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Selections and order-like relations
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ABSTRACT. Every selection f for the family F>(X) of at most two-
point subsets of a set X naturally defines an order-like relation <; on
X by z <X y if and only if f({z,y}) = z. In the present paper we study
the relationship between <y and the possible topologies 7 on X which
realize the continuity of f with respect to the Vietoris topology 7v (1)
on F2(X) generated by 7. We also study a similar problem about
selections for the Vietoris hyperspace of all non-empty closed subsets
of a Hausdorff space (X, 7).
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1. INTRODUCTION

Let (X,7) be a Ty-space, where T is the topology of X, and let F(X,T)
be the family of all non-empty closed subsets of (X, 7T). Also, for every n > 1,
let

Fo(X)={SCX:0<|5| <n}.
Note that F,(X) ¢ F(X,T) because (X, T) is a Ti-space. Hence, we may
consider F(X,T) as an extension of X identifying X with F;(X). From this
point of view, a topology 7 on F(X,T) is admissible [8] if its restriction on X
coincides with 7.

Let D C F(X,T), and let 7 be an admissible topology on F(X,T). A map
f:D — X is a selection for D if f(S) € Sforevery S € D. Amap f: D - X
is a 7-continuous selection for D if it is a selection which is continuous with
respect to the relative topology on D as a subspace of (F(X,T), ).

So far one of the best admissible topologies on F(X,T) is the Vietoris one
Ty (T)- Let us recall that 7y (1) is generated by all collections of the form

(V)z{SE]-‘(X,T):SﬂV;é@, VeV, and ScUV},

where V runs over the finite families of open subsets of (X, T).
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Finally, let Sel(X, T') be the set of all Ty (1)-continuous selections for F (X, T),
and Selz(X, T) that of all 1y (7)-continuous selections for F2(X). Also, we will
use Sel2(X) to denote the set of all selections for F5(X). Note that always

Sels(X,T) C Sely(X),

while
Sely(X,T) # @ provided Sel(X,T) # @.

In the present paper, we study relations between the set Sel(X,T) (respec-
tively, Selo(X,T)) and topological properties of (X, 7). Suppose that (X, T)
is a space with Sel(X,T) # @. The cardinality of the set Sef(X,T) provides
some information about (X,7) but mainly when it is finite. For instance, if
(X,T) is connected, then |Sel(X,T)| < 2, [8], and if, in addition, (X,T) is
infinite, then it is compact if and only if |Sel(X,T)| = 2, [9]. On the other
hand, Sel(X,T) is finite if and only if (X,7) has finitely many connected
components, [10] (see, also, [3]).

In case Sel(X,T) is infinite, it seems more reasonable to study the possible
variety of elements of Sef(X,T). The idea has led to several interesting char-
acterizations of topological properties of (X,7) based on different “extreme
elements” of Sel(X,T), see [3, 4, 5, 6]. In fact, the “extreme selections” are
the first possible elements of Sel(X,7) we may recognize. Namely, looking
at our source, we may regard only a few possible ways to construct selections
for F(X,T), and always the resulting selections have some extreme properties.
That is, our knowledge about the variety of Sef(X,T) is naturally associated
to our constructions.

In this paper, we are concerned with somewhat different and somehow dual
question following precisely the same idea. Suppose that (X, T) is a space and
f € Sel(X,T). Now, we become interested in the possible topologies T on X
which preserve the continuity of f. The relation with the above classification
problem is quite transparent. Namely, we may try to extract an information for
a space (X, T) that has a particular selection f € Sel(X,T), while the genesis
of f could be related to another topology on X. Hence, 7 may fail to be the
proper topology on X generating the choice described by f. The best example
is the set Sefy(X). In this case, any selection f € Sefs(X) defines a natural
topology 77 on X (see Section 2), and once f € Sely(X,T) for some Hausdorff
topology 7 on X, then 7; C T (Theorem 3.5) and f € Selo(X,T) for any
topology 7 on X which is finer than 7~ (Corollary 3.2). The case of selections
for F(X,T) is discussed in the paper mainly for special extreme elements of
Sel(X,T) called monotone selections, see Section 5. For instance, we get that
a space (X,7) has a monotone selection f € Sel(X,T) if and only if (X, 7y)
is a topologically well-orderable space and T is a Sorgenfrey modification of Ty
(Theorem 5.1). The paper contains also several examples demonstrating the
importance of the hypotheses in our statements.
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2. A TOPOLOGY GENERATED BY SELECTIONS

