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Uniformly discrete hit-and-miss hypertopology
A missing link in hypertopologies
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Abstract. Recently it was shown that the lower Hausdorff metric
(uniform) topology is generated by families of uniformly discrete sets
as hit sets. This result leads to a new hypertopology which is the join
of the above topology and the upper Vietoris topology. This uniformly

discrete hit-and-miss hypertopology is coarser than the locally finite hy-
pertopology and finer than both Hausdorff metric (uniform) topology
and Vietoris topology. In this paper this new hypertopology is studied.
Here is a Hasse diagram in which each arrow goes from a coarser topol-
ogy to a finer one and equality follows UC or TB as indicated. The
diagram clearly shows that the new (underlined) topology provides the
missing link.

UC
Proximal locally finite −→ Locally finite

↑ UC ↑ UC
UC

Hausdorff metric −→ Uniformly discrete

↑ TB ↑ TB
UC

Proximal −→ Vietoris
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1. Introduction and Preliminaries

During the early part of the last century there were two main studies on the
hyperspace CL(X) of all non empty closed subsets of a topological (uniform,
metric) space X . Vietoris introduced a topology consisting of two parts (a) the
lower finite hit part and (b) the upper miss part. Hausdorff defined a metric
on the hyperspace of a metric space, and the resulting topology depends on the
metric rather than on the topology of the base space. Two equivalent metrics
on a metrizable space induce equivalent Hausdorff metric topologies if, and
only if, they are uniformly equivalent. Recently, it was shown that all known
hypertopologies are variations of the prototype: Vietoris hit-and-miss topology,
and so they can be described as the joins of lower and upper parts ([11]). In
particular, the Hausdorff metric topology coincides with the join τ(U)−∨σ(δ+),
where

(a) τ(U)− is the lower uniformly discrete hit part, and
(b) σ(δ+) is the upper proximal miss part ([11]).

A new hypertopology arises formally but, in fact, is indeed quite natural. It
is the uniformly discrete hit-and-miss hypertopology τ(U), which is the
join of the upper Vietoris and the lower uniformly discrete topologies. This
hypertopology, which is well placed in the family of hypertopologies, is finer
than both the Vietoris τ(V ) and the Hausdorff metric τ(Hd) topologies, but is
coarser than the locally finite topology. The locally finite hypertopology τ(L)
plays a key role (see [2], [8] and [14]). Given a metric space (X, d), τ(L) is
the sup of all Hausdorff metric topologies {τ(H̺)} induced by all metrics ̺

topologically equivalent to d. The uniformly discrete hit-and-miss hypertopol-
ogy τ(U(d)), or simply τ(U), has a decomposition which sheds more light on
the nature of the Hausdorff metric topology and on the relations among these
classical hypertopologies.

From this representation and the knowledge that lower and upper parts act
separately in any comparison, it is convenient to study the two parts separately.
We will show that the two parts, in spite of the definition, play a symmetric
role. In fact, they coincide with the corresponding parts of the Hausdorff metric
topology if, and only if, the underlying metric space (X, d) is UC (A metric
space (X, d) is UC if, and only if, each continuous real valued function defined
on X is uniformly continuous). More surprising, the coincidence of either the
lower or the upper parts forces the coincidence of the hypertopologies (This
phenomenon is due to the symmetric nature of the Hausdorff metric topology).
We will focus our attention on metric spaces, but we point out that many
results hold in uniform spaces too.

In the second section we introduce the uniformly discrete hit-an-miss hyper-
topology τ(U) and state its basic, but important properties.

The third section is devoted to comparisons and equalities: the role of the
uniformly discrete hit-and-miss hypertopology τ(U) in the lattice of all hyper-
topologies on CL(X) is carefully investigated.
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2. The uniformly discrete hit-and-miss hypertopology

Let (X, d), or simply X , be a metric space and CL(X) the family of all non
empty closed subsets of X . For A ∈ CL(X), ε > 0, the set

{Sε(x)− : x ∈ Q ⊂ A, where Q is ε-discrete}

is the (discrete) ε-screen of A centered at Q and is denoted by Sε(Q, A)−.
Lε(A)− is the family of all discrete screens of A, namely

{Sε(Q, A)− : Q ⊂ A, where Q is ε-discrete, ε > 0}.

