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Abstract. We give a new concept of fuzzy topological subspace,
which extends the usual one, and study in it the related concepts of
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1. Introduction

A simplest and at the same time a very important operation of General
Topology is transition to a subspace because it let us consider hereditary and
local properties, completation and compactification of subspaces, etc.

When A is a subspace of a topological space X, the following assertion is
satisfied: F is closed in A iff F = A ∩ T for a closed set T of X. This is not
true, in general, in considering a similar problem for fuzzy topological spaces
(fts). For this reason, in fuzzy research the consideration of subspaces in a fts
(X, T ) is restricted by authors only to ordinary subsets of X.

In this paper we extend the concept of a fuzzy topological subspace of X, to
fuzzy sets A of X for which the above assertion is satisfied, and then we will
be able to extend some concepts and results of the (fuzzy) topological spaces
to these subspaces.

The structure of the paper is as follows: After preliminaries, in section 3 we
define and study the concept of (fuzzy) subspace, and in sections 4–5 we study
in it the concepts of interior, closure and connectedness.

2. Preliminaries

Throughout this paper, I will denote the unit real interval [0, 1]. For a
non-empty set X, IX denotes the collection of all mappings from X into I. A
member B of IX is called a fuzzy set of X. The set {x ∈ X : B(x) > 0} is
called the support of B and is denoted by SuppB. If B takes only the values 0,
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1, B is called a crisp set in X. From now on, we shall not differentiate between
a crisp set B in X and (the ordinary subset of X) SuppB. Nevertheless, the
crisp set which always takes the value 1 (respectively, 0) on X is denoted by 1
(respectively, 0).

The union and intersection of a family of fuzzy sets {Ai}i of X is
∨
iAi and∧

iAi, respectively. The complement of A ∈ IX , denoted by A′, is defined by
the formula A′(x) = 1−A(x), x ∈ X. For A,B ∈ IX we write A ⊂ B or B ⊃ A
if A(x) ≤ B(x), for each x ∈ X. The fuzzy set xλ of X given by xλ(y) = 0 if
y 6= x, and xλ(x) = λ (λ ∈]0, 1]) is called a fuzzy point of X with support x
[5]. The fuzzy point xλ is said to be contained in a fuzzy set A or belonging to
A, denoted by xλ ∈ A, if λ ≤ A(x).

A family T of fuzzy sets of X containing 0 and 1, is called a fuzzy topology
on X [1] if it is closed under arbitrary unions and finite intersections. The pair
(X, T ) is called a fuzzy topological space (fts). Each member of T is called an
open (fuzzy) set. The complement of an open set is called a closed (fuzzy) set.
T c denotes the family of all closed sets of (X, T ).

3. Fuzzy subspaces

Definition 3.1. Let (X, T ) be a fts and Y ∈ IX . The pair (Y, TY ) is called a
fuzzy topological subspace of (X, T ) if the family

TY = {G ∩ Y : G ∈ T }

satisfies the following conditions:
(c1) For each H ∈ TY there exist FH ∈ T c such that Y −H = FH ∩ Y .
(c2) For each F ∈ T c there exist GF ∈ T such that Y − (F ∩Y ) = GF ∩Y .

In this case, the members of TY will be called TY -open. If F ⊂ Y and Y −F ∈
TY , F will be called a TY -closed (fuzzy) set. For shortness we will say Y is a
subspace of X.

Notice that TY is closed under finite intersections and arbitrary unions and
that 0 and Y (instead of X) are both TY -open and TY -closed. Also, if Y is
an ordinary subspace of the topological space X, Y is a subspace of X in the
sense of definition 3.1.

Remark 3.2. The above conditions (c1) and (c2) establish that F is TY -closed
iff F = T ∩ Y for a T -closed set T of the fts (X, T ).