Every selection f € Sely(X) generates an order-like relation <y on X (see

Michael [8]) defined for z,y € X by

z =2y if and only if F{z,y}) ==
In the sequel, we shall regard <y as an f-order on X. Also, let us agree to
write that <y y provided z <y y and z # y.

Whenever x € X, we consider the following f-intervals generated by a
selection f € Sels(X):

(=o00,2]<, ={2€ X :2 =25z} and [z,4+00)<, = {2z € X :2 =5 2},
(—o0,z)<, ={z€ X :2 <5z} and (z,4+00)<, ={z € X :x <y 2}.
Proposition 2.1. Let X be a T1-space, and let f € Sela(X). Then, whenever

x € X, the following holds.
(a) (_Ooam)-<f ﬂ($,+00)_<f =2o.
(b) (_Ooam]-<f U[$7+Oo)'<f =X.

While the proof of Proposition 2.1 is trivial, we should be very careful work-
ing with f-intervals because, in general, < is not a linear order. For instance,
if x < y, then it is not true that always

(—00,yl<,; Uz, +00)<, =X

since z € (—o0,y]«, does not imply that (—oo,z]<, C (—00,¥]<,.

Once we have associated some subsets of X generated by a selection f €
Sely(X), we may associate a corresponding topology 77 on X. Namely, let
T; denote the topology on X generated by all f-intervals (—oo,z)<, and
(z,+00)<,, z € X.

Proposition 2.2. Let X be a set, f € Selsy(X), and let z,y,z € X be such
that z <y x <y y <5 z. Then, (=00, x|, N[y, +00) <, is a clopen set of (X, T)
which separates z from the two-point set {z,y}.

Proof. Note that y ¢ (—oo,z]<, while z ¢ [y, +00),. Hence,
(_OOJ'Z']-{f N [y7+oo)-<f = (_0071.)'<f N (y,+00)_<f,
which completes the proof. O
Here is another important property of 7.

Lemma 2.3. Let X be a set, and let f € Sely(X). Then, T; is a Hausdorff
topology on X.

Proof. Take two different points z,y € X, say z <7 y, and let us find disjoint
sets U,V € Ty suchthat s € U andy € V. If

(z,y)<, ={z€eX:x<y2=<5y} =9,
then
(_OOJy)'<f N (m7+oo)<f = (m;y)<f = o,
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S0, in this case, we may merely take
U= (-00,y)<,; and V = (z,+00)«,.
If there exists a point z € (z,y)<,, then, by Proposition 2.1, we may set
U= (-00,2)<; and V = (z,+00)<,.
O

In what follows, to any selection f € Sef2(X) we shall associate another
selection f* : Fp(X) — X defined by S = {f(S5), f*(S)} for any S € Fo(X).
Then, for 2,y € X, we have

z <py ifand onlyif y <p 2.

Hence, f* generates the same family of f-intervals. That is, we have also the
following result about ;.

Proposition 2.4. Let X be a set, and let f € Sely(X). Then, Ty = Ty-.

3. WHICH TOPOLOGIES 7 GIVE RISE TO Ty/(7)-CONTINUOUS SELECTIONS
FOR .7:2(X)?

In this section we classify all possible Hausdorff topologies 7 on a set (X, 7))
with respect to which a given selection f € Sefls(X) is Ty (1)-continuous. The
following theorem summarizes a well-known criterion of continuity of selections.

Theorem 3.1. Let T be a Hausdorff topology on a set X, and let f € Sels(X).
The following two conditions are equivalent:

(a) € Selo(X,T).
(b) For every two points x1,x2 € X, with x1 <y 2, there are V1,Va € T
such that z; € Vi, i =1,2, and 21 <5 22 for every z; € V3, i =1,2.

