

© Universidad Politécnica de Valencia Volume 2, No. 2, 2001

pp. 205- 218

# Selections and order-like relations

### VALENTIN GUTEV AND TSUGUNORI NOGURA

ABSTRACT. Every selection f for the family  $\mathcal{F}_2(X)$  of at most twopoint subsets of a set X naturally defines an order-like relation  $\preceq_f$  on X by  $x \preceq_f y$  if and only if  $f(\{x,y\}) = x$ . In the present paper we study the relationship between  $\preceq_f$  and the possible topologies  $\mathcal{T}$  on X which realize the continuity of f with respect to the Vietoris topology  $\tau_{V(\mathcal{T})}$ on  $\mathcal{F}_2(X)$  generated by  $\mathcal{T}$ . We also study a similar problem about selections for the Vietoris hyperspace of all non-empty closed subsets of a Hausdorff space  $(X, \mathcal{T})$ .

2000 AMS Classification: Primary 54B20, 54C65, 54A10; Secondary 54D45, 54F05. Keywords: Hyperspace topology, selection, monotone selection, ordered space.

#### 1. Introduction

Let  $(X, \mathcal{T})$  be a  $T_1$ -space, where  $\mathcal{T}$  is the topology of X, and let  $\mathcal{F}(X, \mathcal{T})$  be the family of all non-empty closed subsets of  $(X, \mathcal{T})$ . Also, for every  $n \geq 1$ , let

$$\mathcal{F}_n(X) = \{ S \subset X : 0 < |S| \le n \}.$$

Note that  $\mathcal{F}_n(X) \subset \mathcal{F}(X,\mathcal{T})$  because  $(X,\mathcal{T})$  is a  $T_1$ -space. Hence, we may consider  $\mathcal{F}(X,\mathcal{T})$  as an extension of X identifying X with  $\mathcal{F}_1(X)$ . From this point of view, a topology  $\tau$  on  $\mathcal{F}(X,\mathcal{T})$  is admissible [8] if its restriction on X coincides with  $\mathcal{T}$ .

Let  $\mathcal{D} \subset \mathcal{F}(X,\mathcal{T})$ , and let  $\tau$  be an admissible topology on  $\mathcal{F}(X,\mathcal{T})$ . A map  $f: \mathcal{D} \to X$  is a *selection* for  $\mathcal{D}$  if  $f(S) \in S$  for every  $S \in \mathcal{D}$ . A map  $f: \mathcal{D} \to X$  is a  $\tau$ -continuous selection for  $\mathcal{D}$  if it is a selection which is continuous with respect to the relative topology on  $\mathcal{D}$  as a subspace of  $(\mathcal{F}(X,\mathcal{T}),\tau)$ .

So far one of the best admissible topologies on  $\mathcal{F}(X,\mathcal{T})$  is the Vietoris one  $\tau_{V(\mathcal{T})}$ . Let us recall that  $\tau_{V(\mathcal{T})}$  is generated by all collections of the form

$$\langle \mathcal{V} \rangle = \left\{ S \in \mathcal{F}(X,\mathcal{T}) : S \cap V \neq \varnothing, \ V \in \mathcal{V}, \ \text{and} \ S \subset \bigcup \mathcal{V} \right\},$$

where  $\mathcal{V}$  runs over the finite families of open subsets of  $(X, \mathcal{T})$ .

Finally, let  $Sel(X, \mathcal{T})$  be the set of all  $\tau_{V(\mathcal{T})}$ -continuous selections for  $\mathcal{F}(X, \mathcal{T})$ , and  $Sel_2(X, \mathcal{T})$  that of all  $\tau_{V(\mathcal{T})}$ -continuous selections for  $\mathcal{F}_2(X)$ . Also, we will use  $Sel_2(X)$  to denote the set of all selections for  $\mathcal{F}_2(X)$ . Note that always

$$Se\ell_2(X, \mathcal{T}) \subset Se\ell_2(X)$$
,

while

$$Se\ell_2(X, \mathcal{T}) \neq \emptyset$$
 provided  $Se\ell(X, \mathcal{T}) \neq \emptyset$ .

In the present paper, we study relations between the set  $Se\ell(X,\mathcal{T})$  (respectively,  $Se\ell_2(X,\mathcal{T})$ ) and topological properties of  $(X,\mathcal{T})$ . Suppose that  $(X,\mathcal{T})$  is a space with  $Se\ell(X,\mathcal{T}) \neq \varnothing$ . The cardinality of the set  $Se\ell(X,\mathcal{T})$  provides some information about  $(X,\mathcal{T})$  but mainly when it is finite. For instance, if  $(X,\mathcal{T})$  is connected, then  $|Se\ell(X,\mathcal{T})| \leq 2$ , [8], and if, in addition,  $(X,\mathcal{T})$  is infinite, then it is compact if and only if  $|Se\ell(X,\mathcal{T})| = 2$ , [9]. On the other hand,  $Se\ell(X,\mathcal{T})$  is finite if and only if  $(X,\mathcal{T})$  has finitely many connected components, [10] (see, also, [3]).

In case  $Sel(X,\mathcal{T})$  is infinite, it seems more reasonable to study the possible variety of elements of  $Sel(X,\mathcal{T})$ . The idea has led to several interesting characterizations of topological properties of  $(X,\mathcal{T})$  based on different "extreme elements" of  $Sel(X,\mathcal{T})$ , see [3, 4, 5, 6]. In fact, the "extreme selections" are the first possible elements of  $Sel(X,\mathcal{T})$  we may recognize. Namely, looking at our source, we may regard only a few possible ways to construct selections for  $\mathcal{F}(X,\mathcal{T})$ , and always the resulting selections have some extreme properties. That is, our knowledge about the variety of  $Sel(X,\mathcal{T})$  is naturally associated to our constructions.

In this paper, we are concerned with somewhat different and somehow dual question following precisely the same idea. Suppose that  $(X, \mathcal{T})$  is a space and  $f \in \mathcal{S}e\ell(X,\mathcal{T})$ . Now, we become interested in the possible topologies  $\mathcal{T}$  on X which preserve the continuity of f. The relation with the above classification problem is quite transparent. Namely, we may try to extract an information for a space  $(X, \mathcal{T})$  that has a particular selection  $f \in \mathcal{S}e\ell(X, \mathcal{T})$ , while the genesis of f could be related to another topology on X. Hence,  $\mathcal{T}$  may fail to be the proper topology on X generating the choice described by f. The best example is the set  $Se\ell_2(X)$ . In this case, any selection  $f \in Se\ell_2(X)$  defines a natural topology  $\mathcal{T}_f$  on X (see Section 2), and once  $f \in \mathcal{S}e\ell_2(X,\mathcal{T})$  for some Hausdorff topology  $\mathcal{T}$  on X, then  $\mathcal{T}_f \subset \mathcal{T}$  (Theorem 3.5) and  $f \in \mathcal{S}e\ell_2(X,\tilde{\mathcal{T}})$  for any topology  $\tilde{\mathcal{T}}$  on X which is finer than  $\mathcal{T}$  (Corollary 3.2). The case of selections for  $\mathcal{F}(X,\mathcal{T})$  is discussed in the paper mainly for special extreme elements of  $Sel(X,\mathcal{T})$  called monotone selections, see Section 5. For instance, we get that a space  $(X, \mathcal{T})$  has a monotone selection  $f \in \mathcal{S}e\ell(X, \mathcal{T})$  if and only if  $(X, \mathcal{T}_f)$ is a topologically well-orderable space and  $\mathcal{T}$  is a Sorgenfrey modification of  $\mathcal{T}_f$ (Theorem 5.1). The paper contains also several examples demonstrating the importance of the hypotheses in our statements.

