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Jungck theorem for triangular maps and
related results
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ABSTRACT. We prove that a continuous triangular map G
of the n-dimensional cube I™ has only fixed points and no other
periodic points if and only if G has a common fixed point with
every continuous triangular map F' that is nontrivially compat-
ible with . This is an analog of Jungck theorem for maps of
a real compact interval. We also discuss possible extensions of
Jungck theorem, Jachymski theorem and some related results to
more general spaces. In particular, the spaces with the fixed point
property and the complete invariance property are considered.
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1. INTRODUCTION

Continuous selfmaps of a real compact interval for which every periodic point
is a fixed point were studied by many authors (see e.g. [4], [17], [3], [9], [7])
Recently some of these results were investigated from the point of view of
triangular maps (cf. [6]). The class of triangular maps for which Per G = Fix G
admits much stranger behavior than the analogous class of one-dimensional
maps (see e.g. [12], [5]). Among others, the pointwise convergence of the
sequence of the iterations does not characterize this class of triangular maps.
Nevertheless, the concept of compatible mappings introduced in [10] allows us
to describe not only the class of selfmaps of the interval (cf. [9]) but, as we are
going to show, also the class of triangular maps.
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Throughout the paper all maps are assumed to be continuous even if we do
not state it explicitly. If X and Y are topological spaces, C(X,Y") denotes the
class of continuous maps from X to Y. Let I be a real compact interval, say the
unit interval [0,1]. Let n be a positive integer. In the n-dimensional cube I"
we will use the Euclidean metric. By a triangular map we mean a continuous
map G : I" — I" of the form

G(xlyx% - 7=Tn) = (91($1)792($1,$2)7~--79n($17$2, v 7$n))a

shortly G = (g91,92,---,9n)a. The map gy is called the basis map of G. The
class of all triangular maps of I" will be denoted by Ca(I",I"). If n =1 then
Ca(I, 1) = C(I,I). By I(vy,v,...,0;) := (v1,vs,...,v%) X I" ¥ we denote the
fibre over the point (v1,vs,...,vx) and the map Gy, p,,..0, € CAI"F, I"F)
defined by

Goiwovr (Tht1s ooy @n) = ( Grg1(v1,02,. .., Vk, Tht1),
o

gn(vlav%' <y Uk, Tty - - - 7xn) )

is the fibre map of G working in the fibre I(vy,v,. .., vg).

Continuous interest in triangular maps is, among others, caused by the fact
that they display a kind of a dualism. On one hand, they are close to one-
dimensional maps in the sense that some important dynamical features extend
to triangular maps. For instance, Sharkovsky’s Theorem holds for them (see
[11]). On the other hand, they already display other important properties
which are typical for higher dimensional maps and cannot be found in the
one—dimensional maps. For instance, there are triangular maps with positive
topological entropy having only periodic points whose periods are (all) powers of
two (see [12]). For more information on triangular maps see, e.g., [11], [12], [13],
[1], [5]. A triangular map defines a discrete dynamical system that is, especially
in ergodic theory, sometimes called a skew product of (one-dimensional or less
dimensional) dynamical systems. As far as the authors know, in fixed point
theory triangular maps have not been studied yet.

Let Fix G or Per G denote the set of all fixed points or periodic points of G,
respectively. Recall (cf. [8]) that selfmaps f and g of a set X are compatible if
they commute on the set of their coincidence points, i.e., on the set Coin(f,g) :=
{z € X : f(x) = g(x)}. If f and g are compatible and Coin(f, g) is nonempty,
we will say that f and g are nontrivially compatible (cf. [9]).

Note that throughout the paper we will often prefer another but, as one
can easily show, equivalent definition of nontrivial compatibility: f and g are
nontrivially compatible if and only if Coin(f,¢) is nonempty and for every
x € Coin(f, g), the whole trajectories of  under f and g coincide (i.e., f™(z) =
g"(x) for every n € N).

G. Jungck proved the following (cf. [9, Theorem 3.6]):

Theorem 1.1 (Jungck Theorem). A map g € C(I,I) has a common fized point
with every map f € C(I,I) which is nontrivially compatible with g if and only
if Perg = Fixg.
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The main aim of this paper is to show that the analog of this theorem applies
to triangular maps (see Theorem 2.7).

In Section 3 we discuss possible extensions of Jungck theorem and some re-
lated results for general continuous maps to more general spaces (see Theorems
3.2, 3.3, and 3.4).

