

Partially topological group action

M. A. AL SHUMRANI

Department of Mathematics, King Abdulaziz University, P.O.Box: 80203 Jeddah 21589, Saudi Arabia (maalshmrani1@kau.edu.sa)

Communicated by S. García-Ferreira

Abstract

The concept of partially topological group was recently introduced in [3]. In this article, we define partially topological group action on partially topological space and we generalize some fundamental results from topological group action theory.

2010 MSC: Primary: 54A25; Secondary: 54B05.

Keywords: partially topological space; partially topological group; group action.

1. Partially topological spaces

In this section, we recall definition of the category \mathbf{GTS}_{pt} of partially topological spaces and strictly continuous mappings which was defined in [4].

Definition 1.1. Let X be any set, τ_X be a topology on X. A family of open families $Cov_X \subseteq \mathcal{P}(\tau_X)$ will be called a **partial topology** if the following conditions are satisfied:

- (i) if $\mathcal{U} \subseteq \tau_X$ and \mathcal{U} is finite, then $\mathcal{U} \in \text{Cov}_X$;
- (ii) if $\mathcal{U} \in \text{Cov}_X$ and $V \in \tau_X$, then $\{U \cap V : U \in \mathcal{U}\} \in \text{Cov}_X$;
- (iii) if $\mathcal{U} \in \text{Cov}_X$ and, for each $U \in \mathcal{U}$, we have $\mathcal{V}(U) \in \text{Cov}_X$ such that $\bigcup \mathcal{V}(U) = U$, then $\bigcup_{U \in \mathcal{U}} \mathcal{V}(U) \in \text{Cov}_X$;
- (iv) if $\mathcal{U} \subseteq \tau_X$ and $\mathcal{V} \in \text{Cov}_X$ are such that $\bigcup \mathcal{V} = \bigcup \mathcal{U}$ and, for each $V \in \mathcal{V}$ there exists $U \in \mathcal{U}$ such that $V \subseteq U$, then $\mathcal{U} \in \text{Cov}_X$.

Elements of τ_X are called **open sets**, and elements of Cov_X are called **admissi**ble families. We say that (X, Cov_X) is a partially topological generalized topological space or simply partially topological space. For simplicity, from now on, we shall denote a partially topological space (X, Cov_X) by X.

Let X and Y be partially topological spaces and let $f: X \to Y$ be a function. Then f is called **strictly continuous** if $f^{-1}(\mathcal{U}) \in \text{Cov}_X$ for any $\mathcal{U} \in \text{Cov}_Y$. A bijection $f: X \to Y$ is called a **strictly homeomorphism** if both f and f^{-1} are strictly continuous functions. If we have a strictly homeomorphism between X and Y we say that they are strictly homeomorphic and we denote that by $X \cong Y$.

Remark 1.2. The above notion of partial topology is a special case of the notion of generalized topology in the sense of H. Delfs and M. Knebusch considered in [2, 4, 5, 6, 7], when the family Op_X of open sets of the generalized topology forms a topology.

Definition 1.3. Let (X, Cov_X) be a partially topological space and let Y be a subset of X. Then the partial topology

$$Cov_Y = (\langle Cov_X \cap_2 Y \rangle_Y)_{pt},$$

that is: the smallest partial topology containing $Cov_X \cap_2 Y$, is called a **subspace partial topology** on Y, and (Y, Cov_Y) is a **subspace** of (X, Cov_X) . (It is also the smallest generalized topology containing $Cov_X \cap_2 Y$.)

Fact 1.4. Let $\varphi: X \to X'$ be a mapping between partially topological spaces and let Y be a subspace of X. Then the following are equivalent:

- a) φ is strictly continuous,
- b) the restriction mapping $\varphi|_Y: Y \to X'$ is strictly continuous.

Definition 1.5. Let (X, Cov_X) and (Y, Cov_Y) be two partially topological spaces. The **product partial topology** on $X \times Y$ is the partial topology $Cov_{X\times Y} = (\langle Cov_X \times_2 Cov_Y \rangle_{X\times Y})_{pt}$ in the notation of Definition 4.6 of [7]; in other words: the smallest partial topology in $X \times Y$ that contains $Cov_X \times_2 Cov_Y$.