Proof. (a) = (b): Take points 1,22 € X, with zy <7 x2. Since z1 # 2, by
hypothesis, there are disjoint sets Uy, Us € T such that z; € U;, i = 1,2. Since
[ is Ty (r)-continuous and f({z1,z2}) = z1 € Uy, this implies the existence of
Vi,Vo € T such that z; € V; C U;, i = 1,2, and f({(V1,V2)) C U;. These V3
and V5 are as required in (b).

(b) = (a): First of all, note that f is 7y,(7)-continuous at the singletons of
X. So, take two different point z1,z2 € X, say &1 <y 2. Then, by (b), there
are V1,Vo € T such that ; € V; and 2 <y 29 for every 2; € V;, @ = 1,2.
Hence, for every T-neighbourhood U of z;, we have f({ViNU,Vz)) C U. That
is, f is Ty (-continuous at {1,z }. O

Theorem 3.1 gives the following immediate consequence.

Corollary 3.2. Let (X,T) be a Hausdorff space, and let f € Sel»(X,T).
Then, f € Sels(X,T) for every topology T on X which is finer than T .
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Corollary 3.2 suggests a natural question about a possible minimal topology
T on a set X such that a given selection f € Sel>2(X) is Ty (7)-continuous.
Namely,

Question 1. Let X be a set and f € Sels(X). Does there exists a topology
T on X which is minimal with respect to property “f € Selo(X,T)”?

Question 1 is related to the topology 7y which is the only topological struc-
ture on X we may start with. Concerning 7y, we have the following observa-
tions.

Lemma 3.3. Let (X,T) be a Ty -space and f € Sels(X,T). Then (—oc, )<, €
T, whenever z € X.

Proof. Take a point € X and z € (—00,z)<,. Since (X,T) is a Ty-space and
z # x, there exists U € T such that z € U and z ¢ U. Since f({z,z}) = 2,
there also exist V,WW € T such that x € V, z € W and f((V,W)) C U.
Then, W C (—o00,2)<,. Indeed, take a point y € W. Then, {z,y} € (V,W),
and therefore f({z,y}) € U. Hence, f({z,y}) = y which finally implies that
Y € (—00,7),. O

It should be mentioned that, in general, the f-intervals (z,+00)<, may fail
to be T-open.

Example 3.4. There exists an infinite compact Ti-space (X,7T) and f €
Sel(X,T) such that (z,400)4, ¢ T for infinitely many points = € X.

Proof. We take for X the set w + 1 with the cofinite topology T, i.e.
T ={V CX: either V=0 or X \V is finite}.

As it is well-known, the resulting space (X, 7T) is a compact T;-space which
is not Hausdorff. Let “<” be the usual order on X. Define a selection f for
F(X,T) by letting f(F) = max. F, F € F(X,T). Let us show that f is
Ty (7)-continuous. Clearly, f is continuous at the singletons of X. Take a non-
singleton F' € F(X,T) and a T-neighbourhood V of f(F). We distinguish the
following two cases. If F = X then f(F) = w, so there exists a point zp < w
such that {z € X : zp <z} CV. If F # X, then F should be finite, so there
exists zp = f(F \ f(F)). Now, set W = {x € V : zp < z}, and then note
that W remains a neighbourhood of f(F). Let Y = {{z}UW :z € F and z <
zrp} U {W}. Thus, we get a finite cover & C T of F, with FNU # @ for
every U € U. Hence (U) is a Ty (1)-neighbourhood of F'in F(X,T). Take an
S € (U). Then, W € U implies SNW # @. According to the special choice of
zF, this implies that f(S) = max. S € W C V. That is, f is 7y (1)-continuous
at F. To show the second part of our statement, take a point z € X such that
0 < £ < w. Now we have that

(r,+00)<, ={z€ X2 <52} ={2<w:2#rand max {z,2} = z}
={z<w:z<z}
Hence, (z,+00)~, fails to be T-open as a non-empty finite set. O
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We are now ready for the following observation which sheds some light on
Question 1.

