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Continuous functions with compact support
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Abstract. The main aim of this paper is to investigate a subring of

the ring of continuous functions on a topological space X with values in

a linearly ordered field F equipped with its order topology, namely the

ring of continuous functions with compact support. Unless X is com-

pact, these rings are commutative rings without unity. However, unlike

many other commutative rings without unity, these rings turn out to

have some nice properties, essentially in determining the property of X

being locally compact non-compact or the property of X being nowhere

locally compact. Also, one can associate with these rings a topological

space resembling the structure space of a commutative ring with unity,

such that the classical Banach Stone Theorem can be generalized to

the case when the range field is that of the reals.
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1. Introduction

The rings of continuous functions on a topological space X with values
in a linearly ordered field, equipped with its order topology, was initiated in
the paper [4]. The purpose of this paper is to investigate a lattice ordered
commutative subring of C∗(X,F ), see Definition 2.1, which consists of precisely
those continuous functions defined on a topological space X and taking values
in a linearly ordered field equipped with its order topology that have a compact
support. Similar study for the case of real valued continuous functions have
been done elsewhere as well as in [5], many of whose results are generalised in
the present paper.

It is seen that unless X is compact, these rings are commutative rings with-
out the identity. Commutative rings without identity fail to have many nice
properties which hold in commutative rings with identity. For instance in
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a commutative ring K without identity it need not be true that all maxi-
mal ideals are prime, a fact that is crucially required in proving that the sets
Ka = {M : M is a maximal ideal and a ∈ M}, as one varies a ∈ M make a
base for the closed sets of a topology on the set of all maximal ideals of K,
see the last part of §2. However, it turns out that these rings do provide much
information about the space X in the following sense :

(1) we can provide characterizations for completely F regular locally com-
pact non-compact topological spaces (see Theorem 3.4) as well as com-
pletely F regular nowhere locally compact topological spaces (see The-
orem 3.5),

(2) develop an analogue of the idea of structure spaces so as to determine
the class of locally compact non-compact Tychonoff topological spaces
in terms of these function rings (see Theorem 4.9), thereby generalizing
the Banach Stone Theorem, see [3, Theorem 4.9, page 57].

The paper is organized as follows : §2 introduces the basic notions and re-
sults from [4] that are required to make the paper self-contained. §3 develops
the basic properties of the function ring Ck(X,F ) culminating in the character-
izations stated above. §4 develops the analogue of a structure space for these
rings and culminates in generalizing Banach Stone’s theorem as noted above.

We fix some conventions for this paper. The term “order” refers to a “linear
order” and all the topological spaces considered are at least Hausdorff topo-
logical spaces. Any ordered field F is always equipped with its order topology.

The symbol f : A
≃
−→ B refers to an isomorphism in the category of which f

is a map. For instance the statement “f : A
≃
−→ B as topological spaces” will

mean that f is a homeomorphism between the topological spaces A and B.

The symbol A
≃
−→ B will mean that in the concerned category the objects A

and B are isomorphic.

2. Preliminaries

Definition 2.1. Let X be a topological space and F be an ordered field.

(1) C(X,F ) = {f ∈ FX : f is continuous on X}.
(2) B(X,F ) = {f ∈ C(X,F ) : (∃t ∈ F )(∀x ∈ X)(−t ≤ f(x) ≤ t)}.
(3) C∗(X,F ) = {f ∈ C(X,F ) : clF (f(X)) is compact}.
(4) The set clX(coz(f)) is said to be the support of the function f ∈

C(X,F ) and will henceforth be denoted by the symbol suppX(f).
(5) Ck(X,F ) = {f ∈ C(X,F ) : f has compact support}.
(6) ZX,F (f) = {x ∈ X : f(x) = 0}, for f ∈ C(X,F ).
(7) Z(X,F ) = {ZX,F (f) : f ∈ C(X,F )}.

A subset A ⊆ X is said to be a zero set in X with respect to F , if and
only if, there exists an f ∈ C(X,F ) such that A = ZX,F (f); the complement
of a zero set in X with respect to F is called cozero set in X with respect
to F . The complement of the set ZX,F (f) shall be denoted by coz(f), i.e.,
coz(f) = X \ ZX,F (f).
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If one identifies the element t ∈ F with the constant function X
t
−→ F , de-

fined by t : x 7→ t, then one easily gets F ⊆ C∗(X,F ) ⊆ B(X,F ) ⊆ C(X,F ).
Also, if one assigns the operations of addition, multiplication, maximum and
minimum pointwise on the functions, then one easily gets C(X,F ) to be a lat-
tice ordered commutative ring with unity, andB(X,F ), C∗(X,F ) and Ck(X,F )
as subsystems of it.

