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In this paper, we introduce a new iterative scheme for solving the split
common null point problem. We then prove the strong convergence
theorem under suitable conditions. Finally, we give some numerical
examples for supporting our main results.
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1. INTRODUCTION

Let Hy and Hs be real Hilbert spaces and T': H; — Hs a bounded linear
operator (we denote A* by its adjoint) . Let C' and @ be nonempty, closed and
convex subsets of H; and Hs, respectively. The split feasibility problem is to
find z € C such that Tx € Q. In order to solve the split feasibility problem
(SFP), Byrne [5] proposed the following iterative algorithm in the framework
of Hilbert spaces: x1 € C' and

(1.1) Tny1 = Po(xn — ANT*(I — Pg)Txy), n>1,

which is often called the CQ algorithm, where A > 0, Pc and Py are the
metric projections on C' and @, respectively. It was shown that the sequence
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{xn} converges weakly to a solution of SFP. Since then several iterations have
been invented for solving the SEP (see, for example, [2, 11, 13, 17]).

Let A: Hy — 2"t and B : Hy — 22 be set-valued mappings. Byrne et al.
[6] considered the problem of finding a point z in H; such that

(1.2) ze A7tonT (B 10),

where the set of null points of A is defined by A710 = {z € H; : 0 € Az}. We
know that A~10 is closed and convex. This problem is called the split common
null point problem and includes the spit feasibility problem as special cases;
see also [8].

In 1953, Mann [10] introduced the following iteration process. Let C be
a nonempty , closed and convex subset of a Banach space E. A mapping
T :C — C is called nonexpansive if

(1.3) [Tz — Tyl < |lz —yll

for all z,y € C. We denote by F(T) the fixed point set of T'. For an initial
point z; € C, an iteration process {x, } is defined recursively by

(1.4) Tnt1 = QpTp + (1 — ap)Txn, n €N,

where {ay,} is a sequence in [0,1] and T is a nonexpansive mapping on C'.
In 1967, Halpern [7] defined an iteration process as follows: Take zg,z1 € C
arbitrarily and define {x,,} recursively by

(1.5) Tnt1 = anZo + (1 — ap)Txy, n €N,

where {«a,,} is a sequence in [0, 1] and T is a nonexpansive mapping on C.
A mapping f : C — C is said to be a contraction if there exists o € (0,1)
such that

(1.6) 1f(z) = FW)ll < alle —yl,Va,y € C.

In 2000, Moudafi [12] introduced the following algorithm: For 2; € C, define
the sequence {z,} by
(1.7) Tnt1 = anf(xn) + (1 — )Ty, n €N,

where {a,,} C (0,1) and T is a nonexpansive mapping. This method is called
the viscosity approximation method.

Let H be a Hilbert space and let F' be a strictly convex, reflexive and smooth
Banach space. Let Jg be the duality mapping on F'. Let C and D be nonempty,
closed and convex subsets of H and F', respectively. Let Po and Pp be the
metric projections of H onto C' and F onto D, respectively. Let T': H — F be
a bounded linear operator such that 7" # 0 and let 7™ be the adjoint operator of
T. Suppose that C N A~1D # . In 2015, Alsulami and Takahashi [2] defined
the following algorithm: For any z; € H,

(1.8) Tnt1 = Bntn + (1 = Bn)Pc(I —rT*Jp(T — PpT))xy, n €N,
where {$3,} C [0,1] and 7 € (0,00). It was proved that if
(1.9) 0<a<pBp,<b<l and 0<7|T|*<2
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for some a,b € R, then {z,} converges weakly to 29 € C NT~1D, where
20 = limy, .00 Ponr-1pTn-

They introduced the following Halpern’s type iteration: For any x; € H,
(1.10)
Tnt1 = Bnrn + (1 — Bn)(@nun + (1 — an)Po(I — rT*Jp(I — Pp)T)xy),n €N,

where r € (0,00), {an} C (0,1) and {B,} C (0,1). It was proved that if

(1.11) 0<7r|T|?* <2, lim a, =0,
n—o0
(1.12) Zan:oo and 0<a<fB,<b<1
n=1

where a,b € R. Then {z,} converges strongly to a point zo = C N A~1D, for
some zg = Pona-1pu.