Theorem 3.5. For a T;-space (X, T) and f € Sel2(X,T), the following con-
ditions are equivalent:

(a) (X,T) is a Hausdorff space.
(b) f* e Sely(X,T).
(c) T CT.

Proof. (a) = (b): Let (X,7) be Hausdorff. To show that f* is Ty (7)-contin-
uous, take points x1, s € X such that 1 <y x2. Then, by Theorem 3.1, there
are V1,Vo € T such that z; € V;, and z; <y 2 for every z; € Vi, i = 1,2.
Hence, zp <+ 2 for every z; € V;, i = 1,2, and, by Theorem 3.1, f* is
Ty (7)-continuous as well.

Since (b) = (c) follows by Lemma 3.3, while (¢) = (a) by Lemma 2.3, the
proof completes. O

In view of Theorem 3.5 and Question 1, we may become inspired to ask if
any selection f € Sels(X) is Ty (7;)-continuous. The answer to this question is
in negative.

Example 3.6. There exists a set X and o € Sel>(X) such that o is not
Ty (T,)-continuous.

Proof. Let X = {0,1} x w, and let “<” be the usual order on w. Define a
selection o : Fo(X) — X as follows:

(i) o({(0,n),(1,m)}) =(1,m) f and only if m =n+1and n > 1,
(i) a({(0,n),(0,m)}) = (0,m) for 0 < n < m,
(iii) e({(1,n), (1,m)}) = (1,n) for 0 < n < m,
(iv) o({(0,0),(0,m)}) = (0,0) for m < w,
and

(v) o({(1,0), 1, m)}) = (1,m) for m < w.
Note that (0,0) is the <,-minimal point of X, while (1,0) is the <,-maximal
one. Hence, all possible o-intervals which may contain (0,0) are of the form

(=00,(0,n))<, ={(0,00} U{(0,m) :m 2n+1}U{(1,n+1)}, n>0,

and

(_007 (1,1’L + 1))<, = {(Oam) -m 7é n} U {(17m) tm < TL}, n > 0.
Since
(3Q‘9'007 (Oan))<a N (—OO, (Oan + 1))<a = {(030)} U {(Oam) tm Z n+ 2}
(32) C (—OO, (17'” + 1))-<07

the family {{(0,0)} U {(0,m) : m > k} : k < w} forms a local base at (0,0) in
the topology 7.
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The situation with the point (1, 0) is similar. Namely, all possible o-intervals
which may contain this point are of the form

((0,n), +00)<, ={(0,m): 0<m<n}U{(l,m):m#n+1}, n >0,
and
(1L,n+1),400)<, ={0,n)}U{A,m):m>n+2}U{(1,0)}, n>0.
Then, for every n > 0, we have
((1,n),+0)<, N((1,n+1),4+00)<, ={(1,m) :m >n+2} U{(1,0)}
C ((0,n),+00) <,,

so {{(1,0)}U{(1,m) : m > k} : k < w} is the corresponding local base at (1,0)
in the topology 7, .
Now, we show that o is not 7y (7,)-continuous. Recall that

o({(0,0),(1,0)}) = (0,0).
Then, let
W = {(0,0} U{(0,n) : n > 2},

and let us show that o((U,V')) ¢ W for any basic 7y (7, )-neighbourhood (U, V')
of {(0,0),(1,0)}. Towards this end, for given neighbourhoods U of (0,0) and
V of (1,0), pick a fixed k£ < w such that

{(0,n):n>k}CU and {(I,n):n>k}CV.
Then, {(0,k),(1,k+ 1)} € (U,V), while
o((0,k),(L,k+1))=(Lk+1)¢ W.

4. SELECTIONS GENERATED BY ORDER-LIKE RELATIONS

In what follows, all spaces are assumed to be at least Hausdorff. Below we
summarize some known results about selections and special spaces.

Proposition 4.1. Let (X,T) be a compact space, and let f € Selo(X,T).
Then, T =T and, in particular, f € Sela(X,Ty).

