i(|S|, \theta, |S|) = (2^{|S|})^+$ for any $\lambda < |S|$.

206

4. Maximal generalized independent families

The simple topology induced by a maximal $(\theta, 1)$ -generalized independent family is irresolvable. Similarly, the simple topology induced by a maximal $(\theta, 1, \lambda)$ -independent family is λ -irresolvable. In this section, we show that for any uncountable regular cardinal θ , the existence of maximal (θ , 1)-generalized independent families with some simple conditions (equivalently, the existence of irresolvable dense subsets of θ -box product spaces with some simple conditions) implies the consistency of the existence of measurable cardinals.

Lemma 4.1. Suppose $\langle X, \mathcal{T} \rangle$ is an open-hereditarily irresolvable space and \mathcal{T} is a P_{θ} -topology for some regular cardinal θ . Let \mathcal{N} denote the ideal of nowhere dense subsets, and let λ be the smallest cardinal such that \mathcal{N} is not λ -complete. Then for any $\gamma < \gamma^+ < \lambda$ and $\beta < \theta$, \mathcal{N} is $(\gamma^\beta)^+$ -complete.

Proof. Since hereditarily the topology is open irresolvable, $\mathcal{N} = \{A \subseteq S : A^o = \varnothing\}$. For a contradiction, let us assume that there exists $Y_f \in \mathcal{N}$ for each $f \in \gamma^\beta$ such that the Y_f are disjoint and $\bigcup_f Y_f \supseteq U$ for some nonempty open set U. We claim that there exists some member $Y_g \notin \mathcal{N}$. Inductively define $g: \beta \to \gamma$ and a decreasing chain of non-empty basic open sets $\{U^{\zeta}: \zeta < \beta\}$ so that

- $U^0 = U$,
- $U^{\zeta} = \bigcap \{ U^{\eta} : \eta < \zeta \},$ $U^{\zeta+1} \subseteq U^{\zeta} \text{ and } U^{\zeta+1} \subseteq \bigcup \{ Y_f : f(\zeta) = g(\zeta) \}.$

When $\zeta < \theta$ is a limit, the set $\bigcap \{ U^{\eta} : \eta < \zeta \}$ defined in (2) is a nonempty open set, since \mathcal{T} is a P_{θ} -topology. For (3), we have γ -many disjoint sets $\{N_{\alpha} = \bigcup \{Y_f : f(\zeta) = \alpha\} : \alpha \in \gamma\}$. The union of these sets contains U and hence U^{ζ} . Since the topology is open hereditarily irresolvable and \mathcal{N} is γ^+ -complete, one of these sets $\{N_\alpha \cap U^\zeta : \alpha < \gamma\}$, say $N_\alpha \cap U^\zeta$, has non-empty interior $U^{\zeta+1}$. Set $g(\zeta+1) = \alpha$.

We have $\bigcap \{ U^{\zeta} : \zeta < \beta \} \subseteq \bigcap_{\zeta < \beta} \bigcup \{ Y_f : f(\zeta) = g(\zeta) \} = Y_g$ contradicting $Y_q \in \mathcal{N}.$ \square

In [2], Comfort and Negrepontis introduced the notion of strongly θ -inaccessible: a cardinal λ is called *strongly* θ -*inaccessible* if $\beta^{\gamma} < \lambda$ whenever $\beta < \lambda$ and $\gamma < \theta$. Given a cardinal θ , denote by θ_{in} the smallest cardinal λ such that λ is strongly θ -inaccessible.