Recently, using the idea of Halpern’s iteration, Alofi et al. [1] proved the
following strong convergence theorem for finding a solution of the split common
null point problem in Banach spaces.

Theorem 1.1. Let H be a Hilbert space and let F' be a uniformly conver and
smooth Banach space. Let Jp be the duality mapping on F. Let A and B be
mazimal monotone operators of H into 2 and F into 25 such that A=10 #
@ and B710 # @, respectively. Let Jy be the resolvent of A for A > 0 and let
Q. be the metric resolvent of B for p > 0. Let T : H — F be a bounded linear
operator such that T # 0 and let T* be the adjoint operator of T'. Suppose that
AT ONT Y (B710) # @. Let {u,} be a sequence in H such that u, — u. Let
x1 =2 € H and let {x,} C H be a sequence generated by

(1.13)
Tpt1 = Bntn + (1= Bp)(@nun + (1 = an)Jdy, (I = X\ Jp(I — Qun)T)In)

for all n € N, where {\,}, {pn} C (0,00), {an} C (0,1) and {B,} C (0,1)
satisfy the following conditions

(1.14)  0<a<M|TIP<b<2, 0<k<p, 0<c<B,<d<l,

oo

(1.15) nhﬂngo onp =0 and Z Oy = 00
n=1

for some a,b,c,d,k € R. Then {x,} converges strongly to zo € A~'0 N

T-YB~10), where zg = Py-19n7-1(5-10)U-

Motivated by the previous works, we introduce a new iterative scheme for
solving the split common null point problem. We then prove the strong con-
vergence theorem under suitable conditions. Finally, we give some numerical
examples for supporting our main results.
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2. PRELIMINARIES AND LEMMAS

Let H be a real Hilbert space with inner product (-,-) and norm || - ||,
respectively. For z,y € H and A € R, we know from [15] that

(2.1) lz +yll* < llzl* + 20y, @ + y);

(2.2) Az + (1 = Nyl* = Alz]* + 1 = Myll* = A1 =Nz - y]*.
Furthermore, for z,y,u,v € H,
(2.3) 2z —y,u—v) = |z — ol + lly —ul® — |lo —ul® — [ly — o>,

The nearest point projection of a nonempty, closed and convex set C' is denoted
by Pc, that is, ||z — Pez| < [z — y|| for all z € H and y € C. Such P¢ is
called the metric projection of H onto C. We know the metric projection Pg
is firmly nonexpansive, i.e.,

(2.4) |Pex — Pey||* < (Pox — Poy,x — y)

for all z,y € H. Moreover (x — Pox,y — Pcx) < 0 holds for all x € H and
y € C; see [15].

Let E be a real Banach space with norm || - || and let E* be the dual space
of E. We denote the value of y* € E* at € E by (z,y*). When {z,} is a
sequence in E, we denote the strong convergence of {z,} to z € E by z, — «
and the weak convergence by x,, — x. The modulus § of convexity of F is
defined by

. Tty
5 ot =it {1 -1 <1y < 1 ke - 2 o

for every € with 0 < € < 2. A Banach space F is said to be uniformly convex
if 6(¢) > 0. It is known that a Banach space F is uniformly convex if and only
if for any two sequences {z,} and {y,} in E such that

(2.6) lim ||z,||= lm ||y.||=1 and lim ||z, —y.|| =2,
n—00 n—00 n—00
limy, o0 [|Zn — yn|| = 0 holds. A uniformly convex Banach space is strictly

convex and reflexive.
The duality mapping J from E into 27" is defined by
(2.7) J(z) = {z* € E* : (z,2%) = ||z[* = ||=*||*}
for every x € E. Let U = {z € E : ||z|| = 1}. The norm of E is said to be
Gateaux differentiable if for each x,y € U, the limit
t —
o8) ety — el
t—0 t

exists. In this case, E is called smooth. We know that F is smooth if and only
if J is a single-valued mapping of E into E*. We also know that F is reflexive if
and only if J is surjective, and E is strictly convex if and only if J is one-to-one
Therefore, if E is a smooth, strictly convex and reflexive Banach space, then J
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is a single-valued bijection and in this case, the inverse mapping J ' coincides
with the duality mapping J* on E*. For more details, see [14, 16].

Let C be a nonempty, closed and convex subset of a strictly convex and
reflexive Banach space E. Then we know that for any x € E, there exists a
unique element z € C such that ||z — z|| < ||z — y|| for all y € C. Putting
z = Pox, we call Po the metric projection of E onto C.