Lemma 2.1. For A ∈ CL(X), ε1 > 0, ε2 > 0, let Q1 be ε1-discrete and Q2 be
ε2-discrete subsets of A. Then A ∈ Sε(Q, A)− ⊂ Sε1

(Q1, A)− ∩ Sε2
(Q2, A)−,

for ε = 1
3
min{ε1, ε2}.

Definition 2.2. Given a metric space (X, d), the lower uniformly discrete
topology τ(U(d))− on CL(X), briefly the lower discrete topology, has the family
{Lε(A)− : ε > 0} as a local base at A ∈ CL(X).

Proposition 2.3. [11] Let (X, d) be a metric space. The lower discrete topology
τ(U(d))− on CL(X) equals the lower Hausdorff metric topology τ(H−

d ).

Definition 2.4. Given a metric space (X, d), the uniformly discrete hit-and-
miss topology τ(U(d)), or briefly τ(U), on CL(X) is the join of the lower
(uniformly) discrete topology and the upper Vietoris topology, i.e. τ(U(d)) =
τ(U(d))− ∨ τ(V +). We call τ(U(d)) the UD-topology.

We first study the countability properties of τ(U(d))− and τ(U(d)) = τ(U(d))−

∨ τ(V +). The first countability of the lower discrete topology τ(U(d))− on
CL(X) is obvious since it is induced by a pseudometric (Proposition 2.3), but
we would like to offer a different proof.

Proposition 2.5. The lower discrete topology τ(U(d))− on CL(X) is first
countable.

Proof. Given A ∈ CL(X), let Qn be a 1
n
-maximal discrete subset of A. Then

the family L(A)− = {S 1

n

(x)− : x ∈ Qn : n ∈ N}, is a countable local base at

A. �

Proposition 2.6. Let (X, d) be a metric space. The following are equivalent.

(1) (CL(X), τ(U(d))) is first countable;
(2) (CL(X), τ(V +)) is first countable;
(3) (X, d) is topologically UC.

Proof. (1) ⇒ (2) use the same argument as in Theorem 1.1 in [5].
(2) ⇔ (3) is Corollary 1.9 in [5] (a metric space (X, d) is topologically UC

if, and only if, admits a compatible metric ̺ such that (X, ̺) is UC).
(2) ⇒ (1) τ(U(d)) = τ(U(d))− ∨ τ(V +) is first countable since it is the join

of two first countable topologies. �
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Proposition 2.7. Let (X, d) be a metric space. The following are equivalent:

(1) The lower discrete topology τ(U(d))− on CL(X) is second countable;
(2) X is totally bounded (TB).

Proof. (2) ⇒ (1) If X is TB, then τ(U(d))− = τ(V −) and the claim since X is
also second countable (see [3] and [5]).

(1) ⇒ (2) Suppose that X fails to be TB. So it admits for some positive ε

an infinite ε-discrete subset D = {xn : n ∈ N}. Let D be the uncountable set of
all nonempty subsets of D. Let D1, D2 ∈ D with D1 6= D2 and d⋆ ∈ D1 \ D2.
Then D2 ∈ {Sε(d)− : d ∈ D2}, but D2 6∈ {Sε(d)− : d ∈ D1} and the claim. �

Proposition 2.8. Let (X, d) be a metric space. The following are equivalent:

(1) The UD-topology τ(U(d)) on CL(X) is second countable;
(2) τ(V +) is second countable;
(3) X is compact;
(4) The UD-topology τ(U(d)) on CL(X) is compact and metrizable.

Proof. See [3] and [5], use Theorem 4.9.7 in [9] and observe that if X is compact
all the involved hypertopologies coincide with the Vietoris topology τ(V ) (see
section 3). �

We omit the proof of the following technical Lemma.