Lemma 4.2. Let everything be as in Lemma 4.1. Then

- λ is regular;
- if λ is a successor cardinal, say $\lambda = \lambda'^+$, then λ' is strongly θ -inaccessible.
- if λ is a limit cardinal, then λ is strongly θ -inaccessible

Proof. (1) is trivial. If $\lambda = \lambda'^+$, then for any $\gamma < \lambda'$ and $\beta < \theta$, $(\gamma^{\beta})^+ \leq \lambda'$ (Lemma 4.1), and hence $(\gamma^{\beta}) < \lambda'$. This gives (2). (3) is trivial. \square

Let everything be as in Lemma 4.1. Let us assume further that $S(\langle X, \mathcal{T} \rangle)$ $\leq \lambda$ with λ defined in Lemma 4.1. Then it is easy to see that the ideal \mathcal{N} is λ -saturated. Under these assumption, there exists a λ -saturated (hence λ^+ -saturated) λ -complete ideal over λ (using the proof of Lemma 27.1 in [10]). Lemma 35.10 and Theorem 86 in [10] show that λ is a measurable cardinal in some model of ZFC.

In the following we show that for any uncountable regular cardinal θ , if there exists a maximal $(\theta, 1)$ -generalized independent family with some conditions, then the induced simple topology satisfies above conditions.

Theorem 4.3. Let θ be a regular cardinal. Suppose there exists a maximal $(\theta, 1)$ -generalized independent family $\mathcal{I} = \{ \{I_{\alpha}^{\beta} : \beta < \lambda_{\alpha}\} : \alpha < \tau \}$ on a set S with each $\lambda_{\alpha} < \theta_{in}$. Let \mathcal{N} be the ideal of nowhere dense set of the simple topology induced by \mathcal{I} and let λ be the smallest cardinal such that \mathcal{I} is not λ -complete. Then

- there is a nonempty open set U of the simple topology such that U with the subspace topology satisfies all conditions in Lemma 4.1 and the ideal *I*_U of nowhere dense set of U is λ-saturated; and
- $2^{<\theta} = \theta$

Proof. (i) Let $\langle S, \mathcal{T} \rangle$ be the simple topology induced by \mathcal{I} . Since \mathcal{I} is a maximal $(\theta, 1)$ -generalized independent family, it is irresolvable. Using a standard argument ([9]), there is a nonempty basic open set U the subspace topology on which is hereditarily irresolvable.

Let \mathcal{N}_U be the set of all nowhere dense subsets in $\langle U, \mathcal{T} \rangle$, i.e., the set U with the subspace topology inherited from \mathcal{T} . By Lemma 4.2, if λ is a limit cardinal, then λ is strongly θ -inaccessible. If λ is a successor cardinal, say $\lambda = \lambda'^+$, then λ' is strongly θ -inaccessible.

Using Theorem 2.3 in [2], we have that $S(\langle S, \mathcal{T} \rangle)$, and hence $S(\langle U, \mathcal{T} \rangle)$, is $\leq \lambda$ if λ is a limit cardinal, and $< \lambda$ otherwise. Hence \mathcal{N}_U is λ -saturated.

(ii) The proof here uses a similar argument as that of Lemma 1.4 in [11]. For each $\theta' < \theta$ we produce a map from θ onto $2^{\theta'}$.

Index θ as $A \times B$ with $A = \{a_{\eta} : \eta < \theta\}$ and $B = \{b_{\zeta} : \zeta < \theta'\}$. Consider the family $\{I^0_{\alpha} : \alpha < \theta\} = \{I^0_{a_{\eta}b_{\zeta}} : \eta < \theta, \zeta < \theta'\}$. For each $x \in X$, define $\phi_x : \theta \to 2^{\theta'}$ so that $\phi_x(\eta)(\zeta) = 1$ if and only if $x \in I^0_{a_{\eta}b_{\zeta}}$. For each $f \in 2^{\theta'}$, let R_f be $\{x \in X : f \notin range(\phi_x)\} = \{x \in X : f \neq \phi_x(\eta) \text{ for all } \eta < \theta\}$. We show that $\bigcap_{f \in 2^{\theta'}} (X \setminus R_f) \neq \emptyset$ by proving $R_f \in \mathcal{N}$ and applying Lemma 4.1, which shows that for some x, ϕ_x is onto.