Proof. By Lemma, 2.3 and Theorem 3.5, 7 is a Hausdorff topology with 7; C
T, hence Ty =T. O

A similar result holds for connected spaces.

Proposition 4.2 ([8]). Let (X, T) be a connected space, and let f € Sel(X,T).
Then, <y is a proper linear order on X. In particular, (X,Ty) is connected
and f € Sely(X,Ty).

Finally, let us mention also the following simple observation which suggests
a possible relationship between Propositions 4.1 and 4.2.
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Proposition 4.3. Let (X,T) and f € Selo(X,T) be such that (X,Ty) is
connected. Then, for every z,y € X, with x < y, the interval

[xay]<f = {Z eX Zl'jf Z jf y}
is a compact subset of (X, Ty).

Proof. By Proposition 2.2, <y is a proper linear order on X. Take a 7-closed
subset F' of [z,y]<,. Then, z <; z for every z € F. Hence, with respect <y, F’
is bounded below. Since [z, y]<, is a connected subset of (X, 7y), this implies
that F' has a <y-minimal element. In the same way, it has a <y-maximal
element. Hence, [z,y]<, is compact in (X,7f) as a linear ordered space, see
[2, 7]. O

On the other hand, for compact spaces (X, T), there is a nice equilibrium
between selections for Fo(X) and F(X,T).

Theorem 4.4 ([12]). Let (X,T) be a compact space. Then, Sela(X,T) # &
if and only if Sel(X,T) # .

In the connected case such a statement doesn’t hold. For instance, the set of
the real numbers R endowed with the usual Euclidean topology & has no 7y (¢)-
continuous selection for F(R,E), [1]. Here is a simple characterization for the
genesis of selections for the closed subsets of connected spaces. In what follows,
we shall say that « € X is a <j-eztreme point of X, where f € Sely(X), if
either x <y z for every z € X or z <y z for every z € X.

Theorem 4.5. Let (X,T) and f € Selo(X,T) be such that (X,Ty) is con-
nected. Then, Sel(X,T;) # @ if and only if (X, Ty) has ot least one <y-extreme
point.

Proof. Let h € Sel(X,Tf). According to a result of Michael [8], either
h|.7:2(X) = f or h|f2(X) = f*.

On the other hand, h([z,+00)<,) = z for every z € X. Hence, h(X) =
min_, X, and therefore h(X) is a <y-extreme point for X as well.

Suppose now that X has a <j-extreme point, say there exists min., X.
Then, by Proposition 4.3, for every F' € F (X, Ty) there exists min, F. Hence,
we may define a selection h for F(X,Tz) by

h(F) = rginF, F e F(X,T;).
7
The verification that h € Sel(X, Ty) is well-known. O

In view of Theorem 4.5, a possible equilibrium between the compact and con-
nected cases is given by the existence of selections with an additional compact-
type of property. Towards this end, let us recall that the Fell topology 7r(T)
on F(X,T) is defined by all basic 7y (1-neighbourhood (V) such that X \ JV
is compact in (X, 7).
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Corollary 4.6. Let (X,T) and f € Selo(X,T) be such that (X,Ty) is con-
nected. Then, Sel(X,Ty) # @ if and only if F2(X) has a Tp(t,)-continuous
selection.

Proof. If h € Sel(X,Ty), then there exists ming, X, where g = h|F>(X).
Hence, g is a Tp(7;)-continuous selection for F>(X) because, by Proposition
4.3, X \ (z,+00)<, is compact in (X,Ty) for every x € X. If g is a Tp(7;)-
continuous selection for F>(X), then, by [4, Lemma 4.1], there exists min, X.
Hence, by Theorem 4.5, Sel(X,Ty) # @. O

In view of Theorems 4.4 and 4.5, the following question becomes interesting.

Question 2. Let (X, 7) be a connected space and f € Sela(X,T). Is it true
that Sel(X,T) # @ if and only if Sel(X, Tf) # @7

In general, the answer is in negative which is the purpose of the next sections
of the paper.

4.1. Monotone selections. Let (X, T) be a space. We shall say that a selec-
tion f for F(X,T) is monotone if, for every G, F € F(X,T), f(F) e G C F
implies f(G) = f(F).

