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Abstract

In the paper one defines topological invariants of type degree for mor-

phisms in the category Top(2) of topological pairs of spaces and contin-

uous single valued maps, which admit homological n-spheres as target

and arbitrary topological pairs of spaces as source. The different des-

cribed degrees are acquired by means homological methods, and are a

powerful tool in the root theory. Several existence theorems are ob-

tained for equations with multivalued transformations.
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0. Introduction

The concept of topological degree deg is well know for maps of homological
n-spheres and oriented n-dimensional manifolds (see for example, [4] and [2]).
Recall this concept: if X and Y are both homological n-spheres and f : X → Y
is a continuous single valued map by fixing some generated elements z1 and z2
of homology groups Hn(X) and Hn(Y ) respectively, one obtains an equality
fn∗(z1) = k · z2. This number k is called the degree of f and is denoted by deg
f. Topological degree theory plays a preponderant role in topology fixed points
theory and non linear analysis. The different degrees can be considered as a
generalization of the Winding number, Kronecker’s characteristic and others
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topological invariants. Different generalizations of the topological degree has
been studied for multivalued transformations (see for example [7] - [10]).

1. Homological invariants for some classes of morphisms in the

categories Top and Top(2)

1.1. Notations and definitions. In the present section one introduces some

basic topics which play an important role in the sequel.

A pair (X,A) of topological spaces such that A ⊆ X is called a pair of
topological spaces, in this context, a topological space X is conceived as the
pair (X,∅). Let (X,A) and (S, T ) be some pairs of topological spaces and
f ∈ MorTop(X,S) such that f(A) ⊆ T, then f is named a continuous single
valued map of pairs of topological spaces and denoted f : (X,A) → (S, T ).
The collections of pairs of topological spaces and continuous single valued
maps of pairs of topological maps with the composition of maps define a
category denoted Top(2), it admits as a full subcategory the category Top
of topological spaces and continuous single valued maps. Two morphisms f,
g ∈MorTop(2)

((X,A), (S, T )) are called homotopic if and only if there exists a
morphism

Φ ∈MorTop(2)
((X,A)× [0, 1], (S, T ))

such that Φ(x, 0) = f(x) and Φ(x, 1) = g(x) for every x ∈ X.
By H one denotes the covariant functor H of singular homology with co-

efficients in the abelian ring of integer Z, defined from the category Top(2)
in the category Gd of graded groups and homomorphisms of degree zero,
where G the category of abelian groups and homomorphisms of groups is a
full subcategory. Thus, for a given object (X,A) ∈ Obj(Top(2)) and a mor-
phism f ∈ MorTop(2)

((X,A), (Y,B)) the functor H assigns a graded group

{Hi(X,A)}i≥0 and a homomorphism of degree zero

{Hi(f)}i≥0 ∈MorGd
({Hi(X,A)}i≥0, {Hi(Y,B)}i≥0.

1.2. Degree for a class of morphisms in the category Top. An object
Y in the category Top will be called a homological n-sphere if the topological
space Y admits the same homological groups of the n-sphere.

Consider f ∈ MorTop(X,Y ) a morphism with source an arbitrary topo-
logical space X and target Y a homological n-sphere. Let Hn(f) := fn∗ ∈
MorG(Hn(X), Hn(Y )) be the induced homomorphism of f and e be a genera-
tor of Hn(Y ).

Definition 1.1. The degree of a morphism f ∈ MorTop(X,Y ) is the integer
denoted and defined as dg(f,X, Y ) =| k |, where k ∈ Z verifies a = k · e and

Imfn∗ =< a >⊆ Hn(S
n) =< e > .

Example 1.2. Consider the open subset:

U = {(x1, x2) ∈ R2 | (x1 − 1)2 + x2
2 < 1} ∪ {(x1, x2) ∈ R2 | (x1 + 1)2 + x2

2 < 1}
of R2 and let X = ∂U be the boundary of U.
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If x0 is a fixed element of R2\X one can define the morphism
f ∈MorTop(X,R2�{0}) given by the rule f(x) = x− x0 for every x ∈ X.

Then the next equalities are satisfied:

dg(f,X,R2� {0}) =
{

1, if x0 ∈ U
0, if x0 /∈ U

Let us give some properties of this topological invariant.