Suppose that for some x, φ_x is onto: Suppose that R_f contains $U = \bigcap \{U_{\alpha}^{\sigma(\alpha)} : \alpha \in A\}$, a non-empty basic open set, for some set $A \in [\tau]^{\leq \theta}$ and some $\sigma \in \prod_{\alpha \in A} \lambda_{\alpha}$. Then there is an $\eta < \theta$ such that $A \cap \cup \{(a_\eta, b_\zeta) : \zeta < \theta'\} = \emptyset$. Now consider the open set $U' = U \cap \{I_{a_\eta b_\zeta}^0 : \zeta < \theta' \text{ and } f(\zeta) = 1\} \cap \{S \setminus I_{a_\eta b_\zeta}^0 : \zeta < \theta' \text{ and } f(\zeta) = 0\}$. It is clear that $U' \neq \emptyset$ and $U' \subseteq \{s \in S : \phi_s(\eta) = f\} \cap U \subseteq (S \setminus R_f) \cap U$, a contradiction. \square

208

The following theorem is a direct corollary of Theorem 4.3.

Corollary 4.4. For any uncountable regular cardinal θ , the existence of a maximal $(\theta, 1)$ -generalized independent family $\mathcal{I} = \{\{I_{\alpha}^{\beta} : \beta < \lambda_{\alpha}\} : \alpha < \tau\}$ on a set S with each $\lambda_{\alpha} < \theta_{in}$ implies the consistency of the existence of measurable cardinals, and $2^{<\theta} = \theta$.

The corresponding conclusion is about the existence of irresolvable dense subsets in a θ -box product space.

Theorem 4.5. Let θ be an uncountable regular cardinal, and let $\{\lambda_{\alpha} \geq 2 : \alpha < \tau\}$ be a family of cardinals with each $\lambda_{\alpha} < \theta_{in}$.

If there exists an irresolvable dense subset S of the θ -box product space $\Box^{\tau}_{\theta}D(\lambda_{\alpha})$, then

- It is consistent that there exists a measurable cardinal; and
- $2^{<\theta} = \theta$.

References

- W. W. Comfort and W. Hu, Maximal independent families and a topological consequence, Topology Appl. 127 (2003), 343–354.
- [2] W. W. Comfort and S.A. Negrepontis, On families of large oscillation, Fund. Math. 75 (1972), 275–290.
- [3] W. W. Comfort and S. A. Negrepontis, The theory of ultrafilters, Springer-Verlag, 1974.
- [4] E. K. van Douwen, Applications of maximal topologies, Topology Appl. 51 (1993), 125– 139.
- [5] F. W. Eckertson, Resolvable, not maximally resolvable spaces, Topology Appl. 79 (1997), 1–11.
- [6] R. Engelking, General topology, Warszawa, 1977.
- [7] M. Gotik and S. Shelah, On densities of box products, Topology Appl. 88 (1998), 219– 237.
- [8] F. Hausdorff, Über zwei Sätze von G. Fichtenholz und L. Kantorovitch, Studia Math. 6 (1936), 18–19.
- [9] E. Hewitt, A problem of set-theoretic topology, Duke Math. J. 10 (1943), 309–333.
- [10] T. Jech, Set Theory, second edition, Springer-Verlag, 1997.
- [11] K. Kunen, Maximal σ -independent families, Fund. Math. 117 (1983), 75–80.
- [12] K. Kunen, A. Szymanski and F. Tall, Baire resolvable spaces and ideal theory, Prace Nauk., Ann. Math. Sil. 2(14) (1986), 98–107.
- [13] K. Kunen and F. Tall, On the consistency of the non-existence of Baire irresolvable spaces, http://at.yorku.ca/v/a/a/a/27.htm, 1998.
- [14] S. Shelah, Baire irresolvable spaces and lifting for a layered ideal, Topology Appl. 33 (1989), 217–231.

Received May 2005

Accepted July 2006

WANJUN HU (Wanjun.Hu@asurams.edu)

Department of Mathematics and Computer Science, Albany State University, Albany GA 31705.