Before going to our results notice that the fact that Jungck theorem holds
for triangular maps is a new illustration of their dualistic character when they
are compared with selfmaps of I. In fact, in some other aspects of the fixed
point theory they differ from interval maps: for instance, in [14] one can find
an example of a triangular map G in I? and a compact subinterval J C I such
that G(J?%) D J? but G has no fixed point in J2.

2. JUNGCK THEOREM FOR TRIANGULAR MAPS

Lemma 2.1. Let g € C(I,I). If Perg = Fixg and xy € Fixg, then there is a
map f € C(I,I) and o, B € I such that « < x¢g < and

Coin(f,g) = {a, 29,8} C g (zo).

Proof. We can additionally suppose that zy € int I (if xg = 0 or zyp = 1 then
the proof is similar). First we define the function f on the right side of .
Take
B :=sup{z €1I:g(z) =z}

Then 2y < 8. Put f(z) = zo for every z € [3,1]. Let f|y, 5 be an arbitrary
continuous function such that f(zg) = f(8) = xzp and 1 > f(z) > g(x) for
all z € (z9,). To see that such a map exists it is enough to realize that
g(z) < 1 for every = € [z¢,]. In fact, if g(z) = 1 for some z € [zg, 5] then
9([zo, 2]) Ng([z, B]) 2 [z0,2] U [z, 0[], i-e., g has a 2-horseshoe. This implies that
g has a periodic point of period greater than 1 (¢ has even positive topological
entropy [2, Proposition 4.3.2]). This contradicts the assumption on g.

Similarly we proceed on the left side of zy by putting o := inf{zx € I : g(z) =
zo}, f(x) = o for every z € [0, ] and taking into account that g(z) > 0 for
all x € [, z9]. The obtained «, 8 and f fulfill all desired conditions. O

For n > m let m,, : I"" — I™ be the projection of the space I" onto the
space I defined by mp(z1,...,2,) = (21,...,%y). In the notation m, we
suppressed n, since it will always be clear what is the dimension of the domain
of 7,

The following extension lemma is a generalization of [13, Lemma 1]. We will
use in it the notation Ca (K, I™) for the set of triangular maps from K into I™
which are defined analogously as triangular maps from I™ into I™.

Lemma 2.2. Let K C I" be a compact set, ® = (¢1, P2, ..., dn)n € Ca (K, I™).
Then there is a map F = (f1, fo,-- -, fn)a € CA(I™,I™) such that F|g = ®.

Moreover, we can prescribe any of the maps f,, m = 1,2,...,n, requiring
only that fr, € C(I™, 1) be an extension of ¢ € C(mm(K),I).

Proof. Since ® € C(K,I"™), for every i the map ¢; is continuous if we consider
it as a map K —> I. Note that there is no sense in extending each ¢; to a
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map f; defined on the whole I and putting F' = (f1, f2,..., fn) because then
F € C(I™,I"), in general, would not be triangular. But the map ¢; depends
only on the first ¢ variables and so we can consider it also as a map m;(K) — 1.
We are going to show that, due to the compactness of K, ¢; is still continuous,
ie, ¢ € C(m(K),I). For i = n this is trivial since ¢, € C(K,I). For
1=1,2,...,n — 1 this follows from the repeated use of the following

Claim 2.3. If M C I* is a compact set and U = (11,49, ..., ) A € Oa(M, I)
then y, € C(M,I), mp_1 (M) C I*"! is a compact set and the map U* defined
as U = (1,42, . .., Pp_1)a belongs to Ca(mp_y (M), IF71).

Proof.  (of the claim). The compactness of m;_1(M) is obvious. We trivially
have 1, € C'(M,I) and so we need only prove that the map

U = (1,2, Pr 1) w1 (M) — TF71

is continuous. Assume, on the contrary, that ¥* is discontinuous at a point
z € mp_1(M). Then there is a sequence of points z; € m;_1(M) for which
lim;_,o, 2; = 7 and the sequence (¥*(z;)) does not tend to U*(z). Since I*~1
is compact, there is a convergent subsequence of (U*(z;)). Without loss of
generality we may assume that lim;_, o, U*(z;) = a # U*(z). Take points v; € T
such that (z;,v;) € M. There is a converging subsequence of (v;). We may
assume that lim;_,, v; = v. Then (z;,v;) — (z,v). Since M is closed, (z,v) €
M. The point ¥(z,v) belongs to the fibre I(¥U*(z)) and the sequence (U*(z;))
does not converge to U*(z). So (¥(z;,v;)) does not converge to ¥(z,v), and we
have a contradiction with the continuity of W. Thus Claim 2.3 is proved.