## 2. A TOPOLOGY GENERATED BY SELECTIONS

Every selection  $f \in Sel_2(X)$  generates an order-like relation  $\leq_f$  on X (see Michael [8]) defined for  $x, y \in X$  by

$$x \leq_f y$$
 if and only if  $f(\{x,y\}) = x$ .

In the sequel, we shall regard  $\leq_f$  as an f-order on X. Also, let us agree to write that  $x \prec_f y$  provided  $x \leq_f y$  and  $x \neq y$ .

Whenever  $x \in X$ , we consider the following f-intervals generated by a selection  $f \in \mathcal{S}e\ell_2(X)$ :

$$(-\infty,x]_{\prec_f} \ = \{z \in X : z \preceq_f x\} \qquad \text{and} \qquad [x,+\infty)_{\prec_f} = \{z \in X : x \preceq_f z\},$$

$$(-\infty, x)_{\prec_f} = \{ z \in X : z \prec_f x \} \quad \text{and} \quad (x, +\infty)_{\prec_f} = \{ z \in X : x \prec_f z \}.$$

**Proposition 2.1.** Let X be a  $T_1$ -space, and let  $f \in Sel_2(X)$ . Then, whenever  $x \in X$ , the following holds.

(a) 
$$(-\infty, x)_{\prec_f} \cap (x, +\infty)_{\prec_f} = \varnothing$$
.

$$\begin{array}{ll} (a) & (-\infty,x)_{\prec_f} \cap (x,+\infty)_{\prec_f} = \varnothing. \\ (b) & (-\infty,x]_{\prec_f} \cup [x,+\infty)_{\prec_f} = X. \end{array}$$

While the proof of Proposition 2.1 is trivial, we should be very careful working with f-intervals because, in general,  $\prec_f$  is not a linear order. For instance, if  $x \prec_f y$ , then it is not true that always

$$(-\infty, y]_{\prec_f} \cup [x, +\infty)_{\prec_f} = X$$

since  $x \in (-\infty, y]_{\prec_f}$  does not imply that  $(-\infty, x]_{\prec_f} \subset (-\infty, y]_{\prec_f}$ .

Once we have associated some subsets of X generated by a selection  $f \in$  $Se\ell_2(X)$ , we may associate a corresponding topology  $\mathcal{T}_f$  on X. Namely, let  $\mathcal{T}_f$  denote the topology on X generated by all f-intervals  $(-\infty, x)_{\prec_f}$  and  $(x, +\infty)_{\prec_f}, x \in X.$ 

**Proposition 2.2.** Let X be a set,  $f \in Sel_2(X)$ , and let  $x, y, z \in X$  be such that  $z \prec_f x \prec_f y \prec_f z$ . Then,  $(-\infty, x]_{\prec_f} \cap [y, +\infty)_{\prec_f}$  is a clopen set of  $(X, \mathcal{T}_f)$ which separates z from the two-point set  $\{x,y\}$ .

*Proof.* Note that  $y \notin (-\infty, x]_{\prec f}$  while  $x \notin [y, +\infty)_{\prec f}$ . Hence,

$$(-\infty, x]_{\prec_f} \cap [y, +\infty)_{\prec_f} = (-\infty, x)_{\prec_f} \cap (y, +\infty)_{\prec_f},$$

which completes the proof.

Here is another important property of  $\mathcal{T}_f$ .

**Lemma 2.3.** Let X be a set, and let  $f \in Sel_2(X)$ . Then,  $\mathcal{T}_f$  is a Hausdorff topology on X.

*Proof.* Take two different points  $x, y \in X$ , say  $x \prec_f y$ , and let us find disjoint sets  $U, V \in \mathcal{T}_f$  such that  $x \in U$  and  $y \in V$ . If

$$(x,y)_{\prec_f} = \{ z \in X : x \prec_f z \prec_f y \} = \emptyset,$$

then

$$(-\infty, y)_{\prec t} \cap (x, +\infty)_{\prec t} = (x, y)_{\prec t} = \emptyset,$$

so, in this case, we may merely take

$$U = (-\infty, y)_{\prec_f}$$
 and  $V = (x, +\infty)_{\prec_f}$ .

If there exists a point  $z \in (x,y)_{\prec_f}$ , then, by Proposition 2.1, we may set

$$U = (-\infty, z)_{\prec_f}$$
 and  $V = (z, +\infty)_{\prec_f}$ .

In what follows, to any selection  $f \in Se\ell_2(X)$  we shall associate another selection  $f^* : \mathcal{F}_2(X) \to X$  defined by  $S = \{f(S), f^*(S)\}$  for any  $S \in \mathcal{F}_2(X)$ . Then, for  $x, y \in X$ , we have

$$x \prec_f y$$
 if and only if  $y \prec_{f^*} x$ .

Hence,  $f^*$  generates the same family of f-intervals. That is, we have also the following result about  $\mathcal{T}_f$ .

**Proposition 2.4.** Let X be a set, and let  $f \in Sel_2(X)$ . Then,  $\mathcal{T}_f = \mathcal{T}_{f^*}$ .

3. Which topologies  $\mathcal T$  give rise to  $\tau_{V(\mathcal T)}$ -continuous selections for  $\mathcal F_2(X)$ ?

In this section we classify all possible Hausdorff topologies  $\mathcal{T}$  on a set  $(X, \mathcal{T})$  with respect to which a given selection  $f \in Sel_2(X)$  is  $\tau_{V(\mathcal{T})}$ -continuous. The following theorem summarizes a well-known criterion of continuity of selections.

**Theorem 3.1.** Let  $\mathcal{T}$  be a Hausdorff topology on a set X, and let  $f \in Sel_2(X)$ . The following two conditions are equivalent:

- (a)  $f \in Sel_2(X, \mathcal{T})$ .
- (b) For every two points  $x_1, x_2 \in X$ , with  $x_1 \prec_f x_2$ , there are  $V_1, V_2 \in \mathcal{T}$  such that  $x_i \in V_i$ , i = 1, 2, and  $z_1 \prec_f z_2$  for every  $z_i \in V_i$ , i = 1, 2.