Lemma 2.1 ([16]). Let E be a smooth, strictly convex and reflexive Banach
space. Let C' be a nonempty, closed and convex subset of E, and let x1 € E and
z € C Then, the following conditions are equivalent:

(1) z= Poxy;

(2) <ny,<](l‘1 7Z)> > 0; Vye C.

Let E be a Banach space and let A be a mapping of E into 2Z”. The effective
domain of A is denoted by dom(A), that is, dom(A) = {x € E: Az # @}. A
multi-valued mapping A on E is said to be monotone if (x — y,u* — v*) > 0
for all z,y € dom(A), u* € Az, and v* € Ay. A monotone operator A on E is
said to be maximal if its graph is not properly contained in the graph of any
other monotone operator on E. The following theorem is due to Browder [4];
see also [14].

Lemma 2.2 ([4]). Let E be a uniformly convex and smooth Banach space and
let J be the duality mapping on E into E*. Let A be a monotone operator of
E into 287 . Then A is mazimal if and only for any r > 0,

(2.9) R(J+rA) =FE",
where R(J + rA) is the range of J + rA.
Let E be a uniformly convex and smooth Banach space with a Gateaux

differentiable norm and let A be a monotone operator of E into 2£”. For all
x € E and r > 0, we consider the following equation

(2.10) 0€ J(z, —z) +rAz,.

This equation has a unique solution z,.. We define J,. by z, = J.z. Such J,
where r > 0 are called the metric resolvent of A. In a Hilbert space H, the
metric resolvent J,. of A is simply called the resolvent of A. We also know the
following lemmas:

Lemma 2.3 ([3, 18]). Let {s,} be a sequence of nonnegative real numbers,

let {a,} be a sequence in [0,1] with Y ;" | a,, = 00, let {B,} be a sequence of
nonnegative real numbers with > >~ B, < co and {7, } be a sequence of real

numbers with lim sup,, .. vn < 0. Suppose that
(2.11) Snt1 = (1 — n)Sn + anyn + Bn
foralln=1,2,.... Then lim,_, s, =0.

Lemma 2.4 ([9]). Let {T',} be a sequence of real numbers that does not decrease
at infinity in the sense the there exists a subsequence {T'y,} of {T'n} which
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satisfies T'y, < Ty, 41 for all i € N. Define the sequence {T(n)}
as follows:

nsng OF integers

(2.12) 7(n) =mazx{k <n:Tk <Tiy1},

where ng € N such that {k < ng: Ty <Tyy1} # . Then, the following hold:
(i) 7(no) < 71(np+1) < ... and 7(n) — oo;
(ii) F7—(n) < FT(n)-i-l and I';, < FT(n)-i-l; Vn > ng.

3. MAIN RESULTS

In this section, we prove strong convergence theorems for finding a solution
of the split common null point problem in Banach spaces.

Theorem 3.1. Let H be a Hilbert space and let F' be a uniformly conver and
smooth Banach space. Let Jp be the duality mapping on F. Let f : H — H
be a contraction. Let A and B be maximal monotone operators of H into 2
and F into 2F", respectively. Let Jy be the resolvent of A for X\ > 0 and let
Q. be the metric resolvent of B for 1> 0. Let T : H — F be a bounded linear
operator such that T # 0 and let T* be the adjoint operator of T'. Suppose that
AT ONT Y B710) # @. Letxy € H and let {w,} C H be a sequence generated

by
(3.1) Tnt1 = an f(2n) + Batn + Yndx, (I = AT Jp(I — Qu, )T )y

for all n € N, where {m}, (An} C (0,00), {an} € (0,1), {Bu} C (0,1) and
{7} € (0,1) satisfy the following conditions:

(3.2) 0<a<M|T?|<b<2, 0<k<p, O0<c<y,<d<l,

(3.3) lim o, =0 and Z Oy = 00
n=1

n—oo

for some a,b,c,d,k € R. Then {x,} converges strongly to 2o € A~'0 N
Tﬁl(Bilo), where zg = PA—lOnT—l(B—lO)f(ZO).