Example 3.3. (a) (Ordinary subsets of a fts X are subspaces of X).
Let (X, T ) be a fts and let Y an ordinary subset of X. If H ∈ TY then

H = G ∩ Y for some G ∈ T , thus Y −H = (1−G) ∩A and (c1) is satisfied.
If F ∈ T c then Y − (F ∩ Y ) = (1 − F ) ∩ Y , where 1 − F ∈ T , and (c2) is

satisfied. So, Y is a subspace of X.
(b) Let X 6= ∅. We will denote by fc the constant function on X given by

fc(x) = c, for each x ∈ X, with 0 ≤ c ≤ 1. Now, consider the Lowen indiscrete
fuzzy topology T = {fc : c ∈ [0, 1]}, on X. (Notice that T = T c.)
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Fix a real number k ∈]0, 1[, and choose a non-empty ordinary subset B of
X. Now consider Y ∈ IX given by Y (x) = k if x ∈ B, and Y (x) = 0 if x /∈ B.
We will see that Y is a subspace of (X, T ).

In fact, H ∈ TY iff H(x) = m, for each x ∈ B and H(x) = 0 elsewhere, for
some m ∈ [0, k]. Then Y −H is given by (Y −H)(x) = k −m if x ∈ B and
(Y − H)(x) = 0 if x /∈ B. So, Y − H = fk−m ∩ Y and (c1) is satisfied since
1− fk−m = f1−(k−m) ∈ T .

Now suppose F ∈ T c. Then, also F ∈ T , and thus F = fm, for some
m ∈ [0, 1]. Hence, Y − (F ∩ Y ) is given by (Y − (F ∩ Y ))(x) = k− (m∧ k) for
x ∈ B and (Y − (F ∩ Y ))(x) = 0 if x /∈ B, and clearly (c2) is satisfied.

(c) (Construction of fuzzy topological subspaces).
Fix a real number γ ∈]0, 1

2 [, and let L be a fuzzy topology on X such that
G(x) ≤ γ, for each x ∈ X and G ∈ L ∼ {1}. Take A ∈ IX such that A(x) ≤ 1

2 ,
for x ∈ X. Clearly, if L contains at least two proper open sets then A is not a
subspace of (X,L).

Now, denote

L∗ = {G∗ : G∗ = 1− (A− (A ∩G)), G ∈ L}.

We will see that L∗ ∪ {0} is a fuzzy topology on X:
Consider a Family {G∗i : i ∈ I} of elements of L∗, and suppose G∗i =

1− (A− (A ∩Gi)), where Gi ∈ L, i ∈ I. We will see that
⋃
iG
∗
i ∈ L∗.

We have ⋃
iG
∗
i =

⋃
i(1− (A− (A ∩Gi))

= (1−A) +
⋃
i(A ∩Gi)

= (1−A) + (A ∩ (
⋃
iGi))

= (1−A) + (A ∩G)

where G =
⋃
iGi ∈ L, and so

⋃
iG
∗
i ∈ L∗.

Now, we will see L∗ is closed under finite intersection. Take G∗i = 1− (A−
(A ∩Gi)), where Gi ∈ L, i = 1, 2. We have

G∗1 ∩G∗2 = (1− (A− (A ∩G1))) ∩ (1− (A− (A ∩G2)))
= (1−A) + ((A ∩G1) ∩ (A ∩G2))
= (1−A) + (A ∩ (G1 ∩G2))
= 1−A+ (A ∩G)

where G = G1 ∩G2 ∈ T , and thus G∗1 ∩G∗2 ∈ L∗.
Clearly 1 ∈ L∗ and then L∗ ∪ {0} is a fuzzy topology on X. Now, if G ∈ L

with G 6= 1, then G(x) < 1
2 for each x ∈ X, and if G∗ ∈ L∗ with G∗ 6= 0 we

have G∗(x) ≥ 1
2 , and from these facts it is easy to verify that T = L ∪ L∗ is a

fuzzy topology on X. Now we will see that A is subspace of (X, T ):
Clearly, TA = LA ∪ {A}. First we will see condition (c1) is satisfied. Let

H ∈ TA and suppose H = G∩A with G ∈ T . We distinguish two possibilities:

(i) G ∈ L∗ ∪ {1}. In this case H = G ∩A = A and A−H = 0 = 0 ∩A.
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(ii) G = L ∼ {1}. In this case A−H = A− (G ∩A) = (A− (G ∩A)) ∩A
since A− (G ∩A) ⊂ A, with 1− (A− (G ∩A)) ∈ L∗ ⊂ T .