*Proof.* (a)  $\Rightarrow$  (b): Take points  $x_1, x_2 \in X$ , with  $x_1 \prec_f x_2$ . Since  $x_1 \neq x_2$ , by hypothesis, there are disjoint sets  $U_1, U_2 \in \mathcal{T}$  such that  $x_i \in U_i$ , i = 1, 2. Since f is  $\tau_{V(\mathcal{T})}$ -continuous and  $f(\{x_1, x_2\}) = x_1 \in U_1$ , this implies the existence of  $V_1, V_2 \in \mathcal{T}$  such that  $x_i \in V_i \subset U_i$ , i = 1, 2, and  $f(\langle V_1, V_2 \rangle) \subset U_1$ . These  $V_1$  and  $V_2$  are as required in (b).

(b)  $\Rightarrow$  (a): First of all, note that f is  $\tau_{V(\mathcal{T})}$ -continuous at the singletons of X. So, take two different point  $x_1, x_2 \in X$ , say  $x_1 \prec_f x_2$ . Then, by (b), there are  $V_1, V_2 \in \mathcal{T}$  such that  $x_i \in V_i$  and  $z_1 \prec_f z_2$  for every  $z_i \in V_i$ , i = 1, 2. Hence, for every  $\mathcal{T}$ -neighbourhood U of  $x_1$ , we have  $f(\langle V_1 \cap U, V_2 \rangle) \subset U$ . That is, f is  $\tau_{V(\mathcal{T})}$ -continuous at  $\{x_1, x_2\}$ .

Theorem 3.1 gives the following immediate consequence.

**Corollary 3.2.** Let  $(X, \mathcal{T})$  be a Hausdorff space, and let  $f \in Sel_2(X, \mathcal{T})$ . Then,  $f \in Sel_2(X, \tilde{\mathcal{T}})$  for every topology  $\tilde{\mathcal{T}}$  on X which is finer than  $\mathcal{T}$ .

Corollary 3.2 suggests a natural question about a possible minimal topology  $\mathcal{T}$  on a set X such that a given selection  $f \in Se\ell_2(X)$  is  $\tau_{V(\mathcal{T})}$ -continuous. Namely,

**Question 1.** Let X be a set and  $f \in Sel_2(X)$ . Does there exists a topology  $\mathcal{T}$  on X which is minimal with respect to property " $f \in Sel_2(X, \mathcal{T})$ "?

Question 1 is related to the topology  $\mathcal{T}_f$  which is the only topological structure on X we may start with. Concerning  $\mathcal{T}_f$ , we have the following observations.

**Lemma 3.3.** Let  $(X, \mathcal{T})$  be a  $T_1$ -space and  $f \in Sel_2(X, \mathcal{T})$ . Then  $(-\infty, x)_{\prec f} \in \mathcal{T}$ , whenever  $x \in X$ .

*Proof.* Take a point  $x \in X$  and  $z \in (-\infty, x)_{\prec_f}$ . Since  $(X, \mathcal{T})$  is a  $\mathrm{T}_1$ -space and  $z \neq x$ , there exists  $U \in \mathcal{T}$  such that  $z \in U$  and  $x \notin U$ . Since  $f(\{z, x\}) = z$ , there also exist  $V, W \in \mathcal{T}$  such that  $x \in V$ ,  $z \in W$  and  $f(\langle V, W \rangle) \subset U$ . Then,  $W \subset (-\infty, x)_{\prec_f}$ . Indeed, take a point  $y \in W$ . Then,  $\{x, y\} \in \langle V, W \rangle$ , and therefore  $f(\{x, y\}) \in U$ . Hence,  $f(\{x, y\}) = y$  which finally implies that  $y \in (-\infty, x)_{\prec_f}$ .

It should be mentioned that, in general, the f-intervals  $(x, +\infty)_{\prec_f}$  may fail to be  $\mathcal{T}$ -open.

**Example 3.4.** There exists an infinite compact  $T_1$ -space  $(X, \mathcal{T})$  and  $f \in \mathcal{S}e\ell(X, \mathcal{T})$  such that  $(x, +\infty)_{\leq f} \notin \mathcal{T}$  for infinitely many points  $x \in X$ .

*Proof.* We take for X the set  $\omega + 1$  with the cofinite topology  $\mathcal{T}$ , i.e.

$$\mathcal{T} = \{ V \subset X : \text{ either } V = \emptyset \text{ or } X \setminus V \text{ is finite} \}.$$

As it is well-known, the resulting space  $(X,\mathcal{T})$  is a compact  $T_1$ -space which is not Hausdorff. Let "<" be the usual order on X. Define a selection f for  $\mathcal{F}(X,\mathcal{T})$  by letting  $f(F) = \max_{<} F, \ F \in \mathcal{F}(X,\mathcal{T})$ . Let us show that f is  $\tau_{V(\mathcal{T})}$ -continuous. Clearly, f is continuous at the singletons of X. Take a nonsingleton  $F \in \mathcal{F}(X,\mathcal{T})$  and a  $\mathcal{T}$ -neighbourhood V of f(F). We distinguish the following two cases. If F = X, then  $f(F) = \omega$ , so there exists a point  $x_F < \omega$  such that  $\{x \in X : x_F < x\} \subset V$ . If  $F \neq X$ , then F should be finite, so there exists  $x_F = f(F \setminus f(F))$ . Now, set  $W = \{x \in V : x_F < x\}$ , and then note that W remains a neighbourhood of f(F). Let  $\mathcal{U} = \{\{x\} \cup W : x \in F \text{ and } x \leq x_F\} \cup \{W\}$ . Thus, we get a finite cover  $\mathcal{U} \subset \mathcal{T}$  of F, with  $F \cap U \neq \emptyset$  for every  $U \in \mathcal{U}$ . Hence  $\langle \mathcal{U} \rangle$  is a  $\tau_{V(\mathcal{T})}$ -neighbourhood of F in  $\mathcal{F}(X,\mathcal{T})$ . Take an  $S \in \langle \mathcal{U} \rangle$ . Then,  $W \in \mathcal{U}$  implies  $S \cap W \neq \emptyset$ . According to the special choice of  $x_F$ , this implies that  $f(S) = \max_{<} S \in W \subset V$ . That is, f is  $\tau_{V(\mathcal{T})}$ -continuous at F. To show the second part of our statement, take a point  $x \in X$  such that  $0 < x < \omega$ . Now we have that

$$(x, +\infty)_{\prec_f} = \{z \in X : x \prec_f z\} = \{z \le \omega : z \ne x \text{ and } \max_{<} \{x, z\} = x\}$$
 
$$= \{z \le \omega : z < x\}.$$

Hence,  $(x, +\infty)_{\prec_f}$  fails to be  $\mathcal{T}$ -open as a non-empty finite set.

We are now ready for the following observation which sheds some light on Question 1.

**Theorem 3.5.** For a  $T_1$ -space  $(X, \mathcal{T})$  and  $f \in Sel_2(X, \mathcal{T})$ , the following conditions are equivalent:

- (a)  $(X, \mathcal{T})$  is a Hausdorff space.
- (b)  $f^* \in Sel_2(X, \mathcal{T})$ .
- (c)  $\mathcal{T}_f \subset \mathcal{T}$ .