Recall that a mapping $f: X \to Y$ is said to be an open mapping if for every open set U of X, the set f(U) is open in Y. It is said to be a closed mapping if for every closed set A of X, the set f(A) is closed in Y. Also, recall that a surjective mapping $f: X \to Y$ is said to be a quotient mapping provided a subset U of Y is open in Y if and only if $f^{-1}(U)$ is open in X.

2. Partially Topological Groups

In this section, we recall the definition of partially topological group. This notion was recently introduced in [3].

Definition 2.1. A partially topological group G is an ordered pair ((G, *), Cov_G) such that (G,*) is a group, while Cov_G is a generalized topology on Gsuch that $\bigcup Cov_G$ is a T_1 topology on G and the multiplication mapping of $(G \times G, \operatorname{Cov}_{G \times G})$ into $(G, \operatorname{Cov}_G)$, which sends ordered pair $(x, y) \in G \times G$

to x * y, is strictly continuous and the inverse mapping from (G, Cov_G) into $(G, \operatorname{Cov}_G)$, which sends each $x \in G$ to x^{-1} , is strictly continuous. For simplicity, from now on, we shall denote a partially topological group $((G, *), Cov_G)$ by G.

Definition 2.2. Any subgroup H of a partially topological group G is a partially topological group and it is called a partially topological subgroup of G.

Definition 2.3. Let $\varphi: G \to G'$ be a function. Then φ is called a **morphism** of partially topological groups if φ is both strictly continuous and group homomorphism. Moreover, φ is an **isomorphism** if it is strictly homeomorphism and group isomorphism.

If we have an isomorphism between two partially topological groups G and G', then we say that they are isomorphic and we denote that by $G \cong G'$.

Remark 2.4. Obviously composition of two morphisms of partially topological groups is a morphism. In addition, the identity mapping is an isomorphism. So partially topological groups and their morphisms form a category PTGr.

3. Partially Topological Group Action On Partially TOPOLOGICAL SPACE

In this section, we introduce partially topological group action on partially topological space and we extend some fundamental results in [1] of action of a topological group on a topological space to this new concept.

Definition 3.1. If G is a partially topological group with identity e and X is a partially topological space, then an **action** of G on X is a mapping $G \times X \to X$, with the image of (g,x) being denoted by g(x), such that (gh)(x) = g(h(x))and e(x) = x for all $g, h \in G$ and $x \in X$.

If this mapping is strictly continuous, then the action is said to be strictly continuous.

The space X, with a given strictly continuous action of G on X, is called partially G-space.

For a point $x \in X$, the set $G(x) = \{gx : g \in G\}$ is called the **orbit** of x.

Definition 3.2. Let G be a partially topological group and X a partially topological space. Let G act on X. For a point x of X, the set

$$G_x = \{g \in G : gx = x\} \quad (or \quad G_x = \{g \in G : xg = x\})$$

is called the **stabilizer of** x.

Fact 3.3. The stabilizer G_x of any point $x \in X$ is a subgroup of G.

Definition 3.4. Let G be a partially topological group and X a partially topological space. Let G act on X. For a point x of X, we define a mapping

$$\mu_x:G\to X$$

by
$$\mu_x(g) = gx$$
 (or $\mu_x(g) = xg$).

Note that μ_x is strictly continuous by strictly continuity of the action. The action is called transitive if for each $x \in X$, $G_x = X$. Then Obviously we have the following fact.

Fact 3.5. μ_x is surjective iff G acts transitively on X.

Proposition 3.6. Every strictly continuous action $\theta: G \times X \to X$ of a partially topological group G on a partially topological space X is an open mapping.

