

Appl. Gen. Topol. 19, no. 2 (2018), 253-260 doi:10.4995/agt.2018.9009 © AGT, UPV, 2018

τ -metrizable spaces

A. C. Megaritis

Technological Educational Institute of Peloponnese, Department of Computer Engineering, 23100, Sparta, Greece (thanasismeg13@gmail.com)

Communicated by D. Georgiou

Abstract

In [1], A. A. Borubaev introduced the concept of τ -metric space, where τ is an arbitrary cardinal number. The class of τ -metric spaces as τ runs through the cardinal numbers contains all ordinary metric spaces (for $\tau = 1$) and thus these spaces are a generalization of metric spaces. In this paper the notion of τ -metrizable space is considered.

2010 MSC: 54A05; 54E35.

KEYWORDS: τ -metric space; τ -metrizable space; τ -metrization theorem.

1. Preliminaries and notations

Our notation and terminology is standard and generally follows [2]. The cardinality of a set X is denoted by |X|. Throughout, we denote by τ an arbitrary nonzero cardinal number. The cardinalities of the natural numbers and of the real numbers are denoted by \aleph_0 and \mathfrak{c} , respectively. The character, the weight and the density of a topological space X are denoted by $\chi(X)$, w(X) and d(X), respectively. As usual I denotes the closed unit interval [0, 1] with the Euclidean metric topology.

By \mathbb{R}^{τ}_{+} we denote the topological product of τ copies of the space $\mathbb{R}_{+} = [0, +\infty)$ (with the natural topology). On the space \mathbb{R}^{τ}_{+} , the operations of addition, multiplication, and multiplication by a scalar, as well as a partial ordering, are defined in a natural way (coordinatewise).

Now, we present the notion of τ -metric space [1]. Let X be a nonempty set. A mapping $\rho_{\tau} : X \times X \to \mathbb{R}^{\tau}_{+}$ is called a τ -metric on X if the following axioms hold:

- (1) $\rho_{\tau}(x,y) = \theta$ if and only if x = y, where θ is the point of the space \mathbb{R}^{τ}_{+} whose all coordinates are zeros.
- (2) $\rho_{\tau}(x,y) = \rho_{\tau}(y,x)$ for all $x, y \in X$.
- (3) $\rho_{\tau}(x,z) \leq \rho_{\tau}(x,y) + \rho_{\tau}(y,z)$ for all $x, y, z \in X$.

The pair (X, ρ_{τ}) is called a τ -metric space and the elements of X are called points.

Every τ -metric space (X, ρ_{τ}) generates a Tychonoff (that is, completely regular and Hausdorff) topological space $(X, T_{\rho_{\tau}})$. The topology $T_{\rho_{\tau}}$ on X defined by the local basis consisting of the sets of the form

$$G(x) = \{ y \in X : \rho_{\tau}(x, y) \in O(\theta) \},\$$

where $O(\theta)$ runs through all open neighbourhoods of the point θ in the space \mathbb{R}^{τ}_{+} , of each point $x \in X$ is called the topology induced by the τ -metric ρ_{τ} .

In this paper the notion of τ -metrizable space is introduced. The paper is organized as follows. Section 2 contains the basic concepts of τ -metrizable spaces. Generally, τ -metrizable spaces may be not metrizable. We prove that if $\tau \leq \aleph_0$, then every τ -metrizable space is metrizable. In section 3 we obtain a generalization of the classical metrization theorem of Urysohn. More precisely, we prove that every Tychonoff space of weight $\tau > \aleph_0$ is τ -metrizable. Finally, in section 4 we prove that every compact τ -metrizable space has density less than or equal to τ .

2. Basic concepts

The notion of a τ -metric space leads to the notion of a τ -metrizable space which is inserted in the following definition.

Definition 2.1. A topological space (X, T) is called τ -metrizable if there exists a τ -metric ρ_{τ} on the set X such that the topology $T_{\rho_{\tau}}$ induced by the τ -metric ρ_{τ} coincides with the original topology T of X. τ -metrics on the set X which induce the original topology of X will be called τ -metrics on the space X.