One will begin by giving the relation between the Winding number deg f
of a morphisms f ∈MorTop(S

n, Sn) defined on the sphere and its topological
invariant dg(f, Sn, Sn).

Proposition 1.3. Let f ∈MorTop(S
n, Sn) then dg(f, Sn, Sn) =| deg f | .

Proof. Consider Hn(S
n) =< e > then Imfn∗ =< fn∗(e) >, moreover fn∗(e) =

deg f · e, hence dg(f, Sn, Sn) =| deg f | . �

Definition 1.4. A morphism f ∈ MorTop(2)
((X,A), (Y,B)) is called h - sec-

tional if f admits a right inverse homotopy.

It is not difficult to check the next properties of this degree:

Proposition 1.5. The Topological degree satisfies the following assertions:

(1) let f ∈MorTop(X,Y ) be a constant map then dg(f,X, Y ) = 0;
(2) let f ∈MorTop(X,Y ) be h sectional morphism then dg(f,X, Y ) = 1;
(3) Let Z be is a topological space and (f, g) ∈MorTop(X,Z)×MorTop(Z, Y )

then dg(g ◦ f,X, Y ) is a multiple of dg(g, Z, Y );
(4) let X0 be a subset of X an object in the category Top and fX0 ∈

MorTop(X0, Z) be the restriction of a morphism f ∈ MorTop(X,Y )
then there exists a natural number n ∈ N such that dg(fX0 , X0, Y ) =
n · dg(f,X, Y ).

Proposition 1.6. Let Y1 and Y2 be both some homological n-spheres in the cat-

egory Top and (f, g) ∈MorTop(X,Y1)×MorTop(Y1, Y2) be a pair of morphisms

then dg(g ◦ f,X, Y2) = dg(f,X, Y1) · dg(g, Y1, Y2)

Proof. This is a consequence of the definition 1.1, of the topological degree. �

The topological degree is invariant for homotopic morphisms:

Proposition 1.7. Let (f, g) ∈ MorTop(X,Y ) ×MorTop(X,Y ) then if f and

g are homotopic dg(f,X, Y ) = dg(g,X, Y ).

Let us consider some aspects of the degree dg(f,X, Y ) in that case where
the target Y = Sn.

Proposition 1.8. Let f ∈ MorTop(X,Sn) such that dg(f,X, Sn) 6= 0 then f
is an epimorphism in the category Top.
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Proof. Suppose that f ∈MorTop(X,Sn) is not an epimorphism so f(X) ⊂ Sn.
Let y ∈ Sn�f(X), then one can diagramed:

X
f→ Sn

f̃ ց ↑ i
Sn�{y}

where f̃ is the submap of f and i is the canonical injection. One can conclude
by remarking that Hn(S

n�{y}) is a trivial group. �

Proposition 1.9. Let f , g ∈ MorTop(X,Sn) then if dg(f) 6= dg(g) the mor-

phisms f and g admit at least a coincidence point in X.

Proof. Indeed, if f(x) 6= g(x) for every element x ∈ X then for (x, t) ∈ X×[0, 1]
the vector field v(x, t) = (1− t) · f(x) + t · (−g)(x) ∈ Rn+1 is free of zero. This
finding offers the opportunity to get the morphism F ∈MorTop(X × [0, 1], Sn)

where, F (x, t) = v(x,t
‖v(x,t)‖ for all element (x, t) from the source X × [0, 1]. The

morphism F defines a homotopy between f and (−g) . Hereafter, from propo-
sitions 1.7 and the definition 1.1, one takes dg(f,X, Sn) = dg(−g,X, Sn) =
dg(g,X, Sn). �

1.3. Degree for a class of morphisms in the category Top(2). An object
(Y,B) ∈ Obj(Top(2)) is called a homological n-sphere if H0(Y,B) = Hn(Y,B)
isomorphic to the abelian ring of integers Z and Hi(Y,B) = {0} for all other
indices. For more notions one this topics see [9].

For instance, the pairs of spaces (Rn,Rn� {0}); (Bn, Sn−1) where Bn is the
closed ball in Rn and Sn−1 = ∂Bn, are some n-spheres in that category.