Proof. It suffices to prove that the images under θ of the elements of some base for $G \times X$ are open in X. Let $O = U \times V \subset G \times X$, where U and V are open sets in G and X, respectively. Then $\theta(O) = \bigcup \theta_g(V)$ is open in X since every

 θ_g is a strictly homeomorphism of X onto itself. Since the open sets $U \times V$ form a base for $G \times X$, the mapping θ is open.

Proposition 3.7. The strictly continuity of an action $\theta: G \times X \to X$ of a partially topological group G with identity e on a partially topological space X is equivalent to the strictly continuity of θ at the points of the set $\{e\} \times X \subset G \times X$.

Proof. Let $g \in G$ and $x \in X$ be arbitrary and U be a neighborhood of gx in X. Since θ_h is a homeomorphism of X for each $h \in G$, the set $V = \theta_{g-1}(U)$ is a neighborhood of x in X. By the strictly continuity of θ at (e, x), we can find a neighborhood O of e in G and a neighborhood W of x in X such that $hy \in V$ for all $h \in O$ and $y \in W$. Clearly, if $h \in O$ and $y \in W$, then $(gh)(y) = g(hy) \in gV = \theta_g(V) = U$. Thus, $hy \in U$, for all $h \in gO$ and all $y \in W$, where O' = gO is a neighborhood of g in G. Hence, the action θ is strictly continuous.

Next we present two examples of strictly continuous actions of partially topological groups.

Example 3.8. Any partially topological group G acts on itself by left translations, that is, $\theta(x,y) = xy$ for all $x,y \in G$. The strictly continuity of this action follows from the strictly continuity of the multiplication in G.

Example 3.9. Let G be a partially topological group, H a closed subgroup of G, and let G/H be the corresponding left coset space. The action ϕ of G on G/H, defined by the rule $\phi(g,xH)=gxH$, is strictly continuous. Indeed, let $y_0 \in G/H$, and fix an open neighborhood O of y_0 in G/H. Choose $x_0 \in G$ such that $\pi(x_0) = y_0$, where $\pi: G \to G/H$ is the quotient mapping. There exist open neighborhoods U and V of the identity e in G such that $\pi(Ux_0) \subset O$ and $V^2 \subset U$. Clearly, $W = \pi(Vx_0)$ is open in G/H and $y_0 \in W$. By the choice of U and V, if $g \in V$ and $y \in W$, then $\phi(g,y) \in O$. Indeed, let $x_1 \in Vx_0$ with $\pi(x_1) = y$. Then $y = x_1 H$ and $\phi(g, y) = gx_1 H \in VVx_0 H \subset \pi(Ux_0) \subset O$. Therefore, ϕ is continuous at $(e, y_0) \in G \times G/H$. Hence, ϕ is strictly continuous by Proposition 3.7.

Suppose that a partially topological group G acts strictly continuously on a partially topological space X and that X/G is the corresponding orbit set. Let

X/G have the partially quotient topology generated by the orbital projection $\pi: X \to X/G$ (a subset $U \subset X/G$ is open in X/G if and only if $\pi^{-1}(U)$ is open in X). The partially topological space X/G is called the orbit space or the orbit space of the partillay G-space X.

The following result shows that the orbital projection is always an open mapping.

Proposition 3.10. If $\theta: G \times X \to X$ is a strictly continuous action of a partially topological group G on a partially topological space X, then the orbital projection $\pi: X \to X/G$ is an open mapping.

Proof. For any open set $U \subset X$, consider the set $\pi^{-1}\pi(U) = GU$. Every left translation θ_g is a strictly homeomorphism of X onto itself, so the set $GU = \bigcup \theta_g(U)$ is open in X. Since π is a quotient mapping, $\pi(U)$ is open in X/G. Hence, π is an open mapping.

Theorem 3.11. Suppose a compact partially topological group H acts strictly continuously on a Hausdorff partially space X, then the orbital projection π : $X \to X/H$ is both open and perfect mapping.