*Proof.* (a)  $\Rightarrow$  (b): Let  $(X, \mathcal{T})$  be Hausdorff. To show that  $f^*$  is  $\tau_{V(\mathcal{T})}$ -continuous, take points  $x_1, x_2 \in X$  such that  $x_1 \prec_f x_2$ . Then, by Theorem 3.1, there are  $V_1, V_2 \in \mathcal{T}$  such that  $x_i \in V_i$ , and  $z_1 \prec_f z_2$  for every  $z_i \in V_i$ , i = 1, 2. Hence,  $z_2 \prec_{f^*} z_1$  for every  $z_i \in V_i$ , i = 1, 2, and, by Theorem 3.1,  $f^*$  is  $\tau_{V(\mathcal{T})}$ -continuous as well.

Since (b)  $\Rightarrow$  (c) follows by Lemma 3.3, while (c)  $\Rightarrow$  (a) by Lemma 2.3, the proof completes.

In view of Theorem 3.5 and Question 1, we may become inspired to ask if any selection  $f \in Sel_2(X)$  is  $\tau_{V(\mathcal{T}_f)}$ -continuous. The answer to this question is in negative.

**Example 3.6.** There exists a set X and  $\sigma \in Se\ell_2(X)$  such that  $\sigma$  is not  $\tau_{V(\mathcal{T}_{\sigma})}$ -continuous.

*Proof.* Let  $X = \{0,1\} \times \omega$ , and let "<" be the usual order on  $\omega$ . Define a selection  $\sigma : \mathcal{F}_2(X) \to X$  as follows:

- (i)  $\sigma(\{(0,n),(1,m)\}) = (1,m)$  if and only if m = n + 1 and  $n \ge 1$ ,
- (ii)  $\sigma(\{(0,n),(0,m)\}) = (0,m)$  for  $0 < n \le m$ ,
- (iii)  $\sigma(\{(1, n), (1, m)\}) = (1, n)$  for  $0 < n \le m$ ,
- (iv)  $\sigma(\{(0,0),(0,m)\}) = (0,0)$  for  $m < \omega$ ,

and

(v) 
$$\sigma(\{(1,0),(1,m)\}) = (1,m)$$
 for  $m < \omega$ .

Note that (0,0) is the  $\prec_{\sigma}$ -minimal point of X, while (1,0) is the  $\prec_{\sigma}$ -maximal one. Hence, all possible  $\sigma$ -intervals which may contain (0,0) are of the form

$$(-\infty, (0, n))_{\prec_{\sigma}} = \{(0, 0)\} \cup \{(0, m) : m \ge n + 1\} \cup \{(1, n + 1)\}, \quad n > 0,$$

and

$$(-\infty, (1, n+1))_{\prec_{\sigma}} = \{(0, m) : m \neq n\} \cup \{(1, m) : m \leq n\}, \quad n \geq 0.$$

Since

$$\begin{array}{lcl} (3.\mbox{$\rlap{$l$}$}+\infty, (0,n))_{\prec_{\sigma}} \cap (-\infty, (0,n+1))_{\prec_{\sigma}} & = & \{(0,0)\} \cup \{(0,m) : m \geq n+2\} \\ (3.2) & \subset & (-\infty, (1,n+1))_{\prec_{\sigma}}, \end{array}$$

the family  $\{\{(0,0)\}\cup\{(0,m): m\geq k\}: k<\omega\}$  forms a local base at (0,0) in the topology  $\mathcal{T}_{\sigma}$ .

The situation with the point (1,0) is similar. Namely, all possible  $\sigma$ -intervals which may contain this point are of the form

$$((0,n),+\infty)_{\prec_{\sigma}} = \{(0,m) : 0 < m < n\} \cup \{(1,m) : m \neq n+1\}, \quad n > 0,$$

and

$$((1, n+1), +\infty)_{\prec_{\sigma}} = \{(0, n)\} \cup \{(1, m) : m \ge n+2\} \cup \{(1, 0)\}, \quad n \ge 0.$$

Then, for every n > 0, we have

$$((1,n),+\infty)_{\prec_{\sigma}} \cap ((1,n+1),+\infty)_{\prec_{\sigma}} = \{(1,m) : m \ge n+2\} \cup \{(1,0)\}$$
$$\subset ((0,n),+\infty)_{\prec_{\sigma}},$$

so  $\{\{(1,0)\}\cup\{(1,m): m\geq k\}: k<\omega\}$  is the corresponding local base at (1,0) in the topology  $\mathcal{T}_{\sigma}$ .

Now, we show that  $\sigma$  is not  $\tau_{V(\mathcal{T}_{\sigma})}$ -continuous. Recall that

$$\sigma(\{(0,0),(1,0)\}) = (0,0).$$

Then, let

$$W = \{(0,0)\} \cup \{(0,n) : n \ge 2\},\$$

and let us show that  $\sigma(\langle U, V \rangle) \not\subset W$  for any basic  $\tau_{V(\mathcal{T}_{\sigma})}$ -neighbourhood  $\langle U, V \rangle$  of  $\{(0,0),(1,0)\}$ . Towards this end, for given neighbourhoods U of (0,0) and V of (1,0), pick a fixed  $k < \omega$  such that

$$\{(0,n): n \ge k\} \subset U \quad \text{and} \quad \{(1,n): n \ge k\} \subset V.$$

Then,  $\{(0, k), (1, k + 1)\} \in \langle U, V \rangle$ , while

$$\sigma((0,k),(1,k+1)) = (1,k+1) \notin W.$$

## 4. Selections generated by order-like relations

In what follows, all spaces are assumed to be at least Hausdorff. Below we summarize some known results about selections and special spaces.

**Proposition 4.1.** Let  $(X, \mathcal{T})$  be a compact space, and let  $f \in Sel_2(X, \mathcal{T})$ . Then,  $\mathcal{T}_f = \mathcal{T}$  and, in particular,  $f \in Sel_2(X, \mathcal{T}_f)$ .

*Proof.* By Lemma 2.3 and Theorem 3.5,  $\mathcal{T}_f$  is a Hausdorff topology with  $\mathcal{T}_f \subset \mathcal{T}$ , hence  $\mathcal{T}_f = \mathcal{T}$ .

A similar result holds for connected spaces.

**Proposition 4.2** ([8]). Let  $(X, \mathcal{T})$  be a connected space, and let  $f \in Sel(X, \mathcal{T})$ . Then,  $\prec_f$  is a proper linear order on X. In particular,  $(X, \mathcal{T}_f)$  is connected and  $f \in Sel_2(X, \mathcal{T}_f)$ .

Finally, let us mention also the following simple observation which suggests a possible relationship between Propositions 4.1 and 4.2.

**Proposition 4.3.** Let  $(X, \mathcal{T})$  and  $f \in Sel_2(X, \mathcal{T})$  be such that  $(X, \mathcal{T}_f)$  is connected. Then, for every  $x, y \in X$ , with  $x \leq_f y$ , the interval

$$[x,y]_{\prec_f} = \{ z \in X : x \preceq_f z \preceq_f y \}$$

is a compact subset of  $(X, \mathcal{T}_f)$ .