First of all, let us observe that every monotone selection is Vietoris contin-
uous.

Proposition 4.7. Let (X,T) be a space, and let f be a monotone selection for
F(X,T). Then, f is Ty (1)-continuous.

Proof. Let < be the f-order generated by f|F(X,T), and let us observe that
f(F) = ming, F for every F € F(X,T). Indeed, take an F € F(X,T) and
a point z € F. Then, G = {z, f(F)} C F and f(F) € G, so, by definition,
f(G) = f(F). Thus, f(F) <y x, i.e. f(F)=min., F. Now, we show that f is
continuous at F. To this end, we consider only the case of a non-singleton F'.
Take a neighbourhood V € T of f(F), with '\ V # &. Next, let

Ur = rr<1in(—oo,y)<f NV and Uz = (f(F), +OO)-<f7
f

where y = min_,[f(F),4+00)<, \ V. Then, (U, Us) is a 7y (1)-neighbourhood
of F', with f((Uy,Us)) C V, because S € (Uy,Us) implies f(S) = ming, S €
U, CV. O

We proceed to some basic properties of monotone selections. To this end, we
need a bit more terminology concerning special selections. We shall say that
a selection f for F(X,T) is weakly monotone if f(F UG) = f(F), whenever
G, F € F(X,T) and f(F) = f(G). Also, let us agree that a selection f for
Fa(X) is transitively regular provided the f-order <y on X is transitive, i.e.
for every z,y,2 € X, f({z,y}) = o and f({y,2}) = y imply f({z,2}) = =.
In case f is a selection for F(X,7) we shall use the same term “transitively
regular” to suggest that f|F»(X) is transitively regular.
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Proposition 4.8. Let (X,T) be a space, and let f be a monotone selection for
F(X,T). Then, f is weakly monotone and transitively regular.

Proof. Suppose that G, F € F(X,T) and f(F) = f(G). Then,
either f(FUG)e FCFUG or f(FUG)eGCFUQG.

Hence, f(FUG) € {f(F), f(G)}, so f is weakly monotone.

Suppose now that z,y,z € X are such that f({z,y}) = z and f({y,2}) = v.
Then, s = f({z,y,2}) € {z,y,2} implies that f({s,t}) = s for every t €
{z,y,2}. In this case, the only possibility is s = z. That is, f is transitively
regular as well. O

In what follows, let Fey,(X) = U{Fn(X) : 0 < n < w}.

Lemma 4.9. Let (X, T) be a space, and let f € Sel(X,T) be weakly monotone
and transitively regular. Then, f(S) = min, S for every S € F(X,T).

Proof. Take a T € F.,(X). Since f is transitively regular, there exists
ming, 7. On the other hand, there exists a finite subset £ C F5(X) such
that T = |J£ and ming, I = min,, T for every L € L. Then, f(T) =
f(UL) = ming, T because f is weakly monotone. Since F,(X) is Ty (7)-
dense in F(X,T) and f is 7y (y)-continuous, this finally completes the proof.
Indeed, suppose that, in the opposite, there exists an S € F(X,T) and a
point € S such that  <; f(S). Then, by Theorem 3.1, there exists a
T-neighbourhood V' of f(S) such that + <y y whenever y € V. Since f is
Ty (T)-continuous, there also exists a finite open cover U C T of S such that
f({U)) C V. Take a finite subset T C S such that z € T and T € (U). Then,
from one hand, f(T') € V implies that z <; f(T). However, from another
hand, f(T') = miny, T <; x because z € T. A contradiction. O

Corollary 4.10. Let (X,T) be a space, and let f € Sel(X,T). Then f is
monotone if and only if it is weakly monotone and transitively regular.