Proof. Put z, = Jx, (I — \T*Jr(I — Qu,)T )z for all n € N and let z €
A7'onT~Y(B7'0). We have that z = J\,z and Tz = Q,,, Tz for all n € N.
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Since Jy, is nonexpansive, we have

lzn — 21> = I, (I = MNT*Tp(I = Qpu, )T)wy — Iy, 2|2
< N = AT Tp(I — Qu )T — 2|2
= lan —2|* = 20z — 2, T*Jp(I — Qu,)Ty)
ANNTTr (I = Quu, ) T ?
< lan — 2| = 20 (T2, — T2, Jp(I — Qu,)Ty)
+ AT = Qu, ) Tn|?
= |z —2|* = 2M(T2n — Qu. Txp, Jr(I — Qp, ) Ty)
=2 (Qu, Txy — Tz, Jp(I — Qp, )Txy)
+ AT = Qu ) T2
= |lzn - Z||2 =2\ || Ty, — QunTInHQ
=20 (Qu, Txy — Tz, Jp(I — Qp, )Txy)
+ AT = Qu, ) T |?
< lan = 21 = 20| T — Qu, Tanl® + NITIPN( = Qu, ) Tznll?
(3.4) = |lon =212 + Xl TI? = 2)I1( = Q) Taa .

Since 0 < A\, ||T'||? < 2, it follows that ||z, — z|| < ||z, — z|| for all n € N. So we
obtain

[Znt1 =2l = llowf(@n) + Bazn + Ynzn — 2||
< anllf(zn) = 2l + Bullzn — 2l + nllzn — 2|
< omallzn =zl +onllf(2) = 2] + (1= an)llzn — 2]
(35) = (I-—an(l—a))llzn =zl +anllf(z) — 2|

By induction, we conclude that {z, } is bounded. So are {T'z,}, {z,} and {y,}.
Put 20 = Py-10n7-1(B-10)f(20). We see that

(3.6) Tnt1 = Tn = n(f(@n) = @n) + (20 — 20),
which implies that

(3.7) Tpp1 = Tp = n(f(2n) = n) = V(20 — Tn).
It follows that

(@41 — @n — an(f(zn) — Tn), Tn — 20) = Yn(2n — Tn, Tn — 20)

(38) = _'Yn<xn — Zn,Tp — ZO>-

From (2.3), we obtain

2(Tn — 2n, Tn — 20) |zn — ZOHQ + [l2n — InHQ — |z — ZO||2

\%

lzn = 2001 + ll2n — 2]l = [l — 20/

(3.9) Iz — an||2
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From (3.8) and (3.9), we obtain

2{Tpq1 — Ty Ty, — 20) 200, (f(xn) — Ty Ty — 20) — 20 {Tn — Zn, Tn — 20)

(3.10) < 200 (f(Tn) — Tns Tn — 20) — Ynllzn — xn||2
Using (2.3) and (3.10), we have
(3.11)

lznt1=20l* ~llen—ani1l*~ll2n—20l1* < 200 (f (n) = 2n, 2n—20)~7n | 2n—2n .
Putting '), = ||z, — 20]|? for all n € N, we see that

(3.12) Tnyr =Ty — [lan — xn+1||2 < 2an(f(@n) — Tn, Tn — 20) = Ynllzn — $n||2
We note that

[Zn41 —2nll = llanf(@n) + Brn + nzn — 24|
(3.13) < anllf(@n) = zall + Ynllzn — 24l
This shows that
[zt — InHQ < (oallf(zn) — 2all + llzn — an)Q
= apllf(zn) = nl® + 2007l f(@n) = zallll2n — 2al
(3.14) + V2|20 — za .

Hence by (3.12) and (3.14), we have
Ppi1 =Tn < anlon| f(zn) - anQ + 29| f(@n) — zalll2n — znll)

+ %%H'Zn - anQ
+ 200 (f(Tn) — Tn, Tn — 20) — Ynll2n — xn”Q
= an(an|f(zn) — xn”Q + 2901 f (zn) — T0ll|2n — nl])
+ (v — Dllzn — xn”Q
(3.15) + 20, (f(2n) — 20, Tn — 20) — 20|20 — 202

So we obtain

Prpr = Tn 47 (1 = vn)ll2n — xn”Q < anlanllf(zn) — xn”Q
+ 29l f(@n) = allllzn — znl)
+ 200 (f(zn) — 20, Tn — 20)
(3.16) — 20 ||n — 202
We next split the proof into two cases.
Case 1: Suppose that there exists a natural number N such that '), < T,

for alln > N. In this case, lim,,_, o I'y, exists and then lim,, o (I'p41—T5) = 0.
Since limy, 00 @ =0 and 0 < ¢ < 7, < d < 1, by (3.16), we have

(3.17) nh_}n;o |z, — zn|| = 0.