*Proof.* By Proposition 2.2,  $\prec_f$  is a proper linear order on X. Take a  $\mathcal{T}_f$ -closed subset F of  $[x,y]_{\prec_f}$ . Then,  $x \preceq_f z$  for every  $z \in F$ . Hence, with respect  $\prec_f$ , F is bounded below. Since  $[x,y]_{\prec_f}$  is a connected subset of  $(X,\mathcal{T}_f)$ , this implies that F has a  $\prec_f$ -minimal element. In the same way, it has a  $\prec_f$ -maximal element. Hence,  $[x,y]_{\prec_f}$  is compact in  $(X,\mathcal{T}_f)$  as a linear ordered space, see [2,7].

On the other hand, for compact spaces  $(X, \mathcal{T})$ , there is a nice equilibrium between selections for  $\mathcal{F}_2(X)$  and  $\mathcal{F}(X, \mathcal{T})$ .

**Theorem 4.4** ([12]). Let  $(X, \mathcal{T})$  be a compact space. Then,  $Sel_2(X, \mathcal{T}) \neq \emptyset$  if and only if  $Sel(X, \mathcal{T}) \neq \emptyset$ .

In the connected case such a statement doesn't hold. For instance, the set of the real numbers  $\mathbb{R}$  endowed with the usual Euclidean topology  $\mathcal{E}$  has no  $\tau_{V(\mathcal{E})}$ -continuous selection for  $\mathcal{F}(\mathbb{R},\mathcal{E})$ , [1]. Here is a simple characterization for the genesis of selections for the closed subsets of connected spaces. In what follows, we shall say that  $x \in X$  is a  $\prec_f$ -extreme point of X, where  $f \in Se\ell_2(X)$ , if either  $x \preceq_f z$  for every  $z \in X$  or  $z \preceq_f x$  for every  $z \in X$ .

**Theorem 4.5.** Let  $(X, \mathcal{T})$  and  $f \in Sel_2(X, \mathcal{T})$  be such that  $(X, \mathcal{T}_f)$  is connected. Then,  $Sel(X, \mathcal{T}_f) \neq \emptyset$  if and only if  $(X, \mathcal{T}_f)$  has at least one  $\prec_f$ -extreme point.

*Proof.* Let  $h \in Sel(X, \mathcal{T}_f)$ . According to a result of Michael [8], either

$$h|\mathcal{F}_2(X) = f \text{ or } h|\mathcal{F}_2(X) = f^*.$$

On the other hand,  $h([x, +\infty)_{\prec_h}) = x$  for every  $x \in X$ . Hence,  $h(X) = \min_{\prec_h} X$ , and therefore h(X) is a  $\prec_f$ -extreme point for X as well.

Suppose now that X has a  $\prec_f$ -extreme point, say there exists  $\min_{\prec_f} X$ . Then, by Proposition 4.3, for every  $F \in \mathcal{F}(X, \mathcal{T}_f)$  there exists  $\min_{\prec_f} F$ . Hence, we may define a selection h for  $\mathcal{F}(X, \mathcal{T}_f)$  by

$$h(F) = \min_{f} F, \ F \in \mathcal{F}(X, \mathcal{T}_f).$$

The verification that  $h \in Sel(X, \mathcal{T}_f)$  is well-known.

In view of Theorem 4.5, a possible equilibrium between the compact and connected cases is given by the existence of selections with an additional compact-type of property. Towards this end, let us recall that the *Fell topology*  $\tau_{F(\mathcal{T})}$  on  $\mathcal{F}(X,\mathcal{T})$  is defined by all basic  $\tau_{V(\mathcal{T})}$ -neighbourhood  $\langle \mathcal{V} \rangle$  such that  $X \setminus \bigcup \mathcal{V}$  is compact in  $(X,\mathcal{T})$ .

**Corollary 4.6.** Let  $(X, \mathcal{T})$  and  $f \in Sel_2(X, \mathcal{T})$  be such that  $(X, \mathcal{T}_f)$  is connected. Then,  $Sel(X, \mathcal{T}_f) \neq \emptyset$  if and only if  $\mathcal{F}_2(X)$  has a  $\tau_{F(\mathcal{T}_f)}$ -continuous selection.

Proof. If  $h \in Sel(X, \mathcal{T}_f)$ , then there exists  $\min_{\prec_g} X$ , where  $g = h|\mathcal{F}_2(X)$ . Hence, g is a  $\tau_{F(\mathcal{T}_f)}$ -continuous selection for  $\mathcal{F}_2(X)$  because, by Proposition 4.3,  $X \setminus (x, +\infty)_{\prec_g}$  is compact in  $(X, \mathcal{T}_f)$  for every  $x \in X$ . If g is a  $\tau_{F(\mathcal{T}_f)}$ -continuous selection for  $\mathcal{F}_2(X)$ , then, by [4, Lemma 4.1], there exists  $\min_{\prec_g} X$ . Hence, by Theorem 4.5,  $Sel(X, \mathcal{T}_f) \neq \emptyset$ .

In view of Theorems 4.4 and 4.5, the following question becomes interesting.

**Question 2.** Let  $(X, \mathcal{T})$  be a connected space and  $f \in Se\ell_2(X, \mathcal{T})$ . Is it true that  $Se\ell(X, \mathcal{T}) \neq \emptyset$  if and only if  $Se\ell(X, \mathcal{T}_f) \neq \emptyset$ ?

In general, the answer is in negative which is the purpose of the next sections of the paper.

4.1. **Monotone selections.** Let  $(X, \mathcal{T})$  be a space. We shall say that a selection f for  $\mathcal{F}(X, \mathcal{T})$  is monotone if, for every  $G, F \in \mathcal{F}(X, \mathcal{T}), f(F) \in G \subset F$  implies f(G) = f(F).

First of all, let us observe that every monotone selection is Vietoris continuous.

**Proposition 4.7.** Let  $(X, \mathcal{T})$  be a space, and let f be a monotone selection for  $\mathcal{F}(X, \mathcal{T})$ . Then, f is  $\tau_{V(\mathcal{T})}$ -continuous.

Proof. Let  $\prec_f$  be the f-order generated by  $f|\mathcal{F}(X,\mathcal{T})$ , and let us observe that  $f(F) = \min_{\prec_f} F$  for every  $F \in \mathcal{F}(X,\mathcal{T})$ . Indeed, take an  $F \in \mathcal{F}(X,\mathcal{T})$  and a point  $x \in F$ . Then,  $G = \{x, f(F)\} \subset F$  and  $f(F) \in G$ , so, by definition, f(G) = f(F). Thus,  $f(F) \preceq_f x$ , i.e.  $f(F) = \min_{\prec_f} F$ . Now, we show that f is continuous at F. To this end, we consider only the case of a non-singleton F. Take a neighbourhood  $V \in \mathcal{T}$  of f(F), with  $F \setminus V \neq \emptyset$ . Next, let

$$U_1 = \min_{\prec_f} (-\infty, y)_{\prec_f} \cap V$$
 and  $U_2 = (f(F), +\infty)_{\prec_f},$ 

where  $y = \min_{\prec_f} [f(F), +\infty)_{\prec_f} \setminus V$ . Then,  $\langle U_1, U_2 \rangle$  is a  $\tau_{V(\mathcal{T})}$ -neighbourhood of F, with  $f(\langle U_1, U_2 \rangle) \subset V$ , because  $S \in \langle U_1, U_2 \rangle$  implies  $f(S) = \min_{\prec_f} S \in U_1 \subset V$ .

