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On spaces with the property (wa)

Yan-Kui Song
∗

Abstract. A space X has the property (wa) (or is a space with
the property (wa)) if for every open cover U of X and every dense
subspace D of X, there exists a discrete subspace F ⊆ D such that
St(F,U) = X. In this paper, we give an example of a Tychonoff space
without the property (wa), and also study topological properties of
spaces with the property (wa) by using the example.
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1. Introduction

By a space, we mean a topological space. Matveev [2] defined a space X to
have the property (a) if for every open cover U of X and every dense subspace
D of X , there exists a discrete closed subspace F ⊆ D such that St(F,U) = X,
where

St(F,U) =
⋃

{U ∈ U : U ∩ F 6= ∅}.

As a way to weaken the above definition, he also gave the following definition:

Definition 1.1 ([2]). A space X has the property (wa) if for every open cover

U of X and every dense subspace D of X, there exists a discrete subspace

F ⊆ D such that St(F,U) = X.

A space having the property (wa) is also called a space with the property
(wa). From the above definitions, it is not difficult to see that every space with
the property (a) is a space with the property (wa).

The purpose of this paper is to give an example of a Tychonoff space with-
out the property (wa) and to study topological properties of spaces with the
property (wa) by using the example.

As usual, R, P and Q denote the set of all real numbers, all irrational numbers
and all rational numbers, respectively. For a set A, |A| denotes the cardinality
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of A. For a cardinal κ, κ+ denotes the smallest cardinal greater than κ. In
particular, let ω denote the first infinite cardinal, ω1 = ω+ and c the cardinality
of the continuum. As usual, a cardinal is the initial cardinal and an ordinal
is the set of smaller ordinals. When viewed as a space, every cardinal has the
usual order topology. For each ordinal α, β with α < β, we write (α, β) = {γ :
α < γ < β}, [α, β) = {γ : α ≤ γ < β} and (α, β] = {γ : α < γ ≤ β}. Other
terms and symbols that we do not define will be used as in [1].

2. A Tychonoff space without the property (wa)

Matveev [2] gave an example of a T1-space without the property (wa) and
he asked if there exists a T2 (T3, Tychonoff) space without the property (wa).
Yang [8] constructed a T2 space without the property (wa). In this section, we
give an example of a Tychonoff space without the property (wa). We omit the
easy proof of the following lemma.

Lemma 2.1. Let R be endowed with the usual topology and A a discrete sub-

space of R. Then, |A| ≤ ω and clRA is nowhere dense in R.

Example 2.2. There exists a 0-dimensional, first countable, Tychonoff space
without the property (wa).

Proof. Let A =
⋃

n∈N An, where An = Q × {1/n} and let A = {S : S is a
discrete subspace of A}. Then, we have:

Claim 2.3. |A| = c.

Proof. Since |A| = ω, |A| ≤ c. Let S = {〈n, 1〉 : n ∈ N} ⊆ A. Since every
subset of S is discrete, {F : F ⊆ S} ⊆ A. Hence, |A| ≥ |{F : F ⊆ S}| = c. �

Since |A| = c, we can enumerate the family A as {Sα : α < c}. For each
α < c and each n ∈ N , put Sα,n = {q ∈ Q : 〈q, 1/n〉 ∈ Sα}.

Claim 2.4. For each α < c, |R \
⋃

n∈N clRSα,n| = c.

Proof. For each α < c, let

Xα = R \
⋃

n∈N

clR Sα,n.

Since Xα is a Gδ-set in R, Xα is a complete metric space. To show that Xα

is dense in itself, suppose that Xα has an isolated point x. Then, there exists
ε > 0 such that

(x − ε, x + ε) ∩ Xα = {x}.

Let I = (x, x + ε), Then,

I ⊂ R \ Xα ⊂
⋃

n∈N

clR Sα,n.

Moreover, since I is open in R, clR Sα,n ∩ I ⊆ clR(Sα,n ∩ I). Hence,

(6) I = (
⋃

n∈N

clR Sα,n) ∩ I =
⋃

n∈N

(clR Sα,n ∩ I) ⊆
⋃

n∈N

clR(Sα,n ∩ I).
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By Lemma 2.1, each clR(Sα,n ∩ I) is nowhere dense in R. Thus, (6) contra-
dicts the Baire Category Theorem. Hence, Xα is dense in itself. It is known
([1, 4.5.5]) that every dense in itself complete metric space includes a Cantor
set. Hence, |Xα| = c. �

Claim 2.5. There exists a sequence {pα : α < c} satisfying the following

conditions:

(1) For each α < c, pα ∈ P.
(2) For any α, β < c, if α 6= β, then pα 6= pβ .
(3) For each α < c, pα /∈

⋃
n∈N clRSα,n.