Definition 1.10. The degree of a morphism f ∈ MorTop(2)
((X,A), (Y,B))

where (Y,B) is a homological n-sphere with Hn(Y,B) =< η > is denoted and
defined by dgr(f, (X,A), (Y,B)) =| k |, where Imfn∗ =< b > and b = k · η.

The next properties are obvious.

Proposition 1.11. The following assertions are satisfied:

(1) if a morphism f ∈ MorTop(2)
((X,A), (Y,B)) is a constant map then

dgr(f, (X,A), (Y,B)) = 0;
(2) if (f, g) ∈MorTop(2)

((X,A), (X ′, A′))×MorTop(2)
((X ′, A′), (Y,B)) then

there exits an integer k ∈ N such that :

dgr(g ◦ f, (X,A), (Y,B)) = k · dgr(g, (X ′, A′), (Y,B));

(3) let (X0, A0) ⊆ (X,A) and f0 ∈ MorTop(2)
((X0, A0), (Y,B)) be the

submap of the morphism f ∈ MorTop(2)
((X,A), (Y,B)) then there ex-

ists a natural number k ∈ N such that :

dgr(f0, (X0, A0), (Y,B)) = k · dgr(f, (X,A), (Y,B));
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(4) let (Y1, B1) and (Y2, B2) be some n-spheres in the category Top(2) and
(f, g) ∈ MorTop(2)

((X,A), (Y1, B1)) ×MorTop(2)
((Y1, B1), (Y2, B2)) be

a pair of morphisms then :

dgr(g ◦ f, (X,A), (Y2, B2)) = dgr(f, (X,A), (Y1, B1)) · dgr(g, (Y1, B1), (Y2, B2))

(5) if f, g ∈MorTop(2)
((X,A), (Y,B)) are some homotopic morphisms then

dgr(f, (X,A), (Y,B)) = dgr(g, (X,A), (Y,B)).

This homological invariant satisfies some more specific properties. Let us
describe some of them.

Proposition 1.12. Let Z ⊂ Int(A) ⊆ A ⊆ A ⊂ X and

f ∈MorTop(2)
((X,A), (Y,B))

then

dgr(f̃ , (X�Z,A�Z), (Y,B)) = dgr(f, (X,A), (Y,B))

where f̃ ∈MorTop(2)
((X�Z,A�Z), (Y,B)) is the submap of the morphism f

on the pair (X�Z,A�Z).

Proof. This is a consequence of the following commutative diagram:

Hn(X,A) ց fn∗

in∗ ↑ Hn(Y,B)

Hn(X�Z,A�Z) ր f̃n∗

where i ∈ MorTop(2)
((X�Z,A�Z), (X,A)) is the natural injection. From

excision theorem one infers that in∗ is an isomorphism and concludes the proof.
�

Proposition 1.13. Let f ∈MorTop(2)
((X,A), (Y,B)) be a morphism such that

dgr(f, (X,A), (Y,B)) 6= 0 then there exist x ∈ X�A and y ∈ Y�B such that

f(x) = y.

Proof. Indeed, if f(x) /∈ Y�B for every element x ∈ X�A on can get the
following commutative diagram:

Hn(X,A)
fn∗→ Hn(Y,B)

f̃n∗ ↓ ր in∗
Hn(B,B)

where i ∈ MorTop(2)
((B,B), (Y,B)) is the natural injection and f̃ = f. One

concludes by observing that Hn(B,B) is a trivial group. �

Corollary 1.14. Let f ∈ MorTop(X,Rn) be a morphism in the category Top
and A be a closed subset of X such that f(a) 6= 0 for every x ∈ A, then if

the degree of the morphism f ∈ MorTop(2)
((X,A), (Rn,Rn� {0})) is not zero,

there exists x0 ∈ X�A such that f(x0) = 0.
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Corollary 1.15. Let f ∈ MorTop(B
n,Rn) such that f(x) 6= 0 for every ele-

ment x ∈ ∂Bn = Sn−1 then if the degree of the morphism

f ∈MorTop(2)
((Bn, Sn−1), (Rn,Rn� {0}))

is not zero there exists at least an element x in the interior of the ball such that

f(x) = 0.