We proceed to some basic properties of monotone selections. To this end, we need a bit more terminology concerning special selections. We shall say that a selection f for  $\mathcal{F}(X,\mathcal{T})$  is weakly monotone if  $f(F \cup G) = f(F)$ , whenever  $G, F \in \mathcal{F}(X,\mathcal{T})$  and f(F) = f(G). Also, let us agree that a selection f for  $\mathcal{F}_2(X)$  is transitively regular provided the f-order  $\prec_f$  on X is transitive, i.e. for every  $x, y, z \in X$ ,  $f(\{x, y\}) = x$  and  $f(\{y, z\}) = y$  imply  $f(\{x, z\}) = x$ . In case f is a selection for  $\mathcal{F}(X,\mathcal{T})$  we shall use the same term "transitively regular" to suggest that  $f|\mathcal{F}_2(X)$  is transitively regular.

**Proposition 4.8.** Let  $(X, \mathcal{T})$  be a space, and let f be a monotone selection for  $\mathcal{F}(X, \mathcal{T})$ . Then, f is weakly monotone and transitively regular.

*Proof.* Suppose that  $G, F \in \mathcal{F}(X, \mathcal{T})$  and f(F) = f(G). Then,

either 
$$f(F \cup G) \in F \subset F \cup G$$
 or  $f(F \cup G) \in G \subset F \cup G$ .

Hence,  $f(F \cup G) \in \{f(F), f(G)\}\$ , so f is weakly monotone.

Suppose now that  $x, y, z \in X$  are such that  $f(\{x, y\}) = x$  and  $f(\{y, z\}) = y$ . Then,  $s = f(\{x, y, z\}) \in \{x, y, z\}$  implies that  $f(\{s, t\}) = s$  for every  $t \in \{x, y, z\}$ . In this case, the only possibility is s = x. That is, f is transitively regular as well.

In what follows, let  $\mathcal{F}_{<\omega}(X) = \bigcup \{\mathcal{F}_n(X) : 0 < n < \omega\}.$ 

**Lemma 4.9.** Let  $(X, \mathcal{T})$  be a space, and let  $f \in Sel(X, \mathcal{T})$  be weakly monotone and transitively regular. Then,  $f(S) = \min_{\prec_f} S$  for every  $S \in \mathcal{F}(X, \mathcal{T})$ .

Proof. Take a  $T \in \mathcal{F}_{<\omega}(X)$ . Since f is transitively regular, there exists  $\min_{\prec_f} T$ . On the other hand, there exists a finite subset  $\mathcal{L} \subset \mathcal{F}_2(X)$  such that  $T = \bigcup \mathcal{L}$  and  $\min_{\prec_f} L = \min_{\prec_f} T$  for every  $L \in \mathcal{L}$ . Then,  $f(T) = f(\bigcup \mathcal{L}) = \min_{\prec_f} T$  because f is weakly monotone. Since  $\mathcal{F}_{<\omega}(X)$  is  $\tau_{V(\mathcal{T})}$ -dense in  $\mathcal{F}(X,\mathcal{T})$  and f is  $\tau_{V(\mathcal{T})}$ -continuous, this finally completes the proof. Indeed, suppose that, in the opposite, there exists an  $S \in \mathcal{F}(X,\mathcal{T})$  and a point  $x \in S$  such that  $x \prec_f f(S)$ . Then, by Theorem 3.1, there exists a  $\mathcal{T}$ -neighbourhood V of f(S) such that  $x \prec_f y$  whenever  $y \in V$ . Since f is  $\tau_{V(\mathcal{T})}$ -continuous, there also exists a finite open cover  $\mathcal{U} \subset \mathcal{T}$  of S such that  $f(\langle \mathcal{U} \rangle) \subset V$ . Take a finite subset  $T \subset S$  such that  $x \in T$  and  $T \in \langle \mathcal{U} \rangle$ . Then, from one hand,  $f(T) \in V$  implies that  $x \prec_f f(T)$ . However, from another hand,  $f(T) = \min_{\prec_f} T \preceq_f x$  because  $x \in T$ . A contradiction.

**Corollary 4.10.** Let  $(X, \mathcal{T})$  be a space, and let  $f \in Sel(X, \mathcal{T})$ . Then f is monotone if and only if it is weakly monotone and transitively regular.

*Proof.* By Proposition 4.8, it suffices to show that f is monotone provided it is is weakly monotone and transitively regular. So, take  $F, G \in \mathcal{F}(X, \mathcal{T})$  such that  $f(F) \in G \subset F$ . Then, by Lemma 4.9,  $f(F) = \min_{\leq f} F$ . Since  $f(F) \in G$  and  $G \subset F$ , this implies that  $f(F) = \min_{\leq f} G$ . According to Lemma 4.9 once again, we get that f(G) = f(F). That is, f is monotone.

The statements of Corollary 4.10 seem to be the best possible. Turning to this, for every point  $x \in X$  we consider the *component*  $\mathcal{C}[x]$  of this point in  $(X,\mathcal{T})$  defined by

$$C[x] = \bigcup \{C \subset X : x \in C \text{ and } C \text{ is connected}\}.$$

and, respectively, the quasi component  $C^*[x]$  defined by

$$\mathcal{C}^*[x] = \bigcap \{C \subset X : x \in C \text{ and } C \text{ is clopen}\}.$$

According to [6, Theorem 4.1],  $C^*[x] = C[x]$  for every  $x \in X$  provided  $Se\ell_2(X, \mathcal{T}) \neq \emptyset$ .

**Proposition 4.11.** Let  $(X, \mathcal{T})$  be a space which has a selection  $f \in Sel_2(X, \mathcal{T})$  that is not transitively regular. Then,  $|\{\mathcal{C}^*[x] : x \in X\}| \geq 3$ .

*Proof.* By condition, there are points  $x,y,z \in X$  such that  $z \prec_f y \prec_f x \prec_f z$ . Therefore, we have also that  $y \prec_f x \prec_f z \prec_f y$  and  $x \prec_f z \prec_f y \prec_f x$ . Hence, by Proposition 2.2 and Theorem 3.5,

$$V_z = (-\infty, y]_{\prec_f} \cap [x, +\infty)_{\prec_f}, \quad V_y = (-\infty, x]_{\prec_f} \cap [z, +\infty)_{\prec_f}$$

and

$$V_x = (-\infty, z]_{\prec_f} \cap [y, +\infty)_{\prec_f}$$

are  $\mathcal{T}$ -clopen pairwise disjoint neighbourhoods of z, y and, respectively, x.  $\square$ 

On the base of Proposition 4.11 we now have the following two simple examples.

**Example 4.12.** There exists a compact metric space  $(X, \mathcal{T})$  and a transitively regular selection  $f \in \mathcal{S}e\ell(X, \mathcal{T})$  which is not weakly monotone.