From (3.13) we have

(3.18) lm ||@nt1 — zn] = 0.
n—o0
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We next show that limsup,, ,..{f(20) — 20, 2n — 20) < 0. Put
(3.19) I =limsup(f(z0) — 20, 2n — 20)-

n—oo
Then without loss of generality, there exists a subsequence {z,,} of {z,} such
that | = lim; 00 (f(20) — 20, 2n; — 20) and {z,,} converges weakly to some point
w € H. Since ||z, — zn|| — 0, we also have that {x,,} converges weakly to
w € H. On the other hand, from (3.4) we have

M2 = Ml TIONT = Qua)Tzall> < 2w — 20l® = |20 — 212
(3.20) <l = zall(llzn = 2l + {20 = 2[])-

Then since ||z, — 25| = 0and 0 < a <\, ||T|* < b < 2,
(3.21) [Ty — Qp, Tn|| = 0.

lim
n—o0
Since {z,,} converges weakly to w € H and T is bounded and linear, we
also have {Tx,,} converges weakly to Tw. Using this and lim, . |72, —
Qu, Try| = 0, we have that Q,,,, Tzn, — Tw. Since @, is the metric resolvent
of B for u, > 0, we have that W € BQu, Tz, for all n € N. By
the monotonicity of B we obtain

Jr (Txnl - Q;tni Txm) >
Hons

for all (u,v*) € B. We observe that || Jp(Txy, — Qu, Txn,)| = [T, —
Qu,., Txn;|| — 0 asi — oo. Since 0 < k < puy,, it follows that 0 < (u —Tw,v* —
0) for all (u,v*) € B. Because B is maximal monotone, we have Tw € B~10.
This implies that w € T-1(B710). Using 2z, = J\,(zn — MT*Jp(Txyn —
Qx,Txy,)), we obtain
(3.23) Zn = JIn, (@n — NI Tp(Txn — Qpu, Txy))
Sz — NI Tp(Ten — Qu,TTn) € 2n + AAz
S xp— 2 — NI Ip(Txn — Qu,Tan) € AyAz,
1
& )\—(IL'n — Zn — MT"Jp(T2n — Qu,Txy)) € Azp.
n

Since A is monotone, we have that for (u,v) € A,

(3.24) <zn a2

(3.22) 0< <u — Qu,, Ty, v* —

Ao
which implies that
Ty — Zn

(3.25) <zn — u, N

Replacing n by n;, we have

(@n — 2n — AT Jp(Tan — Qu,Txy)) — v> >0

T Jp(Txn — Qu,Txn)) — v> > 0.

(3.26) <zm — u, :cn)\;zn =T Jp(Tzn, — Qu,, TTn,;) — ’U> > 0.

i
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Since @, —zn, = 0,0 < a < Ay, | T|?, 2p, = w and T*Jp(Txn — Qu, Tin,) —
0, we get that (w — u,—v) > 0. Since A is maximal, we have 0 € Aw.
Therefore, w € A~'0 N T~Y(B710). Since {z,,} converges weakly to w €
A=t oNT—Y(B~10), it follows that

(3.27) I= lim (f(20) — 20, 2n; — 20) = {f(20) — 20, w — 29) < 0.

i—00

On the other hand, we see that

[Zns1 — 20> =

(Tp41 — 20, Tng1 — 20)

(an f(n) + BnZn + YnZn — 20, Tnt1 — 20)

(an(f(zn) — 20) + Bu(Tn — 20) + Yn(2n — 20); Tnt1 — 20)
an(f(zn) — f(20) + f(20) = 20, Tn41 — 20)

+ Bn(Tn — 20, Tnt1 — 20) + Yn(2n — 20, Tng1 — 20)
an(f(wn) — f(20); Tnt1 — 20) + an(f(20) — 20, Tn+1 — 20)
+ Bn(Tn — 20, Tnt+1 — 20) + Yn{Zn — 20, Tnt+1 — 20)