So we have proved that for m = 1,2,...,n, the map ¢, : m(K) — [
is continuous. By Tietze extension theorem the functions ¢, € C(m,(K),I),
1 <m < n have continuous extensions f,, € C(I™,I), 1 < m < n, respectively.
Now it suffices to put F' = (f1, fo,..., fn)a with arbitrary such extensions. O

Lemma 2.4. Let G = (91,92,-.-,9n)n € CA(I™,I™), n > 2 have a common
fized point with every triangular map which is nontrivially compatible with G.
Then
(i) Perg; = Fixg, and
(ii) for every a; € Fixgy, G4, has a common fized point with every trian-
gular map which is nontrivially compatible with G, .

Proof. (i) To shorten the notation we will write y = (z2,...,2,). Fix a map
f € C(I,I) which is nontrivially compatible with ¢g;. Putting

F(mlay) = (f($1),92(x1,372), v 7gn($1>y)) for every (x,y) € Ina
we see that
Coin(F,G) = Coin(f,g1) x I~
is nonempty and for (z1,y) € Coin(F, G)
F(G(z1,y) = (f(g1(z1)),92(91(%1), g2(21,72)), -+, gn(g1(21), - .- ))

= (91(f(21)), g2(f(21), 92(1,%2)), - - -, gn (f (71)5- -+ )
= G(F(z1,y)).
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Thus, by the assumption of the lemma, Fix FNFixG # &. Let (z1,..., ;) bea
common fixed point of F and G. Then f(z1) = ¢g1(z1) = z1, so Fix fNFix g, #
@ and by Jungck theorem we get Per g; = Fix g;.

(71) Let a; € Fixg; and let ® € CAo(I" 1, 1) be nontrivially compatible
with G,,. We will prove that ® and G,, have a common fixed point. Take
yo € Coin(Gy,, ®). By Lemma 2.1 there exists a map f; € C(I,I) and o, 5 € 1
such that & < a; < and Coin(f1,¢1) = {e,a1,5} C gfl(al). We are going to
define a triangular map F' € Ca(I™,I™). We start with the triangular selfmap
of the compact set {, a1, 3} x I ! which sends (a1,y) to (a1, ®(y)) and (x1,vy)
with z1 € {a, 8} \ {a1} to (a1,y0). Using Lemma 2.2 we can extend this map
to a triangular map F whose basis map is the above mentioned map fi. It is
obvious that F' is nontrivially compatible with G. Therefore Fix FNFix G # @.
From the definition of F' we get that Fix® NFixG,, # @. O

In the sequel we will use the following simple properties of triangular maps:
If Fe CA(I™, I™), then

m1(Fix F') = Fix f; and m(Per ') = Per f;.

Lemma 2.5. If a map G = (91,92,---,9n)n € CA(I™,I"), n > 1, has a com-
mon fized point with every triangular map F which is nontrivially compatible

with G, then Per G = Fix G.

Proof. For n = 1 this holds by Jungck theorem. So let n > 2. Take (a1, as, ...,
ap) € PerG. By Lemma 2.4 we get a; € Perg; = Fixg; which means that
g1(a1) = a1. Then (ag,...,a,) € PerG,, where

Gal = (92(0’17 ')793(a17 E ')7 v 7gn(a17 EECERRNE ))A
Moreover, G,, has a common fixed point with every triangular map which is
nontrivially compatible with G, .

Now applying Lemma 2.4 to the map G,, we obtain that ay € Fix go(ay, -), so
g2(a1,a2) = ag. It means that (as,...,a,) € Per Gg,q4,. Proceeding in this way
we see that also a,—; € Fixgn_1(a1,a2,...,an_2,-) and a, € PerGg ay..4,_,-
Moreover, Gy, qs...a,_, 1S an interval selfmap that has a common fixed point with
every continuous map which is nontrivially compatible with G 4,..q, ;- By

Jungck theorem a,, belongs to Fix G4, 4,...a, ,, Whence gp(a1,a9,...,apn-1,a0,) =
an. Thus we have proved that G(a1,as9,...,a,) = (a1,a2,...,a,). Therefore
Per G = Fix G. O

Before proving the converse statement fix some notation. When F' € Cpa (I™,
I") and (z1,...,x,) € I", the symbol wp(z1,...,z,) will denote the w-limit set
of the point (z1,...,x,) under F, i.e., the set of all limit points of the trajectory
(FF(xq,... Tn)) P

Further recall that if X is a Hausdorff topological space and f,g € C(X, X)
are nontrivially compatible then Coin(f, g) is closed and, as one can easily show,
for every x € Coin(f,g) we have wy(z) = wy(x) C Coin(f, g).