Proof. Let  $X = \mathbb{I}_1 \oplus \mathbb{I}_2 \oplus \mathbb{I}_3$ , where  $\mathbb{I}_i = [0,1]$  for every  $i \leq 3$ . We consider each  $\mathbb{I}_i$  endowed with the usual Euclidean topology  $\mathcal{T}_i$ , while the topology  $\mathcal{T}$  on X is just the disjoint sum of these topologies. Next, for every i, let  $f_i \in Sel(\mathbb{I}_i, \mathcal{T}_i)$  be the standard selection  $f_i(S) = \min S$ ,  $S \in \mathcal{F}(\mathbb{I}_i, \mathcal{T}_i)$ . Also, for every  $S \in \mathcal{F}(X, \mathcal{T})$ , let  $i(S) = \min\{j \leq 3 : S \cap \mathbb{I}_j \neq \emptyset\}$ . Then, define a selection  $f \in Sel(X, \mathcal{T})$  by letting for every  $S \in \mathcal{F}(X, \mathcal{T})$  that  $f(S) = f_2(S \cap \mathbb{I}_2)$  provided  $S \cap \mathbb{I}_i \neq \emptyset$  for every  $i \leq 3$ , and  $f(S) = f_{i(S)}(S \cap \mathbb{I}_{i(S)})$  otherwise. This f is the required one.

**Example 4.13.** There exists a compact metric space  $(X, \mathcal{T})$  and a weakly monotone selection  $f \in \mathcal{S}el(X, \mathcal{T})$  which is not transitively regular.

*Proof.* Take merely  $X = \{1, 2, 3\}$  with the usual discrete topology  $\mathcal{T}$ . Then, define the required selection  $f \in Sel(X, \mathcal{T})$  by  $f(\{1, 2\}) = 1$ ,  $f(\{2, 3\}) = 2$ ,  $f(\{1, 3\}) = 3$  and  $f(\{1, 2, 3\}) = 3$ .

5. Which topologies  $\mathcal T$  give rise to  $\tau_{V(\mathcal T)}$ -continuous selections for  $\mathcal F(X,\mathcal T)$ ?

We are now ready to provide an answer to Question 2. Let X be a space,  $\prec$  be a linear order on X, and let  $\mathcal{T}_{\prec}$  be the topology on X generated by  $\prec$ . Let us recall that  $(X, \mathcal{T}_{\prec})$  is a topologically well-ordered space (see [1]) if every non-empty closed subset of  $(X, \mathcal{T}_{\prec})$  has a minimal element. Now, we shall say that a space  $(X, \mathcal{T})$  is a Sorgenfrey well-orderable if there exists a linear order  $\prec$  on X such that

- (i)  $(X, \mathcal{T}_{\prec})$  is topologically well-ordered, with  $\mathcal{T}_{\prec} \subset \mathcal{T}$ , and
- (ii) for every point  $x \in X$ , with  $x \prec \sup_{\prec} X$ , and its neighbourhood  $V \in \mathcal{T}$  there exists a point  $y \in (x, +\infty)_{\prec}$  such that  $[x, y)_{\prec} \subset V$ .

In this case, we shall say that the topology  $\mathcal{T}$  is a Sorgenfrey modification of  $\mathcal{T}_{\prec}$ .

**Theorem 5.1.** For a Hausdorff space  $(X, \mathcal{T})$ , the following conditions are equivalent:

- (a)  $\mathcal{F}(X,\mathcal{T})$  has a monotone selection.
- (b)  $(X, \mathcal{T})$  is a Sorgenfrey well-orderable space.

*Proof.* (a)  $\Rightarrow$  (b): Let f be a monotone selection for  $\mathcal{F}(X,\mathcal{T})$ . Then, by Proposition 4.7,  $f \in \mathcal{S}e\ell(X,\mathcal{T})$ , while, by Lemma 4.9 and Corollary 4.10,  $\prec_f$  is a linear order on X so that  $f(S) = \min_{\prec_f} S$  for every  $S \in \mathcal{F}(X,\mathcal{T})$ . Hence,  $(X,\mathcal{T}_f)$  is a topologically well-ordered space and, by Theorem 3.5,  $\mathcal{T}_f \subset \mathcal{T}$ . Take  $V \in \mathcal{T}$  and  $x \in V$ , with  $x \prec_f \sup_{\prec_f} X$ . If  $[x, +\infty)_{\prec_f} \subset V$ , take an arbitrary point  $y \in (x, +\infty)_{\prec_f}$ . Otherwise, let  $y = f([x, +\infty)_{\prec_f} \setminus V)$ . According to Lemma 4.9, we always have  $[x, y)_{\prec_f} \subset V$ , so  $\mathcal{T}$  is a Sorgenfrey modification of  $\mathcal{T}_f$ .

(b)  $\Rightarrow$  (a): Suppose now that  $(X, \mathcal{T})$  is a Sorgenfrey well-ordered space, and let  $\prec$  be as in (i) and (ii). Take an  $F \in \mathcal{F}(X, \mathcal{T})$ , and let us show that F has a first element with respect to  $\prec$ . If  $x_0 = \min_{\prec} X \in F$ , then  $\min_{\prec} F = x_0$ . If  $x_0 \notin F$ , then

$$U = \bigcup \{ [x_0, y)_{\prec} : y \in X \text{ and } [x_0, y)_{\prec} \cap F = \emptyset \}$$

is a  $\mathcal{T}_{\prec}$ -open set in X such that  $y \prec z$  for every  $y \in U$  and  $z \in F$ . Since  $F \subset X \setminus U$ , by (i), there exists  $x = \min_{\prec} (X \setminus U)$ . This x is the required  $\prec$ -minimal element of F. Indeed, if  $x \notin F$ , then, by (ii), there should exist an  $y \in (x, +\infty)_{\prec}$  such that  $[x, y)_{\prec} \cap F = \varnothing$ . However, this will imply that  $x \in [x_0, y)_{\prec} \subset U$  which is impossible. Thus,  $x = \min_{\prec} F$ . Having already established this, we may define a selection f for  $\mathcal{F}(X, \mathcal{T})$  by  $f(F) = \min_{\prec} F$  for every  $F \in \mathcal{F}(X, \mathcal{T})$ . Finally, we show that f is monotone. Take  $F, G \in \mathcal{F}(X, \mathcal{T})$  such that  $f(F) \in G \subset F$ . Then, just like in Corollary 4.10,  $f(F) = \min_{\prec} F \preceq \min_{\prec} G \preceq f(F)$  because  $f(F) \in G$  and  $G \subset F$ .

**Example 5.2.** There exists a hereditarily separable, Lindelöf, perfectly normal, strongly paracompact, strongly zero-dimensional and non-Čech complete space  $(Z, \mathcal{T})$  such that  $\mathcal{F}(Z, \mathcal{T})$  has a monotone selections.