An element of a commutative ring with identity is said to be a unit, if and
only if, there exists an inverse of it. It is easily seen that the units of C(X,F )

are precisely those continuous functions X
f
−→ F that do not vanish anywhere,

i.e., with ZX,F (f) = ∅. However, this condition is not enough to ensure that
the inverse will be bounded. It follows from this observation that f ∈ B(X,F )
is a unit of the ring B(X,F ), if and only if, it does not vanish anywhere and
that it is bounded away from zero, in the sense that there exists an ǫ ∈ F>0 =
{x ∈ F : x > 0} such that for all x ∈ X , |f(x)| > ǫ. Since f ∈ C∗(X,F ), if and

only if, f has a pre-compact co-domain, and ·−1 : F6=0
≃
−→ F6=0 as topological

spaces, where F6=0 = {x ∈ F : x 6= 0}, it follows that f ∈ C∗(X,F ) is a unit
of C∗(X,F ), if and only if, f does not vanish anywhere on X and is bounded
away from 0.

Remark 2.2. Note that a subset U of a topological space is said to be pre-
compact, if and only if, clX(U) is a compact subset of X .

The following result will be required in the sequel :

Theorem 2.3. If f, g ∈ C(X,F ) such that ZX,F (f) ⊆ intX(ZX,F (g)) ⊆
ZX,F (g) then f divides g.

Proof. Consider the function h(x) =







g(x)

f(x)
, if x 6∈ intX(ZX,F (g))

0, otherwise
. Clearly

h ∈ C(X,F ) and consequently, g = hf , proving the theorem. �

We shall require some regularity properties for the topological spaces under
consideration, see [4] for details.

Definition 2.4.

(1) A,B ⊆ X are said to be completely F separated, if and only if, there
exists some f ∈ C(X,F ) such that f(x) = 0 on A and f(x) = 1 on B.

(2) X is said to be completely F regular, if and only if, for every closed
subset A of X and every x ∈ X \A, the sets {x} and A are completely
F separated.

The property of being completely F regular is clearly the analogue of the
Tychonoff property when F = R, and the following statements strengthen the
similarity.

Theorem 2.5. For any topological space X the following are equivalent :

(1) X is completely F regular;
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(2) Z(X,F ) is a base for the closed subsets of X;
(3) X has the weak topology induced by C(X,F );
(4) X has the weak topology induced by a subset of C(X,F );
(5) B(X,F ) separates points and closed subsets of X;
(6) C∗(X,F ) separates points and closed subsets of X.

The following provide examples of completely F regular topological spaces :

Theorem 2.6. (1) F is completely F regular.
(2) The property of complete F regularity is productive and hereditary.
(3) For F 6= R, a topological space X is completely F regular, if and only

if, it is zero dimensional.
(4) A topological space X is completely F regular, if and only if, it is home-

omorphic to a subspace of a product of F .

Theorem 2.6(4) equates the class of completely F regular topological spaces
to the F -completely regular spaces of Mroẃka, see [2]. Theorem 2.6(3) is an
immediate consequence of the equivalent formulations in Theorem 2.5 and the
fact that an ordered field F is either connected, in which case it is just isomor-
phic to R, or else is zero dimensional, see [1].

The next theorem settles our choice of spaces, and is the analogue of the
celebrated theorem of Stone :

Theorem 2.7. For any topological space X there exists a completely F reg-

ular topological space Y and an isomorphism σ : C(X,F )
≃
−→ C(Y, F ) of lattice

ordered commutative rings with unity, such that σ restricted to B(X,F ) and
C∗(X,F ) also produce isomorphisms.

In other words, σ ↿B(X,F ) : B(X,F )
≃
−→ B(Y, F ) as well as the restriction

to C∗(X,F ), σ ↿C∗(X,F ) : C
∗(X,F )

≃
−→ C∗(Y, F ).

We will often deal with ideals of the rings. An ideal I of C(X,F ) is called a
fixed ideal, if and only if, the intersection of the zero sets in X with respect to F

of the members of I be non-empty, i.e., the formula (∃x ∈ X)(∀f ∈ I)(f(x) = 0)
is true. An ideal is said to be free, if and only if, it is not a fixed ideal.