< apafzn — 2o0llllznt1 — 2ol + Bullzn — 20l |2n+1 — 20|
+ Ynllzn — 2ol |21 — 20l + an(f(20) — 20, Tnt1 — 20)
= (ana+ Bn +)lllen — 20|l 2ns1 — 20l
+ an(f(20) — 20, Tny1 — 20)
1
< (ana+1-an)g(llon - 20[1* + [|#nt1 — 20ll?)
+ an(f(20) — 20, Tny1 — 20)
aan, +1—ay, 9
= QT )
aoy, +1—«
b (S0 oy - P
+ an(f(20) = 20, Tny1 — 20)
2(1 — o)y,
— 1f¥ ||xn720||2
1+(1—a)ay,
2(1 — a)ay, 1
3.28 0. Tet — 20).
(3.29) () (12) (o) = 20,0 = 20)
Also, we have
(3.29) lim ||zn — i1l < lim (|20 — 20| + |@nt1 — 2al]) = 0.
n—oo n—oo
Then
(3.30) lim sup(f(z0) — 20, Tnt1 — 20) < 0.

n—o0

Since ZZOZI ay = o0, by Lemma 2.3 we conclude that z,, — 29 as n — oo.
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Case 2. Suppose that there exists a subsequence {I',,} of the sequence
{T'y,;} such that T',,, < T, 41 for all ¢ € N. In this case, we define 7 : N — N by

(3.31) T(n) =max{k <n:Tk < Tk}
Then by Lemma 2.6 we have I'7(,) < I'z(n)41. Thus by (3.16) we have for all
n €N,
'Yfr(n)(l - 'Y-r(n))”z-r(n) — L7 (n) ||2 < a?—(n)”f(xT(n)) - IT(")H2
+ 2a7(”)77(n)(||f($7'(n)) - x'r(n)”
X ||Z7'(n) - xr(n)”)

+ 20‘T(n)<f($‘r(n)) — 20, Tr(n) — ZO>

(332) - 20‘7’(71)”1'7'(70 - ZO||2'
Using lim,, o0 ay =0 and 0 < ¢ <7, < d < 1, we have
(3.33) nh_{r;Q ||ZT(n) - xT(n)H =0.

As in the proof of Case 1, we can show that

(3.34) Jim {27 (n) 41 = @7y | = 0.
This gives
(3.35) S (127 = ey ]| = 0.

We next show that limsup,, .. {(f(20) — 20, Z7(n)+1 — 20) < 0. Put

(3.36) I = limsup(f(20) — 20, T7(n)+1 — 20)-
n—oo
So we have
(3.37) I = limsup(f(z0) — 20, 2r(n) — 20)-
n—oo

Without loss of generality, there exists a subsequence {z;(,,)} of {z-(n)} such
that

(3.38) I = lim (f(20) = 20, Zr(n;) — 20)

i—00
and {z;(,,)} converges weakly to some point w € H. As in the proof of Case
1, we can show that w € A=*0NT~1(B~10). Then it follows that

(3:39) 1= lim (f(20) = 20, Zr(ny) = 20) = (f(20) = 20,w = 20) < 0.

As in the proof of Case 1, we also obtain

2(1 — a)a (n)

2 T(n 2
< 1 _— —
||x7(n)+1 Zo|| ( 1 (1 ) o ||$T(n) ZOH

(3.40) + (12+(1(1a();;2n) (1 i a) (f(20) = 20, Zr(n)+1 — 20)-
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Since F‘r(n) < Fr(n)Jrla

21 — a)a, 2(1 —a)ay,
( — (n) > ||1'T(n) _ ZOH2 S < ( — ) >
1+ (1 a)oz,r(n) 1+ (1 Oé)Oén

1
(341) X <1 — a) <f(Zo) — 20, Tr(n)+1 — Zo>.
. . 2(170()047.(7,,)
It is easily seen that (71“17&)&7(”)) > 0. Then we have
9 1
(342) Hx'r(n) - ZOH < m <f(ZO) — 205 Tr(n)4+1 — ZO)-
This shows that
(3.43) limsup ||, () — 20/|* < 0
n—oo

and hence [|2;(,) — 20l = 0 as n — oco. Thus ||z, ()41 — 20l — 0 as n — oc.
By Lemma 2.6, we obtain

(3.44) [0 — 2o0ll < [|#r(n)+1 — 20ll =0

as n — 0o. This completes the proof. (I

4. EXAMPLES AND NUMERICAL RESULTS

In this section, we give examples including its numerical results for support-
ing our main theorem.