2. Homological invariant for a class of multivalued

transformations

Let (X,A), (S, T ) ∈ Obj(Top(2)) a correspondence F : (X,A) → (S, T )
which assigns for each element x ∈ X a subset F (x) ⊆ S, and F (A) =
∪

a∈A
F (a) ⊆ T is named a multivalued transformation, the graph of F denoted

ΓF is the pair (ΓX
F ,ΓA

F ) ∈ Obj(Top(2)), where Γ
X
F = {(x, s) ∈ X×S | s ∈ F (x)}

and ΓA
F = {(a, t) ∈ A× T | t ∈ F (a)}.

A representation of a multivalued transformation F : (X,A) → (S, T ) is a
quintuple Q = [(X,A), (S, T ), (M,N), p, q] where

(p, q) ∈MorTop(2)
((M,N), (X,A)) ×MorTop(2)

((M,N), (S, T ))

and q(p−1(x)) = F (x) for every element x ∈ X. In the case when p := tF ∈
MorTop(2)

((ΓX
F ,ΓA

F ), (X,A)) and q := rF ∈ MorTop(2)((Γ
X
F ,ΓA

F ), (S, T )) are

the natural projections the quintuple Q̃ = [(X,A), (S, T ), (ΓX
F ,ΓA

F ), tF , rF ] is
named the canonical representation of F.

2.1. Degree for multivalued transformations defined in homological n-
spheres. Let Y1 and Y2 be both some homological n-spheres and F : Y1 → Y2

be a multivalued transformation with a representation Q = [Y1, Y2, X, p, q].

Definition 2.1. The degree of a multivalued transformation F : Y1 → Y2 rela-
tive to the representationQ is denoted and defined by Dg(F,Q) = dg(p,X, Y1)·
dg(q,X, Y2).

The degree Dg(F, Q̃) of F relative to the canonical representation Q̃ will
be called the degree of the multivalued transformation F and will denoted by
Dg(F ).

Let us give some properties of this homological invariant.

Proposition 2.2. Let Q = [Y1, Y2, X, p, q] be a representation of F, then

Dg(F,Q) is a multiple of Dg(F ).

Proof. One can consider the following commutative diagram:

ΓF
tF ւ ↑ λ ցrF

Y1 ←−
p

X →
q

Y2

where λ(x) = (p(x), q(x)) for every element x ∈ X. One concludes by using
assertion 3 of proposition 1.5. �
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Proposition 2.3. Let F, G : Y1 → Y2 be two multivalued transformations such

that G(x) ⊆ F (x) for every element x ∈ Y1 then Dg(G) = k ·Dg(F ) for some

integer k ∈ N.

Proof. Under the hypothesis, one obtains that ΓG ⊆ ΓF . One concludes the
proof with the following commutative diagram:

tF ւ ΓF ցrF

Y1 ↑ i Y2

tG տ ΓG րrG

and by referring to the assertion 3 of proposition 1.5. �

What happened if one gets a morphism f ∈ MorTop(Y1, Y2) and considers
it as a multivalued morphism in the following sense F (x) = {f(x)} for every
element x ∈ Y1. In such situation, one has which follows:

Proposition 2.4. Let f ∈MorTop(Y1, Y2) and F : Y1 → Y2 be the multivalued

transformation given by the rule F (x) = {f(x)} := f(x) for every element

x ∈ Y1, then Dg(F ) = dg(f, Y1, Y2).

Proof. It is a consequence of the following commutative diagram:

Γf

rf=rF→ Y2

tf = tF ↓
Y1 ր

f

where the morphism tf ∈MorTop(Γf , Y1) realizes a homeomorphism. �

Corollary 2.5. Let G : Y1 → Y2 be a multivalued mapping which admits a

selector f ∈ MorTop(Y1, Y2) then dg(f, Y1, Y2) = k · Dg(G) for some natural

number k ∈ N.

Proof. Indeed F (x) := {f(x)} ⊆ G(x) for every x ∈ Y1 and thus one can
conclude by referring to the propositions 2.3 and 2.4. �

Proposition 2.6. Let Y1, Y2 and Y3 be some homological n-spheres, F : Y1 →
Y2 be a multivalued transformation and f ∈MorTop(Y2, Y3) then dg(f, Y1, Y2) ·
Dg(F ) = k ·Dg(f ◦ F ) for some k ∈ N.