Proof. By Proposition 4.8, it suffices to show that f is monotone provided it
is is weakly monotone and transitively regular. So, take F,G € F(X,T) such
that f(F) € G C F. Then, by Lemma 4.9, f(F) = min<, F. Since f(F) € G
and G C F), this implies that f(F) = min,, G. According to Lemma 4.9 once
again, we get that f(G) = f(F). That is, f is monotone. O

The statements of Corollary 4.10 seem to be the best possible. Turning to
this, for every point z € X we consider the component C[z] of this point in
(X, T) defined by

Clz] = U{C C X :z € C and C is connected}.
and, respectively, the quasi component C*[z] defined by
C*[z] = ﬂ{C C X :z € C and C is clopen}.
According to [6, Theorem 4.1], C*[z] = C[z] for every z € X provided
Selr(X,T) # @.
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Proposition 4.11. Let (X, T) be a space which has a selection f € Sela(X,T)
that is not transitively regular. Then, |{C*[z] : x € X}| > 3.

Proof. By condition, there are points x,y,z € X such that z <y y <y z <y 2.
Therefore, we have also that y <y <y 2 <y y and = <y 2 <y y <7 =. Hence,
by Proposition 2.2 and Theorem 3.5,

V. = (_Ooay]<f m[w’+oo)<fa Vy: (_Ooam]<f n[z’+oo)<f
and
VE = (—OO,Z]_<f N [ya+oo)<f
are T -clopen pairwise disjoint neighbourhoods of z, y and, respectively, xz. O

On the base of Proposition 4.11 we now have the following two simple ex-
amples.

Example 4.12. There exists a compact metric space (X,7T) and a transitively
regular selection f € Sel(X,T) which is not weakly monotone.

Proof. Let X = 1) & I, @ I3, where I; = [0,1] for every ¢ < 3. We consider
each I; endowed with the usual Euclidean topology 7;, while the topology
T on X is just the disjoint sum of these topologies. Next, for every i, let
fi € Sel(L;,T;) be the standard selection f;(S) = min S, S € F(I;,7;). Also,
for every S € F(X,T), let i(S) = min{j < 3: SNI; # @}. Then, define a
selection f € Sel(X, T) by letting for every S € F(X, T) that f(S) = f2(SNIy)
provided SNI; # @ for every i < 3, and f(S) = fis)(SNIis)) otherwise. This
f is the required one. O

Example 4.13. There exists a compact metric space (X,7) and a weakly
monotone selection f € Sel(X,T) which is not transitively regular.

Proof. Take merely X = {1,2,3} with the usual discrete topology 7. Then,
define the required selection f € Sel(X,T) by f({1,2}) =1, f({2,3}) = 2,

f({1a3}) =3 and f({172a3}) =3. |

5. WHICH TOPOLOGIES 7 GIVE RISE TO Ty (7)-CONTINUOUS SELECTIONS
FOR F(X,T)?

We are now ready to provide an answer to Question 2. Let X be a space,
< be a linear order on X, and let 7~ be the topology on X generated by <.
Let us recall that (X, 7<) is a topologically well-ordered space (see [1]) if every
non-empty closed subset of (X, 7%) has a minimal element. Now, we shall say
that a space (X, T) is a Sorgenfrey well-orderable if there exists a linear order
< on X such that

(i) (X,7T%) is topologically well-ordered, with 7 C T, and
(ii) for every point x € X, with z < sup_ X, and its neighbourhood V € T
there exists a point y € (z, +00)< such that [z,y)<x C V.

In this case, we shall say that the topology T is a Sorgenfrey modification of
T<.
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Theorem 5.1. For a Hausdorff space (X,T), the following conditions are
equivalent:

(a) F(X,T) has a monotone selection.
(b) (X, T) is a Sorgenfrey well-orderable space.