Now, we will prove that condition (c2) is satisfied. Suppose F ∈ T c. We
distinguish two possibilities:

(i) 1− F ∈ L∗. In this case F = A− (A ∩G), with G ∈ L. So,

A− [(A− (A ∩G)) ∩A] = A− (A− (A ∩G)) = A ∩G ∈ TA
(ii) 1 − F ∈ L ∼ {1}. In this case F (x) ≥ 1

2 for each x ∈ X, and thus
F ⊃ A. Now, A− (F ∩A) = 0 ∈ TA.

Definition 3.4. Let Y be a subspace of the fts (X, T ), and suppose B ⊂ Y .
The pair (B, TB) is called a fuzzy topological subspace of (Y, TY ) if the family

TB = {G ∩B : G ∈ TY }

satisfy the following conditions
(c1)’ For each H ∈ TB it exists FH ∈ T cY such that B −H = FH ∩B.
(c2)’ For each F ∈ T cY it exists GF ∈ TY such that B − (F ∩B) = GF ∩B.

The terminology TB (instead of TYB ) is justified in proposition 3.6.
Otherwise, the elements of TB are called TB-open. If F ⊂ B and B−F ∈ TB ,

F is called TB-closed. For shortness we will say B is a subspace of Y .

Remark 3.5. The above conditions (c1)’ and (c2)’ establish that F is TB-
closed iff F = B ∩ T for a TY -closed set T of Y .

Proposition 3.6. Suppose B is a subspace of Y and Y is a subspace of the fts
(X, T ). Then, B is a subspace of (X, T ).

Proof. It is an immediate consequence of remarks 3.2 and 3.5. �

Proposition 3.7. Let Y be a subspace of the fts (X, T ). If Y is T -open
(respectively, T -closed) then G ∈ TY iff G ∈ T (respectively, F ∈ T cY iff F ∈
T c).

Proposition 3.8. Let B and Y the two subspaces of the fts (X, T ). If B ⊂ Y ,
then B is a subspace of Y .

Proof. We have H ∈ TB iff there exists G∗ ∈ T such that H = G∗ ∩ B. Now,
G∩B = G∩Y ∩B, and since G = G∗ ∩Y ∈ TY , then TB = {G∩B : G ∈ TY }.
We will see that the family TB satisfies (c1)’ and (c2)’.

Let H ∈ TB ; then there exists FH ∈ T c such that

B −H = FH ∩B = (FH ∩ Y ) ∩B,

where FH ∩ Y ∈ T cY , and so (c1)’ is satisfied.
Now, let F ∈ T cY ; then there exists GF ∈ T such that

B − (F ∩B) = GF ∩B = (GF ∩ Y ) ∩B,

where GF ∩ Y ∈ TY , and so (c2)’ is satisfied. �
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Lemma 3.9. Let M , N and P be fuzzy sets of X. Then

(M ∩N)− (P ∩ (M ∩N)) = (M − (P ∩M)) ∩ (N − (P ∩N))

Proof. Let x ∈ X and suppose M(x) ≥ N(x). We distinguish three possibili-
ties:

(1) N(x) ≤ P (x) ≤ M(x). In this case, the left hand of the above
inequality becomes N(x) − N(x) = 0, and the right hand becomes
(M(x)− P (x)) ∧ (N(x)−N(x)) = 0.