Proof. Of course, the quintuple Q = [Y1, Y2,ΓF , tF , f ◦rF ] is a representation of
the multivalued morphism f ◦ F : Y1 → Y2 therefore, from proposition 1.6 one
obtainsDg(f◦F,Q) = dg(f, Y1, Y2)·Dg(F ) one concludes thanks to proposition
2.2. �

Proposition 2.7. Let Y be a homological n-sphere and F : Y → Sn be a

multivalued transformation such that Dg(F ) is different from zero then F (Y ) =
Sn.

Proof. Of course, in this case dg(rF ,ΓF , S
n) 6= 0 one concludes by referring to

the proposition 1.8. �
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Definition 2.8. Two multivalued transformations F0, F1 : Y1 → Y2 defined on
some homological n-spheres Y1 and Y2 are called homotopic if there exists a
quintuple [Y1, Y2, X × [0, 1],Φ,Ψ] such that Q0 = [Y1, Y2, X,Φ0,Ψ0] and Q1 =
[Y1, Y2, X,Φ1,Ψ1] realize some representations of F0 and F1 respectively, where
Φt : X → Sn and Ψt : X → Sn are defined by the rules Φt(x) = Φ(x, t),
Ψt(x) = Ψ(x, t) for every element (x, t) ∈ X × {0, 1}.

Proposition 2.9. Let F0, F1 : Y1 → Y2 be some multivalued transformations

defined on some homological n-spheres Y1 and Y2 then if F0 and F1 are homo-

topic there exist some natural numbers k0, k1 ∈ N such that k0 · Dg(F0) =
k1 ·Dg(F1).

Proof. For this purpose one refers to propositions 1.7 and 2.2. �

2.2. Degree for multivalued transformations with images in homo-

logical n-spheres in the category Top(2). In this section one displays a

homological invariant for multivalued transformations acting between homolog-

ical n-spheres of the category Top(2)

Let (Y0, B0) and (Y1, B1) be some homological n-spheres and F : (Y0, B0)→
(Y1, B1) be a multivalued transformation that admits a quintuple

Q = [(Y0, B0), (Y1, B1), (M,N), p, q]

as a representation.

Definition 2.10. The degree of a multivalued transformation F : (Y0, B0)→
(Y1, B1) relative to the representation Q is denoted and defined by

Dgr(F,Q) = dgr(p, (M,N), (Y0, B0)) · dgr(q, (M,N), (Y1, B1)).

The degree of F relative to the canonical representation

Q̃ = [(Y0, B0), (Y1, B1), (Γ
Y0

F ,ΓB0

F ), tF , rF ]

will be denoted by Dgr(F ) := Dgr(F, Q̃).

In the sequel, one describes some properties of this homological invariant.

Proposition 2.11. Let Q = [(Y0, B0), (Y1, B1), (X,X ′), p, q] be a representa-

tion of a multivalued transformation F : (Y0, B0) → (Y1, B1) then there exists

a natural number k ∈ N such that Dgr(F,Q) = k ·Dgr(F ).

Proof. Of course, one can consider the next commutative diagram:

(Y0, B0)
p←− (X,X ′)

q→ (Y1, B1)

tտF ↓ λ ր rF
(ΓY0

F ,ΓB0

F )

where λ(x) = (p(x), q(x)) for every element x ∈ X. One concludes by using the
assertion 2 of the proposition 1.11. �
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Corollary 2.12. Let F : (Y0, B0)→ (Y1, B1) be a multivalued transformation

Q = [Y0, Y1, X, p, q] be a representation of F : Y0 → Y1 then the quintuple

Q = [(Y0, B0), (Y1, B1), (X, p−1(B0)),p, q] is a representation of F : (Y0, B0)→
(Y1, B1) and there exists a natural number k ∈ N such that Dgr(F,Q) = k ·
Dgr(F ).