Lemma 2.6. Assume that G € Co(I",I"), n > 1. If PerG = Fix G, then
G has a common fized point with every triangular map F which is nontrivially
compatible with G.
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Proof. For n = 1 this holds by Jungck theorem. Assume that the lemma holds
for some n > 1 and take any G = (g1,92,...,9nt1)a € CaA(I", 1" with
PerG = FixG and any F = (f1, f2,..., fus1)a € CaA(I™TL I which is
nontrivially compatible with G. To finish the proof we need to show that G
and F' have a common fixed point. To this end take a point (a1, a9, ... ,ap,+1) €
Coin(F, G). Since Per G = Fix G we have also Per g; = Fixg;. Therefore the
sequence (gf (a1))2° , tends to some point v € Fix gy (see [4], [17] or [3]). Hence

waglar,ag, ... ant1) = wp(ag,az,...,an41) C I(v).

The set on the left side of this inclusion is nonempty and is a subset of Coin(F, G).
So, Coin(F, G) contains a point of the form (v,bs,...,by4+1). Since v € Fix g,
this implies that also v € Fix fi. Now consider the maps G, and F, from
CA(I™,I™). These maps are compatible because F' and G are compatible and
the fibre I(v) is mapped into itself both by F' and G. Moreover, (by,...,b,11) €
Coin(F,,Gy) and so F, and G, are nontrivially compatible. If we finally take
into account that Per G = FixG and so Per G, = FixG,, we can apply the
induction hypothesis to the map G, to get that there is a point

(CQ, R ,Cn_|_1) € FixG, NFix F,.

Then
(v,¢2,...,¢p41) € FixGNFix F
which ends the proof. O

From Lemma 2.5 and Lemma 2.6 we immediately get the following general-
ization of Jungck theorem:

Theorem 2.7. [Jungck theorem for triangular maps.] For each n > 1, a map
G € Cao(I™ I™) has a common fized point with every map F € Cp(I™,I™)
which is nontrivially compatible with G if and only if Per G = Fix G.

This result allows us also to extend the list of conditions which characterize

the triangular maps with fixed points as unique periodic points (cf. [6, Corollary
3.1]):

Corollary 2.8. Let G € Ca(I™,I™). Then the following conditions are equiv-
alent:

(i) PerG =Fix G,

(il) CNFix G # @ for any nonempty closed set C C I™ such that G(C) C C,

(iii) G has a common fized point with every map F € Ca(I",I™) that
commutes with G on Fix F,

(iv) G has a common fized point with every map F € C(I™,I™) that com-
mutes with G on Fix F,

(v) G has a common fized point with every map F € Ca(I"™,I™) which is
nontrivially compatible with G.
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3. ON A GENERALIZATION OF RESULTS RELATED TO JACHYMSKI THEOREM
AND JUNGCK THEOREM

Looking at conditions in Corollary 2.8 it seems to be natural to ask whether
some of the implications do not hold for continuous (not necessarily triangular)
selfmaps of more general spaces than the n-dimensional cube. In this section
we give answers to some questions of this type.

First recall that J. Jachymski proved the following (cf. [7, Proposition 1]):

Theorem 3.1. [Jachymski theorem.] Let A be a nonempty compact and convez
subset of a normed linear space and let g be a continuous selfmap of A. Then
the following conditions are equivalent:

(i) CNFixg # & for any nonempty closed set C C A such that g(C) C C,
(ii) g has a common fized point with every map f € C(A, A) that commutes
with g on Fix f.

We are going to give a more general formulation of this result. To this
end recall after L. E. Ward (cf. [18]) the following definition. A subset F' of
a topological space X is a fixed point set of X if there exists a continuous
selfmap of X whose set of fixed points is exactly F. The space X has the
complete invariance property (CIP) if each of its nonempty closed subsets is a
fixed point set.

L. E. Ward proved that a convex subset of a normed linear space has the CIP
(cf. [18, Corollary 1.1]; for other examples of topological spaces with the CIP
see [15] or [16]). Further, by Schauder theorem the space A from Jachymski
theorem has the fixed point property (FPP). So, the following is a generalization
of Jachymski theorem:

Theorem 3.2. [Generalization of Jachymski theorem.| Let X be a Hausdorff
topological space with the FPP and the CIP and let g be a continuous selfmap
of X. Then the following conditions are equivalent:

(i) CNFixg # @ for any nonempty closed set C C X such that g(C) C C,
(ii) g has a common fized point with every map f € C(X, X) that commutes
with g on Fix f.
Moreover, (i) = (it) does not require the CIP and (i) = (i) does not require
that X be Hausdorff and have the fized point property.