(2) P (x) ≤ N(x) ≤ M(x). Now the left hand of the inequality becomes
N(x) − P (x), and the right hand becomes (M(x) − P (x)) ∧ (N(x) −
P (x)) = N(x)− P (x).

(3) N(x) ≤ M(x) ≤ P (x). Now, the left hand of the inequality becomes
N(x)−N(x) = 0, and the right hand becomes (M(x)−M(x))∧(N(x)−
N(x)) = 0.

Since the announced equality is symmetric respect M and N , the same
argument is valid for N(x) ≥M(x), and then the equality is established. �

Proposition 3.10. Let A and B be two subspaces of the fts (X, T ). Then
A ∩B is subspace of (X, T ).

Proof. Consider the family TA∩B = {G ∩ (A ∩ B) : G ∈ T }. We will see that
TA∩B satisfies (c1) and (c2).

Let H ∈ TA∩B ; then H = G ∩ (A ∩B) with G ∈ T . Now, by lemma 3.9,

(A ∩B)−H = (A ∩B)− (G ∩ (A ∩B))
= (A− (G ∩A)) ∩ (B − (G ∩B)).

But A−(G∩A) is TA-closed and hence A−(G∩A) = FA∩A for some FA ∈ T c.
Also B − (G ∩B) = FB ∩B for some FB ∈ T c and therefore

(A ∩B)−H = (FA ∩A) ∩ (FB ∩B)
= (FA ∩ FB) ∩ (A ∩B)

and (c1) is satisfied since FA ∩ FB is T -closed.
Now, let F ∈ T c. By lemma 3.9,

(A ∩B)− (F ∩ (A ∩B)) = (A− (F ∩A)) ∩ (B − (F ∩B))
= GA ∩GB

where GA = A− (F ∩A) ∈ TA and GB = B− (F ∩B) ∈ TB . So, there are G1,
G2 ∈ T such that GA = G1 ∩A and GB = G2 ∩B and therefore

(A ∩B)− (F ∩ (A ∩B)) = (G1 ∩A) ∩ (G2 ∩B)
= (G1 ∩G2) ∩ (A ∩B)
= G ∩ (A ∩B)

where G = G1 ∩G2 ∈ T , and (c2) is satisfied. �

Since ordinary subsets in a fts (X, T ) are subspaces, we have the following
corollary.
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Corollary 3.11. Let A be a subspace of the fts (X, T ) and Y an ordinary
subset of X. Then A ∩ Y is a subspace of (X, T ).

If A and B are two subspaces of X, in general A ∪ B is not a subspace of
X, even if A ∩B = 0, as shows the following example.

Example 3.12. Let X = [0, 1] and choose three the real numbers a, b and c,
such that 0 < c < a < b < 1. Consider X endowed with the Lowen indiscrete
topology T of example 3.3 (b). Consider the fuzzy sets A and B of X given by

A(x) =
{
a 0 ≤ x ≤ 1

2
0 1

2 < x ≤ 1 B(x) =
{

0 0 ≤ x ≤ 1
2

b 1
2 < x ≤ 1

by (b) of the example 3.3, A and B are subspaces of X. Obviously A ∩B = 0
but we will see A ∪B is not a subspace of X.

Consider the constant function fc on X defined by fc(x) = c, x ∈ X. We
have that fc ∈ T c and since

(A ∪B − (fc ∩ (A ∪B)))(x) = (A ∪B − fc)(x) =
{
a− c 0 ≤ x ≤ 1

2
b− c 1

2 < x ≤ 1

it is obvious that condition (c2) cannot be satisfied.

4. Interior and closure

In this section, Y will be a subspace of the fts (X, T ).
According with [1], the TY -interior, denoted by intY A, of a fuzzy set A

contained in Y is the largest TY -open (fuzzy) set contained in A, and the TY -
closure, denoted by clY A, is the smallest TY -closed (fuzzy) set containing A.

Proposition 4.1. Let A ⊂ Y . Then

(i) intX A = intY A ∩ intX Y .
(ii) clY A = clX A ∩ Y .