Proof. First note that π is open by Proposition 3.10. Next we show that π is perfect. Let $y \in X/H$, choose $x \in X$ such that $\pi(x) = y$. Note that $\pi^{-1}(y) = y$ Hx is the orbit of x in X. Since the mapping of H onto Hx assigning to every $g \in H$ the point $gx \in X$ is strictly continuous, the image Hx of the compact group H is also compact. Hence, all fibers of π are compact.

We show that the mapping π is closed. Let $y \in X/H$ and $x \in X$ such that $\pi(x) = y$. Let O be an open set in X containing $\pi^{-1}(y) = Hx$. Since the action of H on X is strict continuous, we can find, for every $g \in H$, open neighborhoods $g \in U_q$ and $x \in V_q$ in H and X, respectively, such that $U_gV_g\subset O$. By the compactness of H and of the orbit Hx, there exists a finite set $F \subset H$ such that $H = \bigcup_{g \in F} U_g$ and $Hx \subset \bigcup_{g \in F} gV_g$. Then $V = \bigcap_{g \in F} V_g$ is an open neighborhood of x in X, and we claim that $HV \subset O$. Indeed, if $h \in H$ and $z \in V$, then $h \in U_g$, for some $g \in F$, so that $hz \in U_gV \subset U_gV_g \subset O$. Thus, $W = \pi(V)$ is an open neighborhood of y in X/H, and we have that $\pi^{-1}\pi(V) = HV \subset O$. Hence, π is closed.

Definition 3.12. Let X and Y be partially G-spaces with strictly continuous actions $\theta_X: G \times X \to X$ and $\theta_Y: G \times Y \to Y$. A strictly continuous mapping $f: X \to Y$ is called **partially** G-equivariant if $\theta_Y(g, f(x)) = f(\theta_X(g, x)),$ that is, gf(x) = f(gx), for all $g \in G$ and all $x \in X$. Clearly, f is partially G-equivariant if and only if the following diagram

$$G \times X \xrightarrow{\theta_X} X$$

$$\downarrow_F \qquad \qquad \downarrow_f$$

$$G \times Y \xrightarrow{\theta_Y} Y$$

commutes, where $F = id_G \times f$ is the product of the identity mapping id_G of G and the mapping f.

Example 3.13. Let H be a closed subgroup of a partially topological group G, and Y = G/H be the left coset space. Denote by θ_G the action of G on itself by left translations, and by θ_Y the natural strictly continuous action of G on Y. Then the quotient mapping $\pi: G \to G/H$ defined by $\pi(x) = xH$ for each $x \in G$ is equivariant. Indeed, the equality $g(\pi(x)) = gxH = \pi(gx)$ holds for all $g, x \in G$. Equivalently, the following diagram

$$G \times G \xrightarrow{\theta_G} G$$

$$\downarrow \Pi \qquad \qquad \downarrow \pi$$

$$G \times Y \xrightarrow{\theta_Y} Y$$

commutes, where $\Pi = id_G \times \pi$

Let $\eta = \{X_i : i \in I\}$ be a family of partially G-spaces. Then the product space $X = \prod_{i \in I} X_i$, if X is Hausdorff, is a partially G-space. To define an action of G on X, take any $g \in G$ and any $x = (x_i)_{i \in I} \in X$, and put $gx = (gx_i)_{i \in I}$. Thus, G acts on X coordinatewise.

The following result shows the strictly continuity of this action.

Proposition 3.14. The coordinatewise action of G on the product $X = \prod_{i \in I} X_i$ of partially G-spaces is strictly continuous, that is, X is a partially G-space, if X is Hausdorff.

Proof. By Proposition 3.7, it suffices to verify the continuity of the action of G on X at the neutral element $e \in G$. Let $x = (x_i)_{i \in I} \in X$ be an arbitrary point and $O \subset X$ a neighborhood of gx in X. Since canonical open sets form a base of X, we can assume that $O = \prod_{i \in I} O_i$, where each O_i is an open neighborhood of x_i in X_i and the set $F = \{i \in I : O_i \neq X_i\}$ is finite. Since all factors are partially G-spaces, we can choose, for every $i \in F$, open neighborhoods $e \in U_i$ and $x_i \in V_i$ in G and X_i , respectively, such that $U_iV_i \subset O_i$. Put $U = \bigcup V_i$

and $W = \prod_{i \in I} W_i$, where $W_i = V_i$ if $i \in F$ and $W_i = X_i$ otherwise. Therefore, it follows from the definition of the sets U and W that $UW \subset O$. Hence, the action of G on X is strictly continuous.