Proof. (i) = (4i). Let a continuous map f : X — X commute with g on
Fix f. Then g(Fix f) C Fix f. Further, the set Fix f is nonempty since X has
the fixed point property and closed since X is Hausdorff. Therefore by (i),
Fix f NFixg # 2.

(15) = (4). Let C be a nonempty closed subset of X such that g(C) C C.
By the CIP of X, there exists a continuous map f: X — X with Fix f = C.
For z € C, g(f(z)) = g(x) since f(z) = z, and f(g(z)) = g(z) since g(C) C C
and Fix f = C. Thus f and g commute on Fix f. By (ii), Fix f NFixg # &,
ie., CNFixg # @. O

Theorem 3.3. Let X be a Hausdorff topological space with the CIP and let g
be a continuous selfmap of X. Then the following conditions are equivalent:
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(i) CNFixg # @ for any nonempty closed set C C X such that g(C) C C,
(ii) g has a common fized point with every map f € C(X,X) which is
nontrivially compatible with g.

Moreover, (i) = (it) does not require the CIP and (i) = (i) does not require
that X be Hausdorff.

Proof. (i) = (i). Let f € C(X,X) be nontrivially compatible with g.
The set Coin(f, g) is nonempty and, since X is Hausdorff, closed. Moreover,
g(Coin(f,g)) C Coin(f,g). Indeed, if € Coin(f,g) then f(x) = g(z) and, by
what was said in Introduction, f2(z) = ¢?(x). Then f(g(z)) = f?(z) = ¢*(=),
so g(z) € Coin(f,g). By (i), Coin(f,g) N Fixg # @. Let 2y € Fixg be a
coincidence point of f and ¢g. Then zy = g(z9) = f(xo), which means that
Fix f NFixg # @.

(11) = (7). Let C C X be a nonempty closed set such that ¢g(C) C C.
By the assumption, there is a map h € C(X,X) with Fixh = C. Put f :=
hog. Then C C Coin(f,g). Take any = € Coin(f,g). Then g(z) € C (since
otherwise we would have f(z) = h(g(x)) # g(z)) and so ¢"(z) € C for all
n € N. From this and the facts that C' C Coin(f,g) and f(z) = g(z) we get
f™(x) = g"(x) for all n € N. Hence f and g are nontrivially compatible. By
(i1), Fix f N Fixg # &. Let xp be a common fixed point of f and g. Then
xo = f(xo) = h(g(xo)) = h(xp), so xy € C. Therefore C NFixg # &. O

If X is a Hausdorff space then any periodic orbit of a continuous selfmap of
X, being finite, is a closed set. Thus the condition (i) from Theorem 3.3 implies
Perg = Fixg (the converse is not true: for instance, let X be the unit disc,
C' its circumference and g an irrational rotation). Hence in a Hausdorff space
with the CIP the condition (ii) from Theorem 3.3 implies Per g = Fix g. But it
turns out that this is true even under weaker assumptions on the space than to
be Hausdorff and to have the CIP.

Theorem 3.4. [Generalization of a part of Jungck theorem).] Let X be a
topological space with the property that for every nonempty finite set A C X
there exists a map h € C(X, X) such that Fixh = A. If a map g € C(X, X)
has a common fized point with every map f € C(X,X) which is nontrivially
compatible with g, then Per g = Fix g.

Proof. Suppose on the contrary that g has a periodic orbit A of period greater
than one. Take h € C(X, X) with Fixh = A and define f := hog.

Clearly, f € C(X,X) and A C Coin(f,g). Take any x € Coin(f,g). Then
g(z) € A since otherwise we would have f(x) = h(g(z)) # g(z). Hence f"(z) =
g"(z) for all n > 1. Thus we have proved that f is nontrivially compatible with
g. But g and f have no common fixed point since if g(z) = = then z ¢ A and
so f(z) = h(g(x)) = h(x) # z. This contradiction finishes the proof. O

The example below shows that the converse implication is not true.

Example 3.5. Let X be the unit disc and g an irrational rotation of X. Then
X has the property from the previous theorem and Per g = Fix g. Nevertheless,
there is a map f € C(X, X) which is nontrivially compatible with g but has
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no common fixed point with g. To see this, take any h € C(X, X) whose fixed

point set is the circumference of X and put f:=hog. 0
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