Proof. This is a consequence of the definition 2.10 and the proposition 2.11. �

Example 2.13. Let B1(0) be the unit ball of the complex plane C and S1(0) =
∂B1(0) be the boundary of B1(0) and let F : (B1(0), S1(0))→ (C,C� {0}) be
the multivalued transformation defined by the rule F (z) = n

√
z. The quintuple

Q = [(B1(0), S1(0)), (C,C� {0}), (B1(0), S1(0)), p, q]

where p(w) = wn and q(w) = w for every element w ∈ B1(0), is a representation
of the multivalued mapping F.

Moreover, dgr(p, (B1(0), S1(0)), (B1(0), S1(0))) = dg(p) = n and
dgr(q, (B1(0), S1(0)), (C,C� {0})) = dg(q) = 1 so Dgr(F,Q) = n.

On the other hand, the single valued map λ : (B1(0), S1(0))→ (Γ
B1(0)
F ,Γ

S1(0)
F )

where λ(w) = (p(w), q(w)) is an isomorphism in the category Top(2) this implies
that the induced homomorphism in homology is an isomorphism in the category
G of groups and homomorphisms of groups and thus Dgr(F ) = Dgr(F,Q) = n.

Proposition 2.14. Let F , G : (Y0, B0) → (Y1, B1) be both some multival-

ued transformations such that G(x) ⊆ F (x) for every element x ∈ Y0 then

Dgr(G) = k ·Dgr(F ) for some natural number k ∈ N.

Proof. Under the hypothesis, one obtains that (ΓY0

G ,ΓB0

G ) ⊆ (ΓY0

F ,ΓB0

F ). There-
fore one infers the assertion from, the following commutative diagram:

tF ւ (ΓY0

F ,ΓB0

F ) ցrF

(Y0, B0) ↑ i (Y1, B1)

tG տ (ΓY0

G ,ΓB0

G ) րrG

and by referring to the assertion 2 of the proposition 1.11 �

Proposition 2.15. Let f ∈ MorTop(2)
((Y0, B0), (Y1, B1)) and F : (Y0, B0) →

(Y1, B1) be the multivalued transformation given by the rule F (x) = {f(x)} :=
f(x) for every element x ∈ Y0, then Dgr(F ) = dgr(f, (Y0, B0), (Y1, B1)).

Proof. For this purpose one can consider the next diagram:

(Y0, B0)
tf=tF←− (ΓY0

f ,ΓB0

f )
rf=rF→ (Y1, B1)

�

Corollary 2.16. Let G : (Y0, B0)→ (Y1, B1) be a multivalued transformation

which admits a selector f ∈MorTop(2)((Y0, B0), (Y1, B1)) then:

dgr(f, (Y0, B0), (Y1, B1)) = k ·Dgr(G)

for some natural number k ∈ N.
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Proof. This is a consequence of the propositions 2.14 and 2.15. �

Proposition 2.17. Let (Y0, B0), (Y1, B1) and (Y2, B2) be some homological

n-spheres, F : (Y0, B0) → (Y1, B1) be a a multivalued transformation and f ∈
MorTop(2)

((Y1, B1), (Y2, B2)) then

dgr(f, (Y1, B1), (Y2, B2)) ·Dgr(F ) = k ·Dgr(f ◦ F )

for some natural number k ∈ N.

Proof. Of course, the quintuple Q = [(Y0, B0), (Y2, B2), (Γ
Y0

F ,ΓB0

F ), tF , f ◦ rF ] is
a representation of the multivalued transformation f ◦ F : (Y0, B0)→ (Y2, B2)
therefore, from the assertion 4 of proposition 1.11 one obtains the next equality:

Dgr(f ◦ F,Q) = dgr(f, (Y1, B1), (Y2, B2)) ·Dgr(F ),

one concludes due to proposition 2.11 �

Definition 2.18. Let F0, F1 : (X,A) → (S, T ) be some multivalued transfor-
mations, F0 and F1 are called homotopic if there exists a quintuple

Q = [(X,A), (S, T ), (M,N)× [0, 1],Φ,Ψ]

such that the following quintuples:

Q0 = [(X,A), (S, T ), (M,N),Φ0,Ψ0]

and

Q1 = [(X,A), (S, T ), (M,N),Φ1,Ψ1]

are some representations of F0 and F1 respectively and where Φt : (M,N) →
(X,A) and Ψt : (M,N) → (X,A) are defined by the rules Φt(m) = Φ(m, t),
Ψt(m) = Ψ(m, t) for every element (m, t) ∈M × {0, 1}.
Proposition 2.19. Let F0, F1 : (Y0, B0)→ (Y1, B1) be some multivalued trans-

formations then if F0 and F1 are homotopic there exist some representations

Q0 and Q1 of F0 and F1 respectively such that Dgr(F0, Q0) = Dgr(F1, Q1).