Example 4.1. Let H = R. For x € R, we define G: R — R by

G(m){wx if ©>0,

+00 otherwise.

Let F': R — R be defined by F(z) = w|z| — In(1 4+ w|x]).

Choose 21 =2, w =1, ap, = Tlﬂ, Brn = gns Tn = gy for all n € N
Let f(x) = § and Tz = 2 . We aim to find the minimizers of F" and G. Using

algorithm (3.1), we have the following numerical results:
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n Ty, | Tni1 — T |
1 1.471404251 5.2859547 x 1071
2 | 1.265727840 7.8045565 x 1071
3 | 0.527004926 7.8045565 x 101
4 | 0.250611252 1.3092799 x 10~1
5 | 0.160205803 7.9460312 x 102
6 | 0.114183169 5.3450423 x 102
7 | 0.083166153 3.7671482 x 1072
8 | 0.061057394 2.7173989 x 102
9 | 0.045012810 1.9840027 x 10~2
10 | 0.033265124 1.4579710 x 10~2
11 | 0.024621382 1.0752746 x 102
12 | 0.018243176 7.9469695 x 1073
50 | 0.000000260 1.1017075 x 10~7

Table 1 Numerical results of Example 4.1 for iteration process (3.1)

181 —

I I I I I I L L
o 5 10 15 20 30 35 40 5 50

25
Number of iterations

Figure 1: Convergence behavior of {z,} in Table 1.

L I I | |

Figure 2: Error plots for all sequences {x,} in Table 1.

Example 4.2. Let H = R3. For x € R3, define G : R® — R by G(z) =
| Lz — y||?, where

1 2 2 2
L=130 1 |,y=|-3]and F : R> - R by F(z) = 5|z|® +
2 1 -1 1

(15,6, —7)z + 10.
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1 0 1
Let T=1] 0 —1 2 | . Find z € R3 such that z is a minimizer of F and Tz
1 2 3

also is a minimizer of G.

1
Choose x1=| -1 |, ap = ﬁ, Bn = ﬁ, YV = 2n’jrl for all n € N and
-1

let f(x) = 5. Using algorithm (3.1), we have the following numerical results:

n LTn Hxn—i-l - In”

1 (0.1527,-0.6014,0.8512) 20.745517681470 x10~1
2 (-0.5968,-0.6646,-0.0706) | 11.896884171498 x10~1
3 (-0.8523,-0.5312,0.7977) 9.149067074771 x10~1
4 (-1.1354,-0.6011,0.3222) 5.577239966457 x10~1
5 (-1.2027,-0.5415,0.7430) 4.302752764182 x10~!
6 (-1.3156,-0.5838,0.4941) 2.766128927383 x10~1
7 | (-1.3323,-0.5554,0.7039) | 2.124210254520 x10~!
8 (-1.3822,-0.5792,0.5747) 1.406007674047 x10~1
9 (-1.3869,-0.5656,0.6815) 1.078492388367 x10~1
10 (-1.4115,-0.5788,0.6150) 7.214423578793 x10~2
11 (-1.4139,-0.5724,0.6703) 5.574083184995 x10~2
12 (-1.4273,-0.5798,0.6365) 3.720017649222 x10~2
13 (-1.4295,-0.5769,0.6655) 2.926886211227 x10~2
14 (-1.4375,-0.5811,0.6485) 1.930348053252 x 102
15 (-1.4397,-0.5800.0.6640) 1.568794063595 x 102
100 (-1.4790,-0.5913,0.6743) 8.809288634531 x10~°

Table 2 Numerical results of Example 4.2 for iteration process (3.1)

Xn

L L L L I I I
20 40 60 70 80 % 100

50
Number of iterations

Figure 3: Convergence behavior of {z,} in Table 2 .
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Error

I | !
0 5 10 15 20 2
Number of iterations

Figure 4: Error plots for all sequences {x,,} in Table 2 .

—-1.5 —-1.5
From Table 2, we see that | —0.6 | is a minimizer of F' such that T'| —0.6
0.7 0.7
-0.8
2 is a minimizer of G.
—0.6
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