Proof. (a) = (b): Let f be a monotone selection for F(X,7T). Then, by
Proposition 4.7, f € Sel(X,T), while, by Lemma 4.9 and Corollary 4.10, <y
is a linear order on X so that f(S) = min., S for every S € F(X,T). Hence,
(X, Ty) is a topologically well-ordered space and, by Theorem 3.5, 7y C 7. Take
VeTand z €V, with z <y sup, X. If [z,4+00)<, CV, take an arbitrary
point y € (x,4+00)<,. Otherwise, let y = f([z,+00)<, \ V). According to
Lemma 4.9, we always have [z,y)<, C V,so T is a Sorgenfrey modification of
Tz

(b) = (a): Suppose now that (X, T) is a Sorgenfrey well-ordered space, and
let < be as in (i) and (ii). Take an F' € F(X,T), and let us show that F' has
a first element with respect to <. If o = min; X € F, then min, F' = xy. If
xo ¢ F, then

U= U{[wo,y)< :y € X and [zg,y)<NF =2}

is a 74-open set in X such that y < z for every y € U and z € F. Since
F c X\U, by (i), there exists # = min.(X \ U). This z is the required
<-minimal element of F. Indeed, if z ¢ F, then, by (ii), there should exist
an y € (z,+00)< such that [z,y)< N F = &. However, this will imply that
x € [2g,y)< C U which is impossible. Thus, x = miny F. Having already
established this, we may define a selection f for F(X,T) by f(F) = min F for
every F' € F(X,T). Finally, we show that f is monotone. Take F,G € F(X,T)
such that f(F) € G C F. Then, just like in Corollary 4.10, f(F) = min, F' <
min G < f(F) because f(F) € G and G C F. O

Example 5.2. There exists a hereditarily separable, Lindelof, perfectly nor-
mal, strongly paracompact, strongly zero-dimensional and non-Cech complete
space (Z,T) such that F(Z,7T) has a monotone selections.

Proof. For (Z,T) we may take the usual Sorgenfrey line [11] (see, also, [2]).
Note that the Sorgenfrey line is a Sorgenfrey modification of of the interval
[0,1) endowed with the usual Euclidean topology 7.. Since, ([0,1),7;) is a
topologically well-ordered space, by Theorem 5.1, F(Z,T) has a monotone
selections. Also, the Sorgenfrey line has all other properties, see [2]. |

Finally, we provide the promised negative answer to Question 2.

Example 5.3. There exists a separable, connected and metrizable space (X, 7))
such that
(i) Selz(X,T) # 2,
(it) Sel(X,Ty) # @ for every f € Selz(X,T),
(i) Sel(X,T) =@.
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Proof. Consider the subset
1
X = {(t,s) € R?: (t,5) = (0,0) or t € [-1,0) U (0,1] and s = sin;}

of the Euclidean plane R? with the usual topology 7 as a subspace. Then,
(X,T) is separable, metrizable and connected. Note that the projection 7 :
X — [-1,1] onto the first factor is a continuous bijection, where [—1,1] is
endowed with the Euclidean topology 7.. Claim that Sely(X,T) # @. Indeed,
let g € Sely([-1,1],72), and let T, = = (7). Clearly 7, is a topology on
X which is coarser than 7. On the other hand, h(S) = 71 ogow(S), S €
F2(X), defines a selection for F2(X) which is 7,7 )-continuous because g €
Sely([—1,1],Tc). Therefore, by Corollary 3.2, h is a Ty (7-continuous selection

for F»(X). Thus, (i) holds. Next, let us show that 7, = T; for every f €
Sely(X,T). Namely, if f € Selo(X,T), then k(S) = mo for1(S), S €
Fa([—1,1]), defines a selection for Fo([—1,1]). Let h € Sel2(X,T) be defined
as above, i.e. by the fixed selection g € Sefy([—1,1],7.). Then, by a result of
Michael [8], either f = h or f = h* because (X,T) is connected. Therefore,
either ¥ = g or kK = g*, so, by Theorem 3.5, k € Sely([—1,1], 7). Thus,
by Corollary 4.1, we have 7, = T; for every f € Sela(X,T) because 7, is a
compact topology on X. In particular, by Theorem 4.4, this provides (ii). Now,
if f € Sel(X,T), then, by a result of [8], f should be monotone because (X, T)
is connected. Then, by Theorem 5.1, 7 should a Sorgenfrey modification of
Tr = T.. However, this is impossible because there exists a T-neighbourhood
V of ¥ = (0,0) such that [¢,z)<, \ V # & for every x € X with ¥ <; 2. This
contradiction demonstrates (iii) which completes the proof. O
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