Note that τ -metrizable spaces are useful because only such spaces can be presented as limits of τ -long projective systems of metric spaces [1, Theorem 3].

Proposition 2.2. A metric space is τ -metrizable.

Proof. Let (X, ρ) be a metric space, t_{ρ} be the topology induced by the metric ρ , and let τ be a cardinal number. Consider a set Λ such that $|\Lambda| = \tau$ and set $\rho_{\lambda} = \rho$ for each $\lambda \in \Lambda$. The mapping $\rho_{\tau} : X \times X \to \mathbb{R}^{\tau}_{+}$ defined by $\rho_{\tau}(x, y) = \{\rho_{\lambda}(x, y)\}_{\lambda \in \Lambda}$ for every $x, y \in X$ is a τ -metric on X. It is easy to see that $t_{\rho} = T_{\rho_{\tau}}$.

Proposition 2.3. A τ -metrizable space is τ' -metrizable for every cardinal number $\tau' > \tau$.

τ -metrizable spaces

Proof. Let X be a τ -metrizable space, ρ_{τ} be a τ -metric on the space X and τ' be a cardinal number such that $\tau' > \tau$. Consider two sets K and A such that $K \subset \Lambda$, $|K| = \tau$ and $|\Lambda| = \tau'$, and set $\rho_{\tau}(x, y) = \{\rho_{\tau}^k(x, y)\}_{k \in K}$ for every $x, y \in X$. Let k_0 be one fixed element of K. The mapping $\rho_{\tau'}: X \times X \to \mathbb{R}_+^{\tau'}$ defined by $\rho_{\tau'}(x, y) = \{\rho_{\tau'}^\lambda(x, y)\}_{\lambda \in \Lambda}$ for every $x, y \in X$, where

$$\rho_{\tau'}^{\lambda}(x,y) = \begin{cases} \rho_{\tau}^{\lambda}(x,y), & \text{if } \lambda \in K \\ \rho_{\tau}^{k_0}(x,y), & \text{if } \lambda \in \Lambda \setminus K, \end{cases}$$

is a τ' -metric on X such that $T_{\rho_{\tau'}} = T_{\rho_{\tau}}$.

The following examples show that τ -metrizable spaces may be not metrizable.

Example 2.4. The product $\mathbb{R}^{\mathfrak{c}} = \prod_{\lambda \in \Lambda} X_{\lambda}$, where $X_{\lambda} = \mathbb{R}$ for every $\lambda \in \Lambda$ and $|\Lambda| = \mathfrak{c}$, of uncountably many copies of the real line \mathbb{R} is not metrizable, since it is not first-countable. However, the space $\mathbb{R}^{\mathfrak{c}}$ is \mathfrak{c} -metrizable. Assuming each copy X_{λ} of \mathbb{R} has its usual metric d_{λ} , the mapping $\rho_{\mathfrak{c}} : \mathbb{R}^{\mathfrak{c}} \times \mathbb{R}^{\mathfrak{c}} \to \mathbb{R}^{\mathfrak{c}}_{+}$ defined by $\rho_{\mathfrak{c}}(x, y) = \{d_{\lambda}(x_{\lambda}, y_{\lambda})\}_{\lambda \in \Lambda}$ for every $x = \{x_{\lambda}\}_{\lambda \in \Lambda} \in \mathbb{R}^{\mathfrak{c}}$ and $y = \{y_{\lambda}\}_{\lambda \in \Lambda} \in \mathbb{R}^{\mathfrak{c}}$ is a \mathfrak{c} -metric on $\mathbb{R}^{\mathfrak{c}}$ and the topology induced by $\rho_{\mathfrak{c}}$ coincides with the product topology.