Lemma 2.9. Let (X, d) be a metric space and A ∈ CL(X). Then
(CL(A), τ(U(d | A))) = (CL(A), τ(U(d)) | CL(A)).

Proposition 2.10. Let (X, d) be a metric space. The following are equivalent:

(1) τ(U(d)) is normal;
(2) X is compact;
(3) τ(U(d)) is compact and metrizable.

Proof. We show (1) ⇒ (2). Suppose that X fails to be compact. Then there
exists a countable closed discrete set A. Now use Lemma 2.9 and Ivanova
argument (see [6] or [7]). �

We state the following proposition without a proof.

Proposition 2.11. Let X be metrizable and d and e compatible metrics. Then
τ(U(d)) = τ(U(e)) if, and only if, d and e are uniformly equivalent.

3. Comparisons

The following proposition can be easily deduced from the definitions. Never-
theless, it is important since it is useful to locate in a natural way the Vietoris
and Hausdorff metric topologies in the lattice of all hypertopologies on CL(X).
We recall that the lower locally finite topology τ(L−) has as a basis: the family
of all sets of the form {E− : E ∈ L,L is locally finite}.

Proposition 3.1. Let (X, d) be a metric space. The following inclusions hold
on CL(X):
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τ(U(d))− ⊂ τ(L−),
τ(V −) ⊂ τ(U(d))−.

Hence, the following Hasse diagram can be drawn: it is formed by two
rectangles (upper/lower) with a common side (recall that the proximal locally
finite topology σ(L) has been studied in [2]).

Each arrow goes from a coarser topology to a finer one and equality follows
UC (see below) or TB (totally bounded) as indicated. The diagram clearly
shows that the new topology provides the missing link.

UC
Proximal locally finite −→ Locally finite

↑ UC ↑ UC
UC

Hausdorff metric −→ Uniformly discrete

↑ TB ↑ TB
UC

Proximal −→ Vietoris

Observe that all the topologies in the first (resp. second) column have the
same upper part: the proximal upper topology σ(V +) (resp. the upper Vietoris
topology τ(V +)); similarly all topologies in the first (resp. second, third) row
have the same lower part: lower locally finite τ(L−) (resp. lower uniformly
discrete τ(U(d))−, lower Vietoris τ(V −)).

To state comparisons the notion of UC metric is essential. Again, we recall
that a metric space (X, d) is UC if each real valued continuous function on
(X, d) is uniformly continuous. This class of spaces has been investigated since
1950 and intensely in the last decades (see [4] where further references can be
found). We use the following characterization of a UC space due to Atsuji ([1]).
A metric space (X, d) is UC if each sequence (xn : n ∈ N) without accumulation
points is finally uniformly isolated, i.e. there exists a positive ε and an index
n0 such that for all n ≥ n0, S(xn, ε) ∩ X = {xn}.

The following is an unexpected result.

Proposition 3.2. Let (X, d) be a metric space. The following are equivalent:

(1) τ(L−) = τ(U(d))−;
(2) (X, d) is UC.

Proof. (1) ⇒ (2) By contradiction, suppose (X, d) fails to be UC. Then, passing
to a subsequence if necessary, there is a sequence (xn : n ∈ N) without accumu-
lation points such that for each n there is yn ∈ X such that d(xn, yn) ≤ 1

n
. Since

(xn : n ∈ N) is without accumulation points, the same occurs to (yn : n ∈ N).
Set rn = d(xn, yn) and consider {S(xn, rn) : n ∈ N}. Since X is metric (para-
compact), we may suppose that {S(xn, rn) : n ∈ N} is a locally finite family.
Let A = (xn : n ∈ N) and An = {zk : k ∈ N, with zk = xk for k ≤ n and zk =
yk for k > n}. The sequence An clearly converges to A w.r.t. τ(U(d))−, but
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An fails to converge to A w.r.t. τ(L−). In fact, A ∈ {S(xn, rn) : n ∈ N}−, but
for no n, An ∈ {S(xn, rn) : n ∈ N}−.

(2) ⇒ (1) Suppose that (X, d) is UC. Let V = {S(xi, ri) : i ∈ I} be a
discrete family. For each i ∈ I there exists a continuous function gi : X → [0, 1]
such that gi(xi) = 1, gi(S(xi, ri)) ⊆ [0, 1], and gi(x) = 0 for x 6∈ S(xi, ri). Set
̺(x, y) = d(x, y) +

∑
| gi(x) − gi(y) |.

By a routine argument ̺ is a compatible metric. Since the identity map
id : (X, d) → (X, ̺) is continuous, it must be uniformly continuous. So, there
exists ε such that d(x, y) < ε implies ̺(x, y) < 1. Thus, the set {xi : i ∈ I} is
ε-discrete and the claim τ(L−) = τ(U(d))−. �

We recall the following visual characterization of UC spaces due to Nagata
([10]): a metric space (X, d) is UC if, and only if, disjoint closed sets are a
positive distance apart. Thus, the corresponding results for the upper parts
are easily stated.

Proposition 3.3. Let (X, d) be a metric space. The following are equivalent:

(1) τ(L+) = σ(L+);
(2) τ(L) = σ(L);
(3) τ(U(d))+ = τ(H+

d );
(4) τ(U(d)) = τ(Hd);
(5) τ(V +) = σ(V +);
(6) τ(V ) = σ(V );
(7) (X, d) is UC.

Proof. Note that the hypertopologies τ(L+) and τ(U(d))+ have as upper part
the upper Vietoris topoloy τ(V +), whereas the upper part of σ(L+) and τ(H+

d )
is the upper proximal topology σ(V +). Clearly, according to the above men-
tioned characterization of UC spaces, τ(V +) and σ(V +) coincide if, and only
if, the metric space (X, d) is UC. �

Proposition 3.4. Let (X, d) be a metric space. The following are equivalent:

(1) τ(V −) = τ(U(d))−;
(2) τ(V ) = τ(U(d));
(3) τ(H−

d
) = σ(V −);

(4) τ(Hd) = σ(V );
(5) (X, d) is totally bounded (TB).

Proof. See [11]. �

Observe that in the upper rectangle horizontal and vertical equalities are
described by the same single property, i.e. UC.

Theorem 3.5. Let (X, d) be a metric space. The following are equivalent:

(1) τ(L) = σ(L) = τ(Hd) = τ(U(d));
(2) (X, d) is UC.
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Proof. Use Propositions 3.2 and 3.3 or the following conceptual argument which
uses the full power of the whole hypertopologies. The locally finite hyper-
topology τ(L) equals the Hausdorff-Boubaki hypertopology τ(W) induced by
the fine uniformity W on (X, d) (Theorem 2.2 in [12]). Recall that (X, d)
is UC if, and only if, the metric uniformity V(d) is the fine uniformity W
(see [10], [12] and [13]). Observe that the Hausdorff-Boubaki hypertopology
τ(V(d)) induced by the metric uniformity V(d) is the Hausdorff metric hyper-
topology τ(Hd). Thus, (X, d) is UC if, and only if, τ(L) = τ(W) = τ(Hd)
(Corollary 2.2 in [12]). It follows easily that (X, d) is UC if, and only if,
τ(L) = σ(L) = τ(Hd) = τ(U(d)). �

Note that in the lower rectangle the horizontal (resp. vertical) equalities
occur when the space is UC (resp. TB). To squeeze the lower rectangle to a
point we need two properties, namely TB and UC. Consequently, due to the
UC property, also the upper rectangle reduces to a point. But, TB + UC is
equivalent to compactness. So, we have that compactness is equivalent to the
equality of all the six studied hypertopologies.

Corollary 3.6. Let (X, d) be a metric space. The following are equivalent:

(1) σ(V ) = τ(V ) = τ(U(d)) = τ(Hd) = τ(L) = σ(L);
(2) (X, d) is compact.
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