In §4 we shall develop an entity like the structure space of a commutative ring
with unity, and for ease of reference when we compare it with our construction
we include the required definitions and results.

Given a commutative ring K with unity, let the set of all its maximal ideals
be denoted by M, and let for any a ∈ K, Ma = {M ∈ M : a ∈ M}. It is easy
to see that {Ma : a ∈ K} makes a base for the closed subsets of some unique
topology on M, often called the structure space of the commutative ring K,
and this topology is sometimes referred to as the Stone topology or as the hull
kernel topology on M. It is easy to see that :

(1) For any x ⊆ M, clM(x) = {M ∈ M : M ⊇
⋂

x}. Indeed, it is this fact
from which the name hull kernel topology is derived.

(2) For any x ⊆ M, x is dense in M, if and only if,
⋂

x =
⋂

M.
(3) M is a compact T1 space.
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(4) M is Hausdorff, if and only if, for every pair of distinct maximal ideals
M and N of K there exist points a, b ∈ K such that a 6∈ M , b 6∈ N

and ab ∈
⋂

M. Thus, the structure space of Z is not Hausdorff, while
if X is completely F regular then the structure space of C(X,F ) is
Hausdorff.

For a much more detailed account of structure spaces see [3, Ex. 7A (page
108), Ex. M and Ex. N (page 111)].

We will fix some notations for the rest of the paper. Henceforth, in this paper
F shall always refer to a fixed ordered field equipped with its order topology;
topological spaces shall always be completely F regular, unless mentioned to
the contrary, and for any topological space X and x ∈ X , NX

x will refer to the
neighborhood filter at the point x.

3. Functions with Compact Support

We first clarify the position of Ck(X,F ) in the hierarchy of subsystems of
C(X,F ).

Theorem 3.1. For any topological space X, Ck(X,F ) ⊆ C∗(X,F ), and if X is
non-compact then Ck(X,F ) is a proper ideal of both C∗(X,F ) and C(X,F ).

Proof. If X is a compact topological space, then clearly Ck(X,F ) = C(X,F ).
Let X be not compact. Then C(X,F ) ⊃ Ck(X,F ) and 1 6∈ Ck(X,F ); indeed

no unit of any of the function rings C(X,F ), B(X,F ) or C∗(X,F ) then belongs
to Ck(X,F ). Finally, for any f ∈ Ck(X,F ), as suppX(f) is compact and X =
ZX,F (f)∪ suppX(f) ⇒ f(X) = {0}∪ f(suppX(f)), so that f(X) is a compact
subset of F, implying thereby that f ∈ C∗(X,F ). Thus we have Ck(X,F ) ⊆
C∗(X,F ).

We shall show that Ck(X,F ) is a proper ideal of C∗(X,F ). Obvious modifi-
cations of this argument will show that Ck(X,F ) is a proper ideal of C(X,F ),
too.

For f, g ∈ Ck(X,F ), since both suppX(f) and suppX(g) are compact, it
follows from suppX(f + g) ⊆ suppX(f) ∪ suppX(g), that f + g ∈ Ck(X,F ).
Similarly, if h ∈ C∗(X,F ), then since suppX(fh) ⊆ suppX(f) ∩ suppX(h), it
follows that fh ∈ Ck(X,F ), too. Consequently Ck(X,F ) is a proper ideal of
C∗(X,F ). �

Indeed, not only Ck(X,F ) is a proper ideal of C∗(X,F ) or C(X,F ), but more
strongly we have :

Theorem 3.2. For any completely F regular topological space X, the subring
Ck(X,F ) is contained in every free ideal of C(X,F ) or C∗(X,F ).

The proof depends on the lemma :

Lemma 3.3. An ideal I in C(X,F ) or C∗(X,F ) is free, if and only if, for any
compact subset A ⊆ X there is an f ∈ I such that ZX,F (f) ∩ A = ∅.

Proof.
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Proof of the Sufficiency part: Suppose that I is a free ideal of A,
where A is any of the rings C(X,F ) or C∗(X,F ). Let A ⊆ X be
compact.

Since I is free, for every x ∈ A, there exists an fx ∈ I with fx(x) 6=
0. Then the set H = {coz(fx) : x ∈ A} is an open cover of A and
therefore from compactness of A, there exists a finite sub-cover H1 =
{fx1

, fx2
, . . . , fxn

} of A. Let f =
∑n

i=1 f
2
xi
. Then f ∈ I and ZX,F (f) ∩

A = ∅.