Example 2.5. Let \mathbb{R} be the set of real numbers with the discrete topology \mathcal{D} and $(\mathbb{R}_{\infty}, \mathcal{D}_{\infty})$ be the Alexandroff's one-point compactification of the space $(\mathbb{R}, \mathcal{D})$, that is $\mathbb{R}_{\infty} = \mathbb{R} \cup \{\infty\}$ and $\mathcal{D}_{\infty} = \mathcal{D} \cup \{\mathbb{R}_{\infty} \setminus K : K \text{ is a finite subset of } \mathbb{R}\}$. The space $(\mathbb{R}_{\infty}, \mathcal{D}_{\infty})$ is not metrizable (because it is not separable). We prove that the space $(\mathbb{R}_{\infty}, \mathcal{D}_{\infty})$ is \mathfrak{c} -metrizable. Let $Fin(\mathbb{R})$ be the collection of all the nonempty finite subsets of \mathbb{R} with $|Fin(\mathbb{R})| = \mathfrak{c}$. For every $F \in Fin(\mathbb{R})$ we define:

(1) $\rho_F(x,x) = 0$ for each $x \in \mathbb{R}_{\infty}$.

(2)
$$\rho_F(x,\infty) = \rho_F(\infty,x) = \begin{cases} 0, & \text{if } x \notin F \\ 1, & \text{otherwise} \end{cases}$$
 for each $x \in \mathbb{R}$.

(3)
$$\rho_F(x,y) = \begin{cases} 0, & \text{if } x \notin F \text{ and } y \notin F \\ 1, & \text{otherwise} \end{cases}$$
 for each $x, y \in \mathbb{R}$ with $x \neq y$.

The mapping $\rho_{\mathfrak{c}} : \mathbb{R}_{\infty} \times \mathbb{R}_{\infty} \to \mathbb{R}^{\mathfrak{c}}_{+}$ defined by $\rho_{\mathfrak{c}}(x, y) = \{\rho_{F}(x, y)\}_{F \in Fin(\mathbb{R})}$ for every $x, y \in \mathbb{R}_{\infty}$ is a \mathfrak{c} -metric on \mathbb{R}_{∞} . We prove that the topology $T_{\rho_{\mathfrak{c}}}$ induced by the \mathfrak{c} -metric $\rho_{\mathfrak{c}}$ coincides with the topology \mathcal{D}_{∞} .

Let $x \in \mathbb{R}$. If $G(x) = \{y \in \mathbb{R}_{\infty} : \rho_{\mathfrak{c}}(x,y) \in O(\theta)\}$, where $O(\theta)$ is an open neighbourhood of the point θ in the space $\mathbb{R}^{\mathfrak{c}}_+$, then $\{x\} \in \mathcal{D}_{\infty}$ and $\{x\} \subseteq G(x)$. Moreover, for the open neighbourhood $\prod_{F \in Fin(\mathbb{R})} W_F$ of the point θ , where

$$W_F = \begin{cases} [0, \frac{1}{2}), & \text{if } F = \{x\}\\ \mathbb{R}_+, & \text{otherwise} \end{cases}$$

we have $G(x) = \{y \in \mathbb{R}_{\infty} : \rho_{\mathfrak{c}}(x, y) \in \prod_{F \in Fin(\mathbb{R})} W_F\} \subseteq \{x\}.$

© AGT, UPV, 2018

Appl. Gen. Topol. 19, no. 2 255

Now, we consider the point ∞ of \mathbb{R}_{∞} . If $\{\infty\} \cup (\mathbb{R} \setminus K)$, where $K \in Fin(\mathbb{R})$ is an open neighbourhood of the point ∞ in the space \mathbb{R}_{∞} , then for the open neighbourhood $\prod_{F \in Fin(\mathbb{R})} W_F$ of the point θ , where

$$W_F = \begin{cases} [0, \frac{1}{2}), & \text{if } F = K\\ \mathbb{R}_+, & \text{otherwise} \end{cases}$$

we have $G(\infty) = \{y \in \mathbb{R}_{\infty} : \rho_{\mathfrak{c}}(\infty, y) \in \prod_{F \in Fin(\mathbb{R})} W_F\} \subseteq \{\infty\} \cup (\mathbb{R} \setminus K).$ Finally, let $\prod_{F \in Fin(\mathbb{R})} U_F$ be an open neighbourