Common fixed point theorems for mappings satisfying (E.A)-property via C-class functions in b-metric spaces

Vildan Ozturk ${ }^{a}$ and Arslan Hojat Ansari ${ }^{b}$
${ }^{a}$ Department of Mathematics and Science Education,Faculty Of Education, Artvin Coruh University, Artvin, Turkey (vildanozturk84@gmail.com)
${ }^{b}$ Department of Mathematics, Karaj Branch, Islamic Azad University, Karaj, Iran (analsisamirmath2@gmail.com)

Communicated by M. Abbas

Abstract

In this paper, we consider and generalize recent b-(E.A)-property results in [11] via the concepts of C-class functions in b - metric spaces. A example is given to support the result.

2010 MSC: 47H10; 54H25.
KEYWORDS: Common fixed point; (E.A)-property; b-metric space; C-class function.

1. Introduction and preliminaries

Bakhtin in [5] introduced the consept of b-metric space and prove the Banach fixed point theorem in the setting of b-metric spaces. Since then many authors have obtain various generalizations of fixed point theorems in b-metric spaces.

On the other hand, Aamri and Moutaawakil in [1] introduced the idea of (E.A) - property in metric spaces. Later on some authors employed this concept to obtain some new fixed point results. See ($[6,10]$).

In this paper, we prove common fixed point results for two pairs of mappings which satisfy the $b-(E . A)$-property using the concept of C-class functions in $b-$ metric spaces.

Definition 1.1 ([5]). Let X be a nonempty set and $s \geq 1$ be a given real number. A function $d: X \times X \rightarrow[0, \infty)$ is a b-metric if, for all $x, y, z \in X$, the following conditions are satisfied:
(b1) $d(x, y)=0$ if and only if $x=y$,
(b2) $d(x, y)=d(y, x)$,
(b3) $d(x, z) \leq s[d(x, y)+d(y, z)]$.
In this case, the pair (X, d) is called a b-metric space.
It should be noted that, the class of b-metric spaces is effectively larger than that of metric spaces, every metric is a b-metric with $s=1$.

However, if (X, d) is a metric space, then (X, ρ) is not necessarily a metric space.

Definition $1.2([7])$. Let $\left\{x_{n}\right\}$ be a sequence in a b-metric space (X, d).
(a) $\left\{x_{n}\right\}$ is called b-convergent if and only if there is $x \in X$ such that $d\left(x_{n}, x\right) \rightarrow 0$ as $n \rightarrow \infty$.
(b) $\left\{x_{n}\right\}$ is a b-Cauchy sequence if and only if $d\left(x_{n}, x_{m}\right) \rightarrow 0$ as $n, m \rightarrow$ ∞.
A b-metric space is said to be complete if and only if each b-Cauchy sequence in this space is b-convergent.

Proposition 1.3 ([7]). In a b-metric space (X, d), the following assertions hold:
(p1) A b-convergent sequence has a unique limit.
(p2) Each b-convergent sequence is b-Cauchy.
(p3) In general, $a b$-metric is not continuous.
Definition 1.4 ([7]). Let (X, d) be a b-metric space. A subset $Y \subset X$ is called closed if and only if for each sequence $\left\{x_{n}\right\}$ in Y is b-convergent and converges to an element x.

Definition $1.5([11])$. Let (X, d) be a b-metric space and f and g be selfmappings on X.
(i) f and g are said to compatible if whenever a sequence $\left\{x_{n}\right\}$ in X is such that $\left\{f x_{n}\right\}$ and $\left\{g x_{n}\right\}$ are b-convergent to some $t \in X$, then

$$
\lim _{n \rightarrow \infty} d\left(f g x_{n}, g f x_{n}\right)=0
$$

(ii) f and g are said to noncompatible if there exists at least one sequence $\left\{x_{n}\right\}$ in X is such that $\left\{f x_{n}\right\}$ and $\left\{g x_{n}\right\}$ are b-convergent to some $t \in X$, but $\lim _{n \rightarrow \infty} d\left(f g x_{n}, g f x_{n}\right)$ does not exist.
(iii) f and g are said to satisfy the $b-(E . A)$-property if there exists a sequence $\left\{x_{n}\right\}$ such that

$$
\lim _{n \rightarrow \infty} f x_{n}=\lim _{n \rightarrow \infty} g x_{n}=t
$$

for some $t \in X$.
Remark 1.6 ([11]). Noncompatibility implies property (E.A).

Example $1.7([11]) . X=[0,2]$ and define $d: X \times X \rightarrow[0, \infty)$ as follows

$$
d(x, y)=(x-y)^{2}
$$

Let $f, g: X \rightarrow X$ be defined by

$$
f(x)=\left\{\begin{array}{c}
1, x \in[0,1] \\
\frac{x+1}{8}, x \in(1,2]
\end{array} \quad g(x)=\left\{\begin{array}{c}
\frac{3-x}{2}, x \in[0,1] \\
\frac{x}{4}, x \in(1,2]
\end{array}\right.\right.
$$

For a sequence $\left\{x_{n}\right\}$ in X such that $x_{n}=1+\frac{1}{n+2}, n=0,1,2, \ldots$,

$$
\lim _{n \rightarrow \infty} f x_{n}=\lim _{n \rightarrow \infty} g x_{n}=\frac{1}{4}
$$

So f and g are satisfy the $b-(E . A)$-property. But

$$
\lim _{n \rightarrow \infty} d\left(f g x_{n}, g f x_{n}\right) \neq 0
$$

Thus f and g are noncompatible.
Definition 1.8 ([8]). Let f and g be given self-mappings on a set X. The pair (f, g) is said to be weakly compatible if f and g commute at their coincidence points (i.e. $f g x=g f x$ whenever $f x=g x$).

In 2014, Ansari [3] introduced the concept of C-class functions. See also [4]
Definition 1.9. A mapping $F:[0, \infty)^{2} \rightarrow \mathbb{R}$ is called C-class function if it is continuous and satisfies following axioms:
(i) $F(s, t) \leq s$;
(ii) $F(s, t)=s$ implies that either $s=0$ or $t=0$; for all $s, t \in[0, \infty)$.

Note for some F we have that $F(0,0)=0$.
We denote C-class functions as \mathcal{C}.
Example 1.10. The following functions $F:[0, \infty)^{2} \rightarrow \mathbb{R}$ are elements of \mathcal{C}, for all $s, t \in[0, \infty)$:
(1) $F(s, t)=s-t, F(s, t)=s \Rightarrow t=0$;
(2) $F(s, t)=m s, 0<m<1, F(s, t)=s \Rightarrow s=0$;
(3) $F(s, t)=\frac{s}{(1+t)^{r}} ; r \in(0, \infty), F(s, t)=s \Rightarrow s=0$ or $t=0$;
(4) $F(s, t)=\log \left(t+a^{s}\right) /(1+t), a>1, F(s, t)=s \Rightarrow s=0$ or $t=0$;
(5) $F(s, t)=\ln \left(1+a^{s}\right) / 2, a>e, F(s, 1)=s \Rightarrow s=0$;
(6) $F(s, t)=(s+l)^{\left(1 /(1+t)^{r}\right)}-l, l>1, r \in(0, \infty), F(s, t)=s \Rightarrow t=0$;
(7) $F(s, t)=s \log _{t+a} a, a>1, F(s, t)=s \Rightarrow s=0$ or $t=0$;
(8) $F(s, t)=s-\left(\frac{1+s}{2+s}\right)\left(\frac{t}{1+t}\right), F(s, t)=s \Rightarrow t=0$;
(9) $F(s, t)=s \beta(s), \beta:[0, \infty) \rightarrow(0,1)$, and is continuous, $F(s, t)=s \Rightarrow$ $s=0$;
(10) $F(s, t)=s-\frac{t}{k+t}, F(s, t)=s \Rightarrow t=0$;
(11) $F(s, t)=s-\varphi(s), F(s, t)=s \Rightarrow s=0$, here $\varphi:[0, \infty) \rightarrow[0, \infty)$ is a continuous function such that $\varphi(t)=0 \Leftrightarrow t=0$;
(12) $F(s, t)=s h(s, t), F(s, t)=s \Rightarrow s=0$,here $h:[0, \infty) \times[0, \infty) \rightarrow$ $[0, \infty)$ is a continuous function such that $h(t, s)<1$ for all $t, s>0$;
(13) $F(s, t)=s-\left(\frac{2+t}{1+t}\right) t, F(s, t)=s \Rightarrow t=0$.
(14) $F(s, t)=\sqrt[n]{\ln \left(1+s^{n}\right)}, F(s, t)=s \Rightarrow s=0$.
(15) $F(s, t)=\phi(s), F(s, t)=s \Rightarrow s=0$,here $\phi:[0, \infty) \rightarrow[0, \infty)$ is a upper semicontinuous function such that $\phi(0)=0$, and $\phi(t)<t$ for $t>0$,
(16) $F(s, t)=\frac{s}{(1+s)^{r}} ; r \in(0, \infty), F(s, t)=s \Rightarrow s=0$.

Definition $1.11([9])$. A function $\psi:[0, \infty) \rightarrow[0, \infty)$ is called an altering distance function if the following properties are satisfied:
(i) ψ is non-decreasing and continuous,
(ii) $\psi(t)=0$ if and only if $t=0$.

See also [2] and [12].
Definition 1.12 ([3]). An ultra altering distance function is a continuous, nondecreasing mapping $\varphi:[0, \infty) \rightarrow[0, \infty)$ such that $\varphi(t)>0, t>0$ and $\varphi(0) \geq 0$

2. Main Results

Through out this section, we assume ψ is altering distance function, φ is ultra altering distance function and F is a C-class function. We shall start the following theorem.

Theorem 2.1. Let (X, d) be a b-metric space and $f, g, S, T: X \rightarrow X$ be mappings with $f(X) \subseteq T(X)$ and $g(X) \subseteq S(X)$ such that

$$
\begin{equation*}
\psi(d(f x, g y)) \leq F\left(\psi\left(M_{s}(x, y)\right), \varphi\left(M_{s}(x, y)\right)\right), \quad \text { for all } x, y \in X \tag{2.1}
\end{equation*}
$$

where,

$$
M_{s}(x, y)=\max \left\{d(S x, T y), d(f x, S x), d(g y, T y), \frac{d(f x, T y)+d(S x, g y)}{2 s}\right\}
$$

Suppose that one of the pairs (f, S) and (g, T) satisfy the $b-(E . A)$-property and that one of the subspaces $f(X), g(X), S(X)$ and $T(X)$ is closed in X. Then the pairs (f, S) and (g, T) have a point of coincidence in X. Moreover, if the pairs (f, S) and (g, T) are weakly compatible, then f, g, S and T have a unique common fixed point.

Proof. If the pairs (f, S) satisfies the $b-(E . A)$-property, then there exists a sequence $\left\{x_{n}\right\}$ in X satisfying

$$
\lim _{n \rightarrow \infty} f x_{n}=\lim _{n \rightarrow \infty} S x_{n}=q,
$$

for some $q \in X$. As $f(X) \subseteq T(X)$ there exists a sequence $\left\{y_{n}\right\}$ in X such that $f x_{n}=T y_{n}$. Hence $\lim _{n \rightarrow \infty} T y_{n}=q$. Let us show that $\lim _{n \rightarrow \infty} g y_{n}=q$. By (2.1),

$$
\begin{equation*}
\psi\left(d\left(f x_{n}, g y_{n}\right)\right) \leq F\left(\psi\left(M_{s}\left(x_{n}, y_{n}\right)\right), \varphi\left(M_{s}\left(x_{n}, y_{n}\right)\right)\right) \leq \psi\left(M_{s}\left(x_{n}, y_{n}\right)\right) \tag{2.2}
\end{equation*}
$$

where

$$
\begin{aligned}
M_{s}\left(x_{n}, y_{n}\right) & =\max \left\{\begin{array}{c}
d\left(S x_{n}, T y_{n}\right), d\left(f x_{n}, S x_{n}\right), d\left(T y_{n}, g y_{n}\right), \\
\frac{d\left(S x_{n}, g y_{n}\right)+d\left(f x_{n}, T y_{n}\right)}{2 s}
\end{array}\right\} \\
& =\max \left\{\begin{array}{c}
d\left(S x_{n}, f x_{n}\right), d\left(f x_{n}, g y_{n}\right) \\
\frac{d\left(S x_{n}, g y_{n}\right)+d\left(f x_{n}, f x_{n}\right)}{2 s}
\end{array}\right\} \\
& \leq \max \left\{\begin{array}{c}
d\left(S x_{n}, f x_{n}\right), d\left(f x_{n}, g y_{n}\right), \\
\frac{s\left[d\left(S x_{n}, f x_{n}\right), d\left(f x_{n}, g y_{n}\right)\right]}{2 s}
\end{array}\right\}
\end{aligned}
$$

In (2.2), on taking limit,

$$
\psi\left(\lim _{n \rightarrow \infty} d\left(q, g y_{n}\right)\right) \leq F\left(\psi\left(\lim _{n \rightarrow \infty} d\left(q, g y_{n}\right)\right), \varphi\left(\lim _{n \rightarrow \infty} d\left(q, g y_{n}\right)\right)\right)
$$

So, $\psi\left(\lim _{n \rightarrow \infty} d\left(q, g y_{n}\right)\right)=0$, or,$\varphi\left(\lim _{n \rightarrow \infty} d\left(q, g y_{n}\right)\right)=0$. Thus

$$
\lim _{n \rightarrow \infty} d\left(q, g y_{n}\right)=0
$$

Hence $\lim _{n \rightarrow \infty} g y_{n}=q$.
If $T(X)$ is closed subspace of X, then there exists a $r \in X$, such that $\operatorname{Tr}=q$. By (2.1),

$$
\begin{equation*}
\psi\left(d\left(f x_{n}, g r\right)\right) \leq F\left(\psi\left(M_{s}\left(x_{n}, r\right)\right), \varphi\left(M_{s}\left(x_{n}, r\right)\right)\right) \tag{2.3}
\end{equation*}
$$

where

$$
\begin{aligned}
M_{s}\left(x_{n}, r\right) & =\max \left\{\begin{array}{c}
d\left(S x_{n}, T r\right), d\left(f x_{n}, S x_{n}\right), d(T r, g r) \\
\frac{d\left(f x_{n}, T r\right)+d\left(S x_{n}, g r\right)}{2 s}
\end{array}\right\} \\
& =\max \left\{\begin{array}{c}
d\left(S x_{n}, q\right), d\left(f x_{n}, S x_{n}\right), d(q, g r) \\
\frac{d\left(f x_{n}, q\right)+d\left(S x_{n}, g r\right)}{2 s}
\end{array}\right\} .
\end{aligned}
$$

Letting $n \rightarrow \infty$,

$$
\begin{aligned}
\lim _{n \rightarrow \infty} M_{s}\left(x_{n}, r\right) & =\max \left\{d(q, q), d(q, q), d(q, g r), \frac{d(q, q)+d(q, g r)}{2 s}\right\} \\
& =d(q, g r)
\end{aligned}
$$

Now, (2.3) and definition of ψ and φ, as $n \rightarrow \infty$,

$$
\psi(d(q, g r) \leq F(\psi(d(q, g r)), \varphi(d(q, g r)))
$$

which implies $\psi(d(q, g r))=0$ or $\varphi(d(q, g r))=0$ gives $g r=q$. Thus r is a coincidence point of the pair (g, T). As $g(X) \subseteq S(X)$, there exists a point $z \in X$ such that $q=S z$. We claim that $S z=f z$. By (2.1), we have

$$
\begin{equation*}
\psi(d(f z, g r)) \leq F\left(\psi\left(M_{s}(z, r)\right), \varphi\left(M_{s}(z, r)\right)\right) \tag{2.4}
\end{equation*}
$$

where

$$
\begin{aligned}
M_{s}(z, r) & =\max \left\{d(S z, T r), d(f z, S z), d(T r, g r), \frac{d(f z, T r)+d(S z, g r)}{2 s}\right\} \\
& =\max \left\{d(q, q), d(f z, q), d(q, q), \frac{d(f z, q)+d(q, q)}{2 s}\right\} \\
& \leq \max \left\{d(f z, q), \frac{d(f z, q)}{2 s}\right\} \\
& =d(f z, q)
\end{aligned}
$$

Thus from (2.4),

$$
\psi(d(f z, g r))=\psi(d(f z, q)) \leq F(\psi(d(f z, q)), \varphi(d(f z, q)))
$$

implies that $\psi(d(f z, q))=0$, or,$\varphi(d(f z, q))=0$. Therefore $S z=f z=q$. Hence z is a coincidence point of the pair (f, S). Thus $f z=S z=g r=T r=q$. By weak compatibility of the pairs (f, S) and (g, T), we deduce that $f q=S q$ and $g q=T q$. We will show that q is a common fixed point of f, g, S and T. From (2.1) ,

$$
\begin{equation*}
\psi(d(f q, q))=\psi(d(f q, g r)) \leq F\left(\psi\left(M_{s}(q, r)\right), \varphi\left(M_{s}(q, r)\right)\right) \tag{2.5}
\end{equation*}
$$

where,

$$
\begin{aligned}
M_{s}(q, r) & =\max \left\{d(S q, T r), d(f q, S q), d(T r, g r), \frac{d(f q, T r)+d(S q, g r)}{2 s}\right\} \\
& =\max \left\{d(f q, q), d(f q, f q), d(q, q), \frac{d(f q, q)+d(f q, q)}{2 s}\right\} \\
& =d(f q, q)
\end{aligned}
$$

By (2.5)

$$
\psi(d(f q, q)) \leq F(\psi(d(f q, q)), \varphi(d(f q, q)))
$$

So $f q=S q=q$. Similarly, it can be shown $g q=T q=q$.
To prove the uniqueness of the fixed point of f, g, S and T. Suppose for contradiction that p is another fixed point of f, g, S and T. By (2.1), we obtain

$$
\psi(d(q, p))=\psi(d(f q, g p)) \leq F\left(\psi\left(M_{s}(q, p)\right), \varphi\left(M_{s}(q, p)\right)\right)
$$

and

$$
\begin{aligned}
M_{s}(q, p) & =\max \left\{d(S q, T p), d(f q, S q), d(T p, g p), \frac{d(f q, T p)+d(S q, g p)}{2 s}\right\} \\
& =\max \left\{d(q, p), d(q, q), d(p, p), \frac{d(q, p)+d(q, p)}{2 s}\right\} \\
& =d(q, p)
\end{aligned}
$$

Hence we have

$$
\psi(d(q, p)) \leq F(\psi(d(q, p)), \varphi(d(q, p)))
$$

which implies that $\psi(d(q, p))=0$ or $\varphi(d(q, p))=0$. So $q=p$.

Corollary 2.2. Let (X, d) be a b-metric space and $f, g, S, T: X \rightarrow X$ be mappings with $f(X) \subseteq T(X)$ and $g(X) \subseteq S(X)$ such that

$$
d(f x, g y) \leq F\left(M_{s}(x, y), \varphi\left(M_{s}(x, y)\right)\right), \text { for all } x, y \in X
$$

where
$M_{s}(x, y)=\max \left\{d(S x, T y), d(f x, S x), d(g y, T y), \frac{d(f x, T y)+d(S x, g y)}{2 s}\right\}$.
Suppose that one of the pairs (f, S) and (g, T) satisfy the $b-(E . A)$-property and that one of the subspaces $f(X), g(X), S(X)$ and $T(X)$ is closed in X. Then the pairs (f, S) and (g, T) have a point of coincidence in X. Moreover, if the pairs (f, S) and (g, T) are weakly compatible, then f, g, S and T have a unique common fixed point.

Corollary 2.3. Let (X, d) be a b-metric space and $f, T: X \rightarrow X$ be mappings such that

$$
\psi(d(f x, f y)) \leq F\left(\psi\left(M_{s}(x, y)\right), \varphi\left(M_{s}(x, y)\right)\right), \text { for all } x, y \in X
$$

where
$M_{s}(x, y)=\max \left\{d(T x, T y), d(f x, T x), d(f y, T y), \frac{d(f x, T y)+d(T x, f y)}{2 s}\right\}$.
Suppose that the pair (f, T) satisfies the $b-(E . A)$-property and $T(X)$ is closed in X. Then the pair (f, T) has a common point of coincidence in X. Moreover, if the pair (f, T) is weakly compatible, then f and T have a unique common fixed point.

Example 2.4. Let $F(s, t)=\frac{99}{100} s, X=[0,1]$ and define $d: X \times X \rightarrow[0, \infty)$ as follows

$$
d(x, y)=\left\{\begin{array}{c}
0, x=y \\
(x+y)^{2}, x \neq y
\end{array}\right.
$$

Then (X, d) is a b-metric space with constant $s=2$. Let $f, g, S, T: X \rightarrow X$ be defined by

$$
\begin{aligned}
& f(x)=\frac{x}{4} \quad, g(x)=\left\{\begin{array}{l}
0, x \neq \frac{1}{2} \\
\frac{1}{8}, x=\frac{1}{2}
\end{array}, \quad S(x)=\left\{\begin{array}{c}
2 x, 0 \leq x<\frac{1}{2} \\
\frac{1}{8}, \frac{1}{2} \leq x \leq 1
\end{array}\right. \text { and }\right. \\
& T(x)=\left\{\begin{array}{l}
x, 0 \leq x<\frac{1}{2} \\
\frac{1}{2}, \frac{1}{2} \leq x \leq 1
\end{array}\right.
\end{aligned}
$$