Proof. It is similar to the classic case. �

Through the notion of fuzzy point, it is possible to study the concepts of
interior and cluster (adherence) point. According with [5], we give the following
definition.

Definition 4.2. A fuzzy set A in (X, TY ) is called a TY -neighborhood of the
fuzzy point xλ if there exists B ∈ TY such that xλ ∈ B ⊂ A. We also say that
xλ is TY -interior of A. Then, xλ ∈ intY A iff xλ is TY -interior of A.

In [3], is given the following definition.

Definition 4.3. The fuzzy set point xλ is said to belong to B, written xλ
∼

∈ B,
iff B(x) > λ.

According with [3], the following is a distinct definition of an interior point.
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Definition 4.4. A fuzzy set A in (Y, TY ) is called a T ∼Y -neighborhood of the
fuzzy point xλ if there exists B ∈ TY such that xλ

∼

∈ B ⊂ A. Also, xλ is called
a T ∼Y -interior point of A. Then, xλ

∼

∈ intY A iff xλ is a T ∼Y -interior pointof A.

Notice that if (intY A)(x) > 0 then x(intY A)(x) is TY -interior of A, but it is
not T ∼Y -interior of A. Nevertheless,

intY A =
⋃
{xλ : xλ is TY -interior of A} =

⋃
{xλ : xλ is T ∼Y -interior of A}.

By (i) of proposition 4.1, we have the following corollary.

Corollary 4.5. Let A be contained in Y . Then, a fuzzy point xλ ∈ intX Y
(respectively, xλ

∼

∈ intX Y ) is a TY -interior (respectively, a T ∼Y -interior) point
of A iff it is a T -interior point of A.

The following definitions and results are obvious generalizations of the ones
given in [5].

Definition 4.6. A fuzzy point xλ is said to be Y -quasi-coincident with the
fuzzy set A of X, denoted by xλ qY A, if λ+A(x) > Y (x).

Definition 4.7. Let A,B ⊂ Y . A is said to be Y -quasi-coincident with B,
denoted by A qY B, if there exists x ∈ X such that A(x) +B(x) > Y (x).

Definition 4.8. A fuzzy set A in(X, TY ) is called a QY -neighborhood of xλ if
there exists B ∈ TY , B ⊂ A, such that xλ qY B.

Proposition 4.9. Let A,B ⊂ G. Then A ⊂ B iff A and Y − B are not
Y -quasi-coincident; particularly xλ ∈ A iff xλ is not Y -quasi-coincident with
Y −A.

Theorem 4.10. A fuzzy point xλ ∈ clY A iff each QY -neighborhood of xλ is
Y -quasi-coincident with A.

Definition 4.11. A fuzzy point xλ is called a TY -adherence point of a fuzzy
set A if every QY -neighborhood of xλ is Y -quasi-coincident with A.

According with [3] we give the following definition.

Definition 4.12. The fuzzy point xλ is called a TY -cluster point of A if for
each G ∈ TY such that xY (x)−λ

∼

∈ G implies G 6⊂ Y −A.

Proposition 4.13. Let A ⊂ Y . The fuzzy point xλ is TY -cluster point of A
iff it is a TY -adherence point of A.

Proof. Suppose xλ is TY -cluster point of A. Let G ∈ TY a Q-neighborhood
of xλ. Then, λ + G(x) > Y (x) and thus xY (x)−λ

∼

∈ G, and G 6⊂ Y − A
since xλ is a TY -cluster point of A. Therefore, there exists x ∈ X such that
G(x) > Y (x)−A(x), and so G is Y -quasi-coincident with A.

Suppose xλ is a TY -adherence fuzzy point of A. Let G ∈ TY such that
xY (x)−λ

∼

∈ G. Then Y (x) − λ < G(x) and thus G is a neighborhood of xλ.
So, G is Y -quasi-coincident with A. and then there exists x ∈ X such that
G(x) +A(x) > Y (x); therefore G 6⊂ Y −A and xλ is TY -cluster point of A. �
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By (ii) of proposition 4.1 we have the following corollary.