Proof. It is a consequence of assertion 5 of proposition 1.11. �

Proposition 2.20. Let F : (Y0,B0) → (Rn,Rn�{0}) be a multivalued trans-

formation such that Dgr(F ) 6= 0 then there exists an element y ∈ Y0�B0 such

that 0 ∈ F (y).

Proof. Indeed, Dgr(F ) 6= 0 so dgr(rF , (Γ
Y0

F ,ΓB0

F ), (Rn,Rn�{0})) 6= 0 after
which one can conclude due to the proposition 1.13. �

Let S be the boundary of a closed ball B of Rn and F : B → Rn be
a multivalued transformation. The multivalued vector field induced by F
noted by Φ is the multivalued transformation given by the rule Φ(x) = x −
F (x) for every element x ∈ B. It is obvious that if Q = [B,Rn,ΓF , p, q] is
the canonical representation of F and the multivalued vector field induced

by F is such that Φ : (B,S) → (Rn,Rn�{0}) then the quintuple Q̂ =
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[(B,S), (Rn,Rn�{0}), (ΓB
F ,Γ

S
F ), p, p−q)] is a representation of the multivalued

vector field Φ.
In the sequel the degrees:

dgr(p, (ΓB
F ,Γ

S
F ), (R

n,Rn�{0}))

and

dgr(p − q, (ΓB
F ,Γ

S
F ), (R

n,Rn�{0}))
will be denoted by dgr(p) and dgr(p− q) respectively.

Proposition 2.21. Let F : B → Rn be a multivalued transformation which is

free of fixed point on the boundary S of a closed ball B then if the topological

degree Dgr(Φ) of the multivalued vector field induced by F is not zero i.e.

Dgr(Φ) 6= 0, the multivalued transformation F : B → Rn admits a fixed point

in the interior of the ball B.

Proof. This is a consequence of proposition 2.20. �

Proposition 2.22. Let F : B → Rn be a multivalued transformation free of

fixed point on the boundary S of a ball B and F (S) ⊆ B then the following

equivalence is satisfied:

Dgr(Φ, Q̂) 6= 0 if and only if dgr(p) 6= 0.

Proof. Consider the morphisms p, p − q ∈ MorTop(2)
((ΓB

F ,Γ
S
F ), (R

n,Rn\{0}))
and let Ψ ∈MorTop(Γ

B
F × [0, 1]),Rn) be a morphism given by the rule:

Ψ((x, y), λ) = p(x, y)− λ · q(x, y)

for every element ((x, y), λ) ∈ ΓB
F × [0, 1].

It follows that the morphism:

Ψ ∈MorTop(2)
((ΓB

F ,Γ
S
F )× [0, 1]), (Rn,Rn\{0}))

is a homotopy between the morphisms:

p, p− q ∈MorTop(2)
((ΓB

F ,Γ
S
F ), (R

n,Rn\{0}))

therefore from assertions 5 of proposition 1.11 one deduces what follows :

dgr(p) = dgr(p− q)

and thus one obtains the next equality:

Dgr(Φ, Q̂) = (dgr(p))
2
.

Hence, Dgr(Φ, Q̂) 6= 0 if and only if dgr(p) 6= 0. �

The last proposition 2.22, permits to obtain a generalization of the theorems
due to Eilenberg-Montgomery [3] and Kakutani [8].
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Theorem 2.23. Let F : B → Rn be a multivalued transformation which sat-

isfies the following conditions:

(1) dgr(p) 6= 0,
(2) F (S) ⊆ B.

Then the multivalued transformation F admits in the ball a fixed point.

Proof. Of course, if F has a fixed point on S then the conclusion of the theorem
is satisfied. Otherwise, if F is free of fixed point on S then Dgr(Φ) 6= 0. One
concludes the proof from proposition 2.21. �
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