Clearly, $f(X)$ is closed and $f(X) \subseteq T(X)$ and $g(X) \subseteq S(X)$. The sequence $\left\{x_{n}\right\}, x_{n}=\frac{1}{2}+\frac{1}{n}$, is in X such that $\lim _{n \rightarrow \infty} f x_{n}=\lim _{n \rightarrow \infty} S x_{n}=\frac{1}{8}$. So that the pair (f, S) satisfies the $b-(E . A)$-property. But the pair (f, S) is noncompatible for $\lim _{n \rightarrow \infty} d\left(f S x_{n}, S f x_{n}\right) \neq 0$. The altering functions ψ, φ : $[0, \infty) \rightarrow[0, \infty)$ are defined by $\psi(t)=\sqrt{t}$. To check the contractive condition (2.1), for all $x, y \in X$,
if $x=0$ or $x=\frac{1}{2}$, then (2.1) is satisfied.
if $x \in\left(0, \frac{1}{2}\right)$, then

$$
\psi(d(f x, g y))=\frac{x}{4} \leq \frac{99}{100} \frac{9 x}{4}=\frac{99}{100} d(f x, S x) \leq \frac{99}{100} \psi\left(M_{s}(x, y)\right)
$$

If $x \in\left(\frac{1}{2}, 1\right]$, then

$$
\psi(d(f x, g y))=\frac{x}{4} \leq \frac{99}{100}\left(\frac{x}{4}+\frac{1}{8}\right)=\frac{99}{100} d(f x, S x) \leq \frac{99}{100} \psi\left(M_{s}(x, y)\right)
$$

Then (2.1) is satisfied for all $x, y \in X$. The pairs (f, S) and (g, T) are weakly compatible. Hence, all of the conditions of Theorem 2.1 are satisfied. Moreover 0 is the unique common fixed point of f, g, S and T.

Acknowledgements. The authors would like to thank the referee for useful comments.

References

[1] M. Aamri and D. El Moutawakil, Some new common fixed point theorems under strict contractive conditions, J. Math. Anal. Appl. 270 (2002), 181-188.
[2] M. Abbas, N. Saleem and M. De la Sen, Optimal coincidence point results in partially ordered non-Archimedean fuzzy metric spaces, Fixed Point Theory and Appl. 2016 (2016), Article ID 44.
[3] A. H. Ansari, Note on" $\varphi-\psi$-contractive type mappings and related fixed point", The 2nd Regional Conference on Mathematics And Applications PNU (2014), 377-380.
[4] A. H. Ansari, S. Chandok and C. Ionescu, Fixed point theorems on b-metric spaces for weak contractions with auxiliary functions, Journal of Inequalities and Applications 2014 (2014), Article ID 429.
[5] I. A. Bakhtin, The contraction mapping principle in almost metric spaces, Functional Analysis 30 (1989), 26-37.
[6] I. Beg and M. Abbas, Coincidence and common fixed points of noncompatible maps, J. Appl. Math. Inform. 29 (2011), 9743-9752.
[7] S. Czerwik, Contraction mappings in b-metric spaces, Acta Math. Inform. Univ. Ostraviensis 1 (1993), 5-11.
[8] G. Jungck, Compatible mappings and common fixed points, Int. J. Math. Sci. 9 (1986), 771-779.
[9] M. S. Khan, M. Swaleh and S. Sessa, Fixed point theorems by altering distances between the points, Bulletin of the Australian Mathematical Society 30, no. 1 (1984), 1-9.
[10] V. Ozturk and S. Radenović, Some remarks on b-(E.A)-property in b-metric spaces, Springerplus 5, 544 (2016), 10 pages.
[11] V. Ozturk and D. Turkoglu, Common fixed point theorems for mappings satisfying (E.A)-property in b-metric spaces, J. Nonlinear Sci. Appl. 8 (2015),1127-1133.
[12] N. Saleem, B. Ali, M. Abbas and Z. Raza, Fixed points of Suzuki type generalized multivalued mappings in fuzzy metric spaces with applications, Fixed Point Theory and Appl. 2015 (2015), Article ID 36.