Corollary 4.14. Let A be contained in Y . Then, a fuzzy point xλ ∈ Y is a
TY -adherence (cluster) point of A iff it is a T -adherence (cluster) point of A.

5. Connectedness

We will use the concepts of connectedness due to Pu and Liu [5], [6], but
with terminology of [7].

Definition 5.1. A fuzzy set D in the fts (X, T ) is called C-disconnected (re-
spectively O-disconnected) if there are A,B ∈ T c (respectively, A,B ∈ T )
such that A ∩ D 6= 0, B ∩ D 6= 0, A ∩ B ∩ D = 0 and A ∪ B ⊃ D. A fuzzy
set is called C-connected (respectively O-connected) if it is not C-disconnected
(respectively O-disconnected).

In contrast to General Topology the use of closed and open fuzzy sets in
definitions of connectedness of fuzzy sets results in two distinct concepts. Nev-
ertheless, we will see that these concepts agree in subspaces.

According with definition 5.1, we give the following definition.

Definition 5.2. A subspace (Y, TY ) of the fts X will be called C-disconnected
(respectively O-disconnected) if there are two non-empty TY -closed (respec-
tively TY -open) sets A and B such that A ∩B = 0 and Y = A ∪B.

The following proposition shows that connected properties are absolute prop-
erties in subspaces.

Proposition 5.3. If Y is a subspace of the fts X, then the fuzzy set Y is
C-connected (respectively O-connected) iff the subspace (Y, TY ) is C-connected
(respectively O-connected).

Proof. It is straightforward. �

It is clear that a fts (X, T ) is O-connected iff it is C-connected. Now this
fact is extendable to subspaces in the next proposition.

Proposition 5.4. Let Y be a subspace of the fts (X, T ). Then Y is C-
connected iff it is O-connected.

Proof. Suppose Y is not O-connected. Then there are two sets G,H ∈ T such
that

(1) G ∩ Y 6= 0, H ∩ Y 6= 0, G ∩H ∩ Y 6= 0 and
(2) Y = (G ∩ Y ) ∪ (H ∩ Y ).

Now, by (1), for x ∈ X, (G ∩ Y )(x) 6= 0 iff (H ∩ Y )(x) = 0 and also
(H ∩Y )(x) 6= 0 iff (G∩Y )(x) = 0, and thus Y − (G∩Y ) 6= 0, Y − (H ∩Y ) 6= 0,
and (Y − (G ∩ Y )) ∪ (Y − (H ∩ Y )) = Y .

Also, by (2), for x ∈ X if G(x) < Y (x) then H(x) ≥ Y (x), and if H(x) <
Y (x) then G(x) ≥ Y (x), and thus (Y − (G ∩ Y )) ∩ (Y − (H ∩ Y )) = 0, and
then (Y, TY ) is not C-connected.

The converse is showed with a similar argument. �
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Definition 5.5 (P1). Two fuzzy sets A1 and A2 in a fts (X, T ) are said to be
Q-separated if there exist two T -closed sets Hi (i = 1, 2) such that Hi ⊃ Ai
(i = 1, 2), and H1 ∩ A2 = H2 ∩ A1 = 0. It is obvious that A1 and A2 are
Q-separated iff clA1 ∩A2 = clA2 ∩A1 = 0.

Note 5.6. A fuzzy set D is C-disconnected [5] iff there exist two non-empty sets
A and B, both two contained in SuppD, such that A and B are Q-separated,
and D = A ∪B. According with this, we give the following definition.

Definition 5.7. A fuzzy subspace (Y, TY ) of X is here called disconnected if
there exists two non-empty sets, both two contained in Y , such that A and B
are Q-separated and Y = A∪B. Y is called connected if it is not disconnected.