Proof of the Necessity part: Trivial.

�

We now prove Theorem 3.2 :

Proof. If I is a free ideal of A, where A is any one of C(X,F ) or C∗(X,F ),
and f ∈ Ck(X,F ), then from Lemma 3.3 it follows that there exists a g ∈ I

such that ZX,F (g)∩ suppX(f) = ∅. Consequently, ZX,F (g) ⊆ X \ suppX(f) ⊆
X \coz(f) = ZX,F (f), so that ZX,F (f) is a zero set neighbourhood of ZX,F (g),
and therefore by Theorem 2.3 it follows that g divides f . Consequently, f ∈ I

as g ∈ I. This proves that Ck(X,F ) ⊆ I. �

The main objective in this section is to show that in the class of completely
F regular topological spaces both locally compact spaces and nowhere locally
compact spaces can be characterised in terms of the ring Ck(X,F ).

Theorem 3.4. A non-compact completely F regular topological space X is
locally compact, if and only if, Ck(X,F ) is a free ideal in both the rings C(X,F )
and C∗(X,F ).

Proof. In view of Theorem 3.1 it is enough to consider any of the rings C(X,F )
or C∗(X,F ). The non-compactness of the space X is necessary and sufficient
to ensure the inequality Ck(X,F ) ⊂ C∗(X,F ).

Proof of the Sufficiency part: Let x ∈ X. Since X is locally com-
pact it follows that there exists an open neighbourhood V ∈ NX

x so
that clX(V ) is compact. Since X is completely F regular, C∗(X,F )
separates points and closed subsets of X , so that there exists some
f ∈ C∗(X,F ) such that f(x) = 1 and X \ V ⊆ ZX,F (f). Thus
coz(f) ⊆ V ⇒ suppX(f) ⊆ clX(V ) , so that suppX(f) is a com-
pact set, entailing thereby that f ∈ Ck(X,F ). Thus there exists some
f ∈ Ck(X,F ) so that f(x) 6= 0; and as this holds for any x ∈ X, it fol-
lows that Ck(X,F ) is a free ideal of any of the function rings C(X,F )
or C∗(X,F ).

Proof of the Necessity part: If Ck(X,F ) is a free ideal of C∗(X,F )
then for any x ∈ X there exists a g ∈ Ck(X,F ) so that g(x) 6= 0. Since
suppX(g) is a compact neighbourhood of x, it follows that every point
of X has a pre-compact neighbourhood. Hence X is locally compact.

�
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Theorem 3.5. A completely F regular topological space X is nowhere locally
compact, if and only if, Ck(X,F ) = {0}.

Proof.

Proof of the Sufficiency part: If X is nowhere locally compact then
for any non-zero f ∈ C(X,F ), coz(f) is a non-empty open set in X with
suppX(f) non-compact — for otherwise suppX(f) will be a compact
neighbourhood for every point of coz(f), contradicting the fact that X
is nowhere locally compact. Consequently, f 6∈ Ck(X,F ). This implies
that Ck(X,F ) = {0}.

Proof of the Necessity part: It is enough to show that for any x ∈ X

there cannot exist any open U ∈ NX
x with clX(U) compact.

Choose and fix any x ∈ X and any open U ∈ NX
x . Then since

X is completely F regular there exists an f ∈ C(X,F ) such that
f(x) = 1 and X \ U ⊆ ZX,F (f). Consequently, coz(f) ⊆ U, and thus
if clX(U) is compact then suppX(f) will be compact implying thereby
that Ck(X,F ) contains a non-zero member, namely f , contradicting
the hypothesis Ck(X,F ) = {0}. Hence clX(U) is non-compact.

�

4. Structure Space of Ck(X,F )

With any commutative ring with unity one can associate a topological space,
called its structure space, [3, Ex. 7A (page 108), Ex. M and Ex. N (page 111)].
The result that in a commutative ring with unity every maximal ideal is prime
is a crucial tool in showing the set of all sets of maximal ideals that contain
a given point of the ring is a base for the topology of the structure space.
Since Ck(X,F ) does not have units and a maximal ideal need not be prime, the
classical construction fails. We show here that the set of those maximal ideals
which are also prime is the right analogue for building the structure space. We
will use the term prime maximal ideal for a maximal ideal which is prime.

Theorem 4.1. If X is locally compact then the set B = {ZX,F (f) : f ∈
Ck(X,F )} is a base for the closed subsets of X.