Proof. For  $(Z, \mathcal{T})$  we may take the usual Sorgenfrey line [11] (see, also, [2]). Note that the Sorgenfrey line is a Sorgenfrey modification of of the interval [0, 1) endowed with the usual Euclidean topology  $\mathcal{T}_e$ . Since, ([0, 1),  $\mathcal{T}_e$ ) is a topologically well-ordered space, by Theorem 5.1,  $\mathcal{F}(Z, \mathcal{T})$  has a monotone selections. Also, the Sorgenfrey line has all other properties, see [2].

Finally, we provide the promised negative answer to Question 2.

**Example 5.3.** There exists a separable, connected and metrizable space  $(X, \mathcal{T})$  such that

- (i)  $Se\ell_2(X,\mathcal{T}) \neq \emptyset$ ,
- (ii)  $Sel(X, \mathcal{T}_f) \neq \emptyset$  for every  $f \in Sel_2(X, \mathcal{T})$ ,
- (iii)  $Sel(X, \mathcal{T}) = \emptyset$ .

Proof. Consider the subset

$$X = \left\{ (t, s) \in \mathbb{R}^2 : (t, s) = (0, 0) \text{ or } t \in [-1, 0) \cup (0, 1] \text{ and } s = \sin \frac{1}{t} \right\}$$

of the Euclidean plane  $\mathbb{R}^2$  with the usual topology  $\mathcal{T}$  as a subspace. Then,  $(X,\mathcal{T})$  is separable, metrizable and connected. Note that the projection  $\pi$ :  $X \rightarrow [-1,1]$  onto the first factor is a continuous bijection, where [-1,1] is endowed with the Euclidean topology  $\mathcal{T}_e$ . Claim that  $Se\ell_2(X,\mathcal{T}) \neq \emptyset$ . Indeed, let  $g \in Sel_2([-1,1], \mathcal{T}_e)$ , and let  $\tilde{\mathcal{T}}_e = \pi^{-1}(\mathcal{T}_e)$ . Clearly  $\tilde{\mathcal{T}}_e$  is a topology on X which is coarser than  $\mathcal{T}$ . On the other hand,  $h(S) = \pi^{-1} \circ g \circ \pi(S)$ ,  $S \in \mathcal{T}_e$  $\mathcal{F}_2(X)$ , defines a selection for  $\mathcal{F}_2(X)$  which is  $\tau_{V(\tilde{\mathcal{T}}_e)}$ -continuous because  $g \in$  $Se\ell_2([-1,1], \mathcal{T}_e)$ . Therefore, by Corollary 3.2, h is a  $\tau_{V(\mathcal{T})}$ -continuous selection for  $\mathcal{F}_2(X)$ . Thus, (i) holds. Next, let us show that  $\tilde{\mathcal{T}}_e = \mathcal{T}_f$  for every  $f \in$  $Se\ell_2(X,\mathcal{T})$ . Namely, if  $f \in Se\ell_2(X,\mathcal{T})$ , then  $k(S) = \pi \circ f \circ \pi^{-1}(S)$ ,  $S \in Se\ell_2(X,\mathcal{T})$  $\mathcal{F}_2([-1,1])$ , defines a selection for  $\mathcal{F}_2([-1,1])$ . Let  $h \in \mathcal{S}e\ell_2(X,\mathcal{T})$  be defined as above, i.e. by the fixed selection  $g \in Sel_2([-1,1], \mathcal{T}_e)$ . Then, by a result of Michael [8], either f = h or  $f = h^*$  because  $(X, \mathcal{T})$  is connected. Therefore, either k = g or  $k = g^*$ , so, by Theorem 3.5,  $k \in Se\ell_2([-1,1], \mathcal{T}_e)$ . Thus, by Corollary 4.1, we have  $\tilde{\mathcal{T}}_e = \mathcal{T}_f$  for every  $f \in \mathcal{S}e\ell_2(X,\mathcal{T})$  because  $\tilde{\mathcal{T}}_e$  is a compact topology on X. In particular, by Theorem 4.4, this provides (ii). Now, if  $f \in Sel(X, \mathcal{T})$ , then, by a result of [8], f should be monotone because  $(X, \mathcal{T})$ is connected. Then, by Theorem 5.1,  $\mathcal{T}$  should a Sorgenfrey modification of  $\mathcal{T}_f = \tilde{\mathcal{T}}_e$ . However, this is impossible because there exists a  $\mathcal{T}$ -neighbourhood V of  $\vartheta = (0,0)$  such that  $[\vartheta,x)_{\prec_f} \setminus V \neq \emptyset$  for every  $x \in X$  with  $\vartheta \prec_f x$ . This contradiction demonstrates (iii) which completes the proof.

#### References

- R. Engelking, R. W. Heath, and E. Michael, Topological well-ordering and continuous selections, Invent. Math. 6 (1968), 150-158. MR 39 #6272
- [2] Ryszard Engelking, General topology, Heldermann Verlag, Berlin, 1989. MR 91c:54001
- [3] S. García-Ferreira, V. Gutev, T. Nogura, M. Sanchis, and A. H. Tomita, Extreme selections for hyperspaces of topological spaces, to appear in Topology Appl., 2001.
- [4] Valentin Gutev, Fell-continuous selections and topologically well-orderable spaces Ii, Proceedings of the Ninth Topological Symposium (Prague, 2001) (Petr Simon, ed.), Topology Atlas, Toronto, 2002, arXiv:math.GN/0204129, pp. 147-153.
- [5] Valentin Gutev and Tsugunori Nogura, Fell continuous selections and topologically wellorderable spaces, Preprint, 2001.
- [6] \_\_\_\_\_, Vietoris continuous selections and disconnectedness-like properties, Proc. Amer. Math. Soc. 129 (2001), no. 9, 2809-2815 (electronic). MR 2002d:54011
- [7] A. Haar and D. König, Über einfach geordnete Mengen, J. für die riene und engew. Math 139 (1910), 16-28.
- [8] Ernest Michael, Topologies on spaces of subsets, Trans. Amer. Math. Soc. 71 (1951), 152–182. MR 13,54f
- [9] Tsugunori Nogura and Dmitri Shakhmatov, Characterizations of intervals via continuous selections, Rend. Circ. Mat. Palermo (2) 46 (1997), no. 2, 317-328. MR 99d:54012
- [10] \_\_\_\_\_\_, Spaces which have finitely many continuous selections, Boll. Un. Mat. Ital. A (7) 11 (1997), no. 3, 723-729. MR 99a:54011

- [11] R. H. Sorgenfrey, On the topological product of paracompact spaces, Bull. Amer. Math. Soc. 53 (1947), 631–632. MR 8,594f
- [12] Jan van Mill and Evert Wattel, Selections and orderability, Proc. Amer. Math. Soc. 83 (1981), no. 3, 601-605. MR 82i:54038

RECEIVED JANUARY 2001

VALENTIN GUTEV
School of Mathematical and Statistical Sciences
Faculty of Science
University of Natal
King George V Avenue, Durban 4041
South Africa

E-mail address: gutev@nu.ac.za

TSUGUNORI NOGURA
Department of Mathematics
Faculty of Science
Ehime University
Matsuyama, 790-8577
Japan

 $E ext{-}mail\ address: nogura@dpc.ehime-u.ac.jp}$