Theorem 5.8. Let Y be a subspace of (X, T ). They are equivalent:
(i) Y is connected.
(ii) Y is C-connected.
(iii) Y is O-connected.

Proof. By proposition 5.4 we only have to prove that (i) and (ii) are equivalent.
Suppose Y is disconnected. Then there exist two sets A,B ⊂ Y such that
clX A ∩B = 0, clX B ∩A = 0 and Y = A ∪B.

Now, by (ii) of proposition 4.1, we have

clYA = Y ∩ clXA = (A ∪B) ∩ clXA = (A ∩ clXA) ∪ (B ∩ clXA) = A,

and hence A is TY -closed. Similarly, B is TY -closed and then Y is C-dis-
connected.

Suppose now that Y is C-disconnected. Then, there are two non-empty TY -
closed sets A and B, such that A ∩B = 0 and Y = A ∪B. Now, otherwise by
(ii) of proposition 4.1, we have

A ∩ clXB = (A ∩ Y ) ∩ clXB = A ∩ clYB = A ∩B = 0.

Similarly, B ∩ clX A = 0, and then A and B are Q-separated. �

Lemma 5.9. If A and B are Q-separated in the fts X and Y is a connected
subspace of X, with Y ⊂ A ∪B, then Y ⊂ A or Y ⊂ B.

Proof. If A and B are Q-separated in the fts X, then A∩Y , and B∩Y are also
Q-separated in X, and Y = (A ∩ Y ) ∪ (B ∩ Y ), then A ∩ Y = 0 or B ∩ Y = 0,
i.e., Y ⊂ B or Y ⊂ A. �

As in the classic case, theorem 5.8 and lemma 5.9 provide with some neat
ways of proving a given space X is connected.

Theorem 5.10. Let X be a fts.
(a) If X =

⋃
αXα, where each Xα is a connected subspace of X and⋂

αXα 6= 0, then X is connected.
(b) If each pair p, q of fuzzy points of X lies in some connected subspace

Ep,q of X, then X is connected.
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(c) If X =
⋃∞
n=1Xn where each Xn is a connected subspace of X and

Xn−1 ∩Xn 6= 0, for each n ≥ 2, then X is connected.

Proof. The proofs are slight modifications of the classic cases. �

Next theorem is a generalization of theorem 10.1 of [5].

Theorem 5.11. Let Y be a subspace of the fts (X, T ) and let D be a C-
connected fuzzy set in (X, T ). If D ⊂ Y then clY D is also C-connected.

Proof. Suppose clY D is C-disconnected. Then, there are two T -closed sets A
and B such that A∩clY D 6= 0, B∩clY D 6= 0, A∩B∩Y = 0 and A∪B ⊃ clY D.
By the connectedness of D, we may assume that A∩D = 0, that is D ⊂ B. It
follows that clY D ⊂ B and thus A ∩ clY D = 0, which is a contradiction. �

Definition 5.12. Two fuzzy sets A1 and A2 contained in a subspace (Y, TY )
of the fts X is said Q-separated in Y if there exist TY -closed sets Hi (i = 1, 2)
such that Hi ⊃ Ai (i = 1, 2) and H1 ∩A2 = H2 ∩A1 = 0.

Theorem 5.13. Let A be a family of C-connected fuzzy sets in fts X. Suppose⋃
A is a fuzzy subspace of X. If no two members of A are Q-separated in

⋃
A,

then
⋃
A is connected.

Proof. The same proof as theorem 10.2 of [5], but replacing Supp
⋃
A by

⋃
A,

proves that
⋃
A is C-connected, and by theorem 5.8

⋃
A is connected. �

5.14 Final considerations. One can extend in a natural way the Ti-fuzzy
separation axioms of [5] in fts to subspaces, in such manner that were hereditary
properties. Notice that there are many definitions of T2-fts in the literature
(see [2]), but are particularly interesting the fuzzy separation axioms given in
[4], through the concept of R-neighborhood.
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