Theorem 3.15. Let G be a partially topological group and X a partially topological space. Let G act on X. Suppose that both G and X/G are connected, then X is connected.

Proof. Suppose that X is the union of two disjoint nonempty open subsets U and V. Now $\pi(U)$ and $\pi(V)$ are open in X/G. Since X/G is connected, $\pi(U)$ and $\pi(V)$ cannot be disjoint. If $\pi(x) \in \pi(U) \cup \pi(V)$, then both $U \cup O(x)$ and $V \cup O(x)$ are nonempty, where O(x) is the orbit of x. It means O(x) is a disjoint union of two nonempty open sets. But O(x) is the image of G under the strictly continuous function $f: G \to X$ defined by f(g) = g(x). Therefore, O(x) is connected which is a contradiction. Hence, X is connected.

Theorem 3.16. If X is a compact partially topological group and G a closed subgroup acting on X by left translation, then X/G is regular.

Proof. Since G is closed subgroup and the left translation mapping $L_x: X \to X$ is strictly homeomorphism then $\pi^{-1}\pi(x) = xG = L_x(G)$ is closed. Thus every point $\pi(x)$ of X/G is closed, and it follows that X/G is T_1 space.

Now we show that for a closed subset F of X/G and a point $p \notin F$ there are open sets U, V satisfying $p \in U, F \subset V, U \cap V = \emptyset$. Since X acts transitively on X/G, we may assume that p is an element of the class eG = G of the identity element e. Since F is closed, there exists an open set U_0 such that $F \cap U_0 = \emptyset$ and $p \in U_0$. From the strictly continuity of group action of X, there is an open set W such that $e \in W$ and $W^{-1}W \subset \pi^{-1}(U_0)$. The set $W\pi^{-1}(F) = \bigcup Wx$ is open. Since π is an open mapping, both $U = \pi(W)$ $x \in \pi^{-1}(F)$

and $V = \pi(W\pi^{-1}(F))$ are open sets and $p \in U$ and $F \subset V$.

Next we show that $U \cap V = \emptyset$. Suppose that there exists $y \in U \cap V$. Then there exist $x_1, x_2 \in W$ and $x \in \pi^{-1}(F)$ such that $y = \pi(x_2) = \pi(x_1x)$. Thus, we have $g \in G$ such that $x_2g = x_1x$, from which we deduce that $\pi(xg^{-1}) \in F \cap U_0 =$ \varnothing from $xg^{-1} = x_1^{-1}x_2 \in W^{-1}W \subset \pi^{-1}(U_0)$. Therefore, $U \cap V = \varnothing$.

References

- [1] A. Arhangel'skii and M. Tkachenko, Topological groups and related structures, World Scientific, 2008.
- [2] H. Delfs and M. Knebusch, Locally semialgebraic spaces, Lecture Notes in Math. 1173, Springer, Berlin-Heidelberg, 1985.
- [3] C. Ozel, A. Piękosz, M. A. Al Shumrani and E. Wajch, Partially paratopological groups, Topology Appl. 228 (2017), 68-78.
- [4] A. Piękosz, On generalized topological spaces I, Ann. Polon. Math. 107, no. 3 (2013), 217 - 241.
- [5] A. Piękosz, On generalized topological spaces II, Ann. Polon. Math. 108, no. 2 (2013), 185 - 214.
- [6] A. Piękosz, O-minimal homotopy and generalized (co)homology, Rocky Mountain J. Math. 43, no. 2 (2013), 573-617.
- [7] A. Piękosz and E. Wajch, Compactness and compactifications in generalized topology, Topology Appl. 194 (2015), 241–268.