Proof. Let A be a closed subset of X with x ∈ X \ A. Since X is locally

compact there exists an open set V ∈ NX
x so that clX(V ) is compact and that

clX(V ) ⊆ X \A.
Since V is open and x 6∈ X \ V, it follows from complete F regularity of X

that there exists an f ∈ C(X,F ) such that f(x) = 1 and X \ V ⊆ ZX,F (f).
Consequently, coz(f) ⊆ V ⇒ suppX(f) ⊆ clX(V ) , and thus suppX(f) is a
compact subset of X, i.e., f ∈ Ck(X,F ).

Thus we have f ∈ Ck(X,F ) such that x 6∈ ZX,F (f) ⊇ A. Hence the assertion
is proved. �

Theorem 4.2. Mk
x = {f ∈ Ck(X,F ) : f(x) = 0}, x ∈ X, are precisely the

fixed maximal ideals of Ck(X,F ).
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Furthermore, if x, y ∈ X, x 6= y then Mk
x 6= Mk

y .

Proof. It is clear from Theorem 3.4 that for each x ∈ X, Mk
x is a proper ideal

of Ck(X,F ) and it remains to show that these are maximal.

Choose and fix one x ∈ X and let g ∈ Ck(X,F )\Mk
x. It suffices to show that

the ideal (Mk
x , g) generated by Mk

x and g in Ck(X,F ) is the whole of Ck(X,F ).

For this purpose let h ∈ Ck(X,F ) \ Mk
x . From Theorem 4.1 it follows that

there exists an s ∈ Ck(X,F ) such that s(x) = 1. Consequently, if f = s
h(x)
g(x) ∈

Ck(X,F ), then f(x) = h(x)
g(x) . Hence, h − gf ∈ Ck(X,F ) with (h − gf)(x) = 0,

so that h− gf ∈ Mk
x , implying thereby h ∈ (Mk

x , g). Hence, Mk
x is a maximal

ideal of Ck(X,F ).
If M is a fixed maximal ideal of Ck(X,F ) then there exists an x ∈ X such

that M ⊆ Mk
x , and then the maximality of M ensures M = Mk

x .

The last part regarding the one-to-oneness of the map x 7→ Mk
x follows from

Theorem 4.1. �

Theorem 4.3. Every proper prime ideal of Ck(X,F ) is also a proper prime
ideal of C(X,F ).

Proof. It is enough to show that if P is a proper prime ideal in Ck(X,F )
then it is a proper ideal of C(X,F ). Therefore, we show : if h ∈ P and
g ∈ C(X,F ) \ Ck(X,F ), then gh ∈ P.

As Ck(X,F ) is an ideal of C(X,F ) it follows that gh, g2h ∈ Ck(X,F ) which
implies that (g2h)h = g2h2 ∈ P. As P is prime in Ck(X,F ), it follows that
gh ∈ P. �

Theorem 4.4. There does not exist any proper free prime ideal in Ck(X,F ).

Proof. If possible, let P be a proper free prime ideal in Ck(X,F ). Then by
Theorem 4.3 it follows that P is a prime ideal of C(X,F ); as P is a free ideal of
C(X,F ) it follows from Theorem 3.2 that Ck(X,F ) ⊆ P — contradicting the
fact that P is a proper ideal of Ck(X,F ). This proves the proposition. �

Theorem 4.5. The entire family of prime maximal ideals in the ring Ck(X,F )

is {Mk
x : x ∈ X}. (We state again for emphasis : a maximal ideal in a

commutative ring without identity need not be a prime).

Proof. The assertion follows from Theorem 4.2 and Theorem 4.4. �

We set Mk
X,F to be the set of all prime maximal ideals of the ring Ck(X,F ).

For f ∈ Ck(X,F ), let Mk
X,F (f) = {M ∈ Mk

X,F : f ∈ M}. Then :

Theorem 4.6. {Mk
X,F (f) : f ∈ Ck(X,F )} is a base for the closed subsets of

some topology on Mk
X,F .
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Proof. Since for f, g ∈ Ck(X,F ) and M ∈ Mk
X,F :

M ∈ Mk
X,F (fg) ⇔ fg ∈ M

⇔ f ∈ M or g ∈ M

(since M is prime)

⇔ M ∈ Mk
X,F (f) ∪Mk

X,F (g),

so that Mk
X,F (fg) = Mk

X,F (f) ∪ Mk
X,F (g). The remaining statements follow

exactly as in the case of a commutative ring with unity. �

Definition 4.7. We shall call the setMk
X,F equipped with the topology described

in Theorem 4.6 the structure space of the ring Ck(X,F ).