Proof. By transfinite induction, we define a sequence {pα : α < c} as follows:
There is p0 ∈ P such that p0 6∈

⋃
n∈N cl S0,n by Claim 2.4. Let 0 < α < c and

assume that pβ has been defined for all β < α. By Claim 2.4,

|R \
⋃

n∈N

clR Sα,n| = c.

Hence, we can choose a point pα ∈ (P \
⋃

n∈N clR Sα,n) \ {pβ : β < α}. Now,
we have completed the induction. Then, the sequence {pα : α < c} satisfies the
conditions (1) (2) and (3). �

Claim 2.6. For each α < c, there exists a sequence {εα,n : n ∈ N} in Q

satisfying the following conditions:

(1) For each n ∈ N, (pα − εα,n, pα + εα,n) ∩ Sα,n = ∅.
(2) For each n ∈ N, εα,n ≥ εα,n+1.
(3) limn→∞ εα,n = 0.

Proof. Let α < c. For n = 1, since pα 6∈ clR Sα,1, there exists a rational εα,1 > 0
such that

(pα − εα,1, pα + εα,1) ∩ Sα,1 = ∅.

Let n > 1 and assume that we have defined {εα,m : m < n} satisfying that

εα,1 > εα,2 > · · · > εα,n−1.

Since pα 6∈ clR Sα,n, there exists a rational ε′α,n such that

(pα − ε′α,n, pα + ε′α,n) ∩ Sα,n = ∅.

Put
εα,n = n−1 min{εα,n−1, ε

′
α,n}.

Now, we have completed the induction. Then, the sequence {εα,n : n ∈ N}
satisfies (1) (2) and (3). �

Define X = A∪B, where B = {〈pα, 0〉 : α < c}. Topologize X as follows: A
basic neighborhood of a point in A is a neighborhood induced from the usual
topology on the plane. For each α < c, a neighborhood base {Un〈pα, 0〉 : n ∈ ω}
of 〈pα, 0〉 ∈ B is defined by

Un〈pα, 0〉 = {〈pα, 0〉} ∪ (
⋃

i≥n

{((pα − εα,i, pα + εα,i) ∩ Q) × {1/i}}).
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for each n ∈ ω. Then, X is a first countable T2-space. For each α < c and each
n ∈ ω. Un〈pα, 0〉 is open and closed in X , because pα ± εα,i 6∈ Q for each i ∈ ω.
It follows that X is 0-dimensional, and hence, a Tychonoff space.

Claim 2.7. The space X has not the property (wa).

Proof. Let

U = {A} ∪ {U1〈pα, 0〉 : α < c}.

Then, U is an open cover of X and A is a dense subspace of X. For each discrete
subset F of A, there exists α < c such that F = Sα. Since U1〈pα, 0〉 ∩ Sα = ∅,
〈pα, 0〉 6∈ St(F,U). This shows that X does not have the property (wa). �

�

Remark 2.8. The above example was announced in [6]. The author does not
know if there exists a normal space without the property (wa).

Remark 2.9. Just, Matveev and Szeptycki [5] constructed an example that
has similar properties as example 2.2, but the construction of our example
seems to be simpler than their example.

3. Some topological properties of spaces with the property (wa)

First, we give an example showing that a continuous image of a space with
the property (wa) need not be a space with the property (wa).

Example 3.1. There exists a continuous bijection f : X → Y from a Tychonoff
space X with the property (wa) to a Tychonoff space Y without the property
(wa).

Proof. We define the space X by changing the topology of the space of Example
2.2 by the discrete space. Then, the space X is a space with property (wa).
Let Y be the space of Example 2.2 as in the proof of Example 2.2. Then, the
space Y is a Tychonoff space without property (wa). Let f : X → Y be the
identity map. Clearly f is continuous, which completes the proof. �

Let us recall that a mapping f : X → Y is varpseudocompact if Int(f(U)) 6=
∅ for every non-empty set U of X .

Theorem 3.2. Let X be a space with the property (wa) and f : X → Y be

a varpseudocompact continuous closed mapping. Then, Y is a space with the

property (wa).

Proof. Let f : X → Y be a varpseudocompact continuous closed mapping.
Let U be an open cover of Y and D a dense subspace of Y . Then, U0 =
{f−1(U) : U ∈ U} is an open cover of X and D0 = f−1(D) is dense in X since
f is varpseudocompact. Then, there is a discrete subset B ⊆ D0 such that
St(B,U0) = X, since X is a space with property (wa). Let F = f(B). Then, F
is a discrete subset of D since f is closed, and St(F,U) = Y , which completes
the proof. �
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In the following, we give an example to show that a regular-closed subset
of a space with the property (a) (hence, (wa)) need not be a space with the
property (wa). Recall [3] that a space X is absolutely countably compact if
for every open cover U of X and every dense subspace D of X , there exists a
finite subset F ⊆ D such that St(F,U) = X . It is known that every absolutely
countably compact T2 space is countably compact and has the property (a) (see
[2, 3]). Moreover, Vaughan [7] proved that every countably compact GO-space
is absolutely countably compact. Thus, every cardinality with uncountable
cofinality is absolutely countably compact.

Example 3.3. There exists a Tychonoff space X with the property (a) (hence,(wa))
having a regular-closed subspace without the property (wa).

Proof. Let X = A ∪ B be as in the proof of Example 2.2. Let

S1 = (c+ × A) ∪ B.

We topologize S1 as follows: c
+ × B has the usual product topology and is an

open subspace of S1. For each α < c, a basic neighbourhood of 〈pα, 0〉 takes
the form

Gβ,n(〈pα, 0〉) = {〈pα, 0〉} ∪ ({α : β < α < c
+} × (Un〈pα, 0〉 \ {〈pα, 0〉})).

for β < c
+ and n ∈ N , where Un〈pα, 0〉 is defined in Example 2.2. Then, the

space S1 is Tychonoff. Now, we show that S1 has the property (a). For this
end, let U be an open cover of S1. Let D0 be the set of all isolated points of
c
+ and let D = D0 × A. Then, D is dense in S1 and every dense subspace of

S1 contains D. Thus, it suffices to show that there exists a subset F ⊆ D such
that F is discrete closed in S1 and St(F,U) = S1. For each q ∈ Q and each
n ∈ N , since c

+ × {〈q, 1/n〉} is absolutely countably compact, there exists a
finite subset Fq,n ⊆ D0 × {〈q, 1/n〉} such that

c
+ × {〈q, 1/n〉} ⊆ St(Fq,n,U).

Let
F ′ =

⋃
{Fq,n : q ∈ Q and n ∈ ω}.

Then,
c
+ × A ⊆ St(F ′,U).

For each α < c, take Uα ∈ U with 〈pα, 0〉 ∈ Uα, and fix βα < c
+ and nα ∈ N

such that
{〈α, 〈pα, 0〉〉 : βα < α < c

+} ⊆ Uα.

For each n ∈ N , let Bn = {α < c : nα = n} and choose βn ∈ S with
βn > sup{βα : α ∈ Bn}. Then,

Bn ⊆ St(〈βn, n〉,U).

Thus, if we put
F ′′ = {〈βn, n〉 : n ∈ N}.

Then B ⊆ St(F ′′,U). Let F = F ′ ∪ F ′′. Then, F is a countable subset of
D such that S1 = St(F,U). Since F ∩ (c+ × {〈q, n〉}) is finite for each q ∈ Q
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and each n < ω, F is discrete and closed in S1, which shows that S1 has the
property (a).

Let S2 be the same space X as in Example 2.2. Then, the space S2 is a
Tychonoff space without the property (wa).

We assume that S1 ∩ S2 = ∅. Let ϕ : B → B be the identify map. Let X
be the quotient space obtained from the discrete sum S1 ⊕ S2 by identifying
〈pα, 0〉 with ϕ(〈pα, 0〉) for each α < c. Let π : S1 ⊕ S2 → X be the quotient
map. It is easy to check that π(S2) is a regular-closed subset of X , however, it
is not a subspace of X with the property (wa), since it is homeomorphic to S2.

Next, we show that X has the property (a). For this end, let U be an open
cover of X . Let S = π(A∪D) Then, S is dense in X and every dense subspace
of X contains S, since each point of S is a isolated point of X . Thus, it suffices
to show that there exists a subset C of S such that C is discrete closed in X
and X = St(C,U). Since π(S1) is homeomorphic to the space S1, then there
exists a discrete closed subset C0 ⊆ π(D) such that

π(S1) ⊆ St(C0,U).