Theorem 4.8. If X is a locally compact non-compact topological space then

pkX,F : X
≃
−→ Mk

X,F , where pkX,F : x 7→ Mk
x .

Proof. It follows from Theorem 4.2 and Theorem 4.5 that X
pkX,F
−−−−→ Mk

X,F is a

bijection from X onto Mk
X,F . Furthermore, for f ∈ Ck(X,F ) and x ∈ X, x ∈

ZX,F (f) ⇔ f(x) = 0 ⇔ f ∈ Mk
x ⇔ Mk

x ∈ Mk
X,F (f), so that using Theorem 4.1

and Theorem 4.6 the map pkX,F establishes a one-to-one map between the basic

closed sets in the two spaces concerned and therefore pkX,F : X
≃
−→ Mk

X,F . �

It is well known that the structure space of a commutative ring with identity
is a compact topological space. The proof for this assertion heavily depends on
the existence of the identity element in the ring. Theorem 4.8 sounds something
contrary in this regard — the structure space of a commutative ring without
identity may fail to be compact — indeed for a locally compact non-compact

topological space X the structure space Mk
X,F of Ck(X,F ) is locally compact

without being compact.
Nevertheless we are now in a position to formulate the principal theorem of

this paper.

Theorem 4.9. Suppose that X and Y are two locally compact non-compact
Hausdorff topological spaces. Then :

(1) X
≃
−→ Y as topological spaces, if and only if, Ck(X,R)

≃
−→ Ck(Y,R), as

lattice ordered commutative rings.
(2) If further, X and Y are zero dimensional and F, G be two ordered fields

then X
≃
−→ Y , as topological spaces, if Ck(X,F )

≃
−→ Ck(Y, F ), as lattice

ordered commutative rings.

Proof.
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(1) If X
≃
−→ Y then it is trivial that Ck(X,R)

≃
−→ Ck(Y,R). Conversely,

Ck(X,R)
≃
−→ Ck(Y,R) implies that Mk

X,R

≃
−→ Mk

Y,R
, since the struc-

ture spaces of two isomorphic rings are homeomorphic, so that from

Theorem 4.8 it follows that X
≃
−→ Y .

(2) By Theorem 2.6(3), for F 6= R the completely F regular topological
spaces are precisely the zero dimensional topological spaces; also any
zero dimensional Hausdorff topological space is completely regular, i.e.,
completely R regular in our terminology.

Thus, Ck(X,F )
≃
−→ Ck(Y,G) implies that Mk

X,F

≃
−→ Mk

Y,G, since the
structure spaces of two isomorphic rings are homeomorphic, so that

from Theorem 4.8 it follows that X
≃
−→ Y .

�
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[2] S. Mroẃka and R. Engelking, On E-compact spaces, Bull. Acad. Polon. sci. Ser. sci.

Math. Astronom. Phys. 6 (1958), 429–435.
[3] L. Gillman and M. Jerison, Rings of Continuous Functions, van Nostrand Reinhold

Company, edited by M. H. Stone, L. Nirenberg and S. S. Chern (1960).
[4] S. K. Acharyya, K. C. Chattopadhyaya and P. P. Ghosh, Constructing Banaschewski

Compactification Without Dedekind Completeness Axiom, to appear in International
Journal for Mathematics and Mathematical Sciences.

[5] S. K. Acharyya, K. C. Chattopadhyaya and P. P. Ghosh, The rings Ck(X) and C∞(X),
some remarks, Kyungpook Journal of Mathematics, 43 (2003), 363 - 369.

Received February 2003

Accepted May 2003



Continuous functions with compact support 113

S. K. Acharyya (Department of Pure Mathematics, University of Calcutta, 35,

Ballygaunge Circular Road, Calcutta 700019, West Bengal, India.)

K. C. Chattopadhyaya (Department of Mathematics, University of Burdwan,

Burdwan, West Bengal, India)

Partha Pratim Ghosh (vsatsxc@cal.vsnl.net.in, pghosh@maths.uct.ac.za)
Department of Mathematics, St. Xavier’s College 30, Park Street, Calcutta
700016, India.

Current Address (Department of Mathematics and Applied Mathematics, Uni-

versity of Cape Town, Rondebosch 7701, Cape Town, South Africa)