Since π(S1) is closed in X , then C0 is closed in X . Let C1 = X \ St(π(C0,U).
Then, C1 ⊆ S. If we put C = C0 ∪ C1, Then X = St(C,U). Since C ⊆ S
and C is a discrete closed subset of X , Then X has the property (a), which
completes the proof. �

Considering other types of subspaces, we arrive to the following result, which
is rather unexpected even thought the Lindelöf property is preserved by arbi-
trary Fσ-subspaces, and which is a minor improvement of Theorem 84 from [4].
Recall that a space is a P -space if every Gδ-set is open.

Theorem 3.4. An open Fσ-subset of a P -space with the property (wa) has the

property (wa).

Proof. Let X be a P -space with the property (wa) and let Y =
⋃
{Hn : n ∈ ω}

be an open Fσ-subset in X (each Hn is closed in X). Let U be an open cover
of Y and let D be a dense subset of Y . We have to find a discrete set F ⊆ D
such that St(F,U) = Y . For each n ∈ ω, let us consider the open cover

Un = U ∪ {X \ Hn}

of X and the dense subset D ∪ (X \ Y ) of X . Since X has the property (wa),
there is a discrete subset Bn ⊆ D ∪ (X \ Y ) such that St(Bn,Un) = X . Put
An = Bn ∩D. It is clear that Hn ⊆ St(An,U). Put F =

⋃
{An : n ∈ ω}. Then

F is a discrete subset of D, since X is a P -space and St(F,U) = Y , which
completes the proof. �

Since a cozero-set is open Fσ-set, thus we have the following corollary.

Corollary 3.5. A cozero-set of a P -space with the property (wa) has the prop-

erty (wa).
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Recall that the Alexandorff duplicate A(X) of a space X is constructed as
follows. The underlying set of A(X) is X × {0, 1}; each point of X × {1} is
isolated and a basic neighborhood of a point 〈x, 0〉 ∈ X × {0} is the set of the
form (U × {0}) ∪ ((U × {1}) \ {〈x, 1〉}), where U is a neighborhood of x in X .

Theorem 3.6. Let X be any space. Then, A(X) is a space with the property

(wa).

Proof. Let D0 be the set of all isolated points of X . If we put D = D0 ∪
(X ×{1}), then D is a dense subset of A(X). Since each point of X × {1} is a
isolated point of A(X), then every dense subset of A(X) contains D. We show
that A(X) is a space with the property (wa). For this end, let U be an open
cover of A(X). It suffices to show that there exists a discrete subspace F of D
such that St(F,U) = A(X). Since D is dense in A(X) and each point of D is
isolated. Taking F = D, then D is discrete and St(D,U) = A(X), since D is
dense in A(X),which completes the proof. �

The following corollary follows directly from Theorem 3.6:

Corollary 3.7. Every space can be embedded as a closed subset into a space

with the property (wa).

Just, Matveev and Szeptycki proved in Theorem 16 of [5] that the product
of a countably paracompact (a)-space and a compact metrizable space is a
(a)-space. In a similar way, we may prove the following:

Theorem 3.8. Let X be a countably paracompact space with the property (wa)
and Y a compact metric space.Then, X × Y is a space with the property (wa).

Remark 3.9. The author does not know if the assumption that X is countably
paracompact can be removed.

Acknowledgements. The paper was written, while Prof. Ohta and Doctor
Jiling Cao visited Department of Mathematics of Nanjing Normal University.
The author would like to thank Prof. Ohta and Doctor Jiling Cao for their
valuable suggestions and comments.

References

[1] R. Engelking, General Topology, Revised and completed edition Heldermann, Berlin
(1989).

[2] M. V. Matveev, Some questions on property (a), Quest. Answers Gen. Topology 15

(1997), 103–111.
[3] M. V. Matveev, Absolutely countably compact spaces, Topology Appl. 58 (1994), 81–92.
[4] M. V. Matveev, A survey on star-covering properties, Topological Atlas, preprint No.

330 (1998).



138 Y.-K. Song

[5] W. Just, M. V. Matveev and P. J. Szeptycki, Some results on property (a), Topology
Appl. 100 (2000), 67–83.

[6] Y. Song, Absolutely countably compact spaces and related spaces, General and Geometric
Topology (in Japan) Kyoto. 1074 (1999), 55–60.

[7] J. E. Vaughan, On the product of a compact space with an absolutely countably compact
spac, Annals of the New York Acad. Sci. 788 (1996), 203–208.

[8] Z. Yang, A method constructing Hausdorff spaces without property (wa), Quest. Answers
Gen. Topology 18 (2000), 113–116.

Received November 2004

Accepted April 2005

Yan-Kui Song (songyankui@njnu.edu.cn)
Department of Mathematics, Nanjing normal university, Nanjing, 210097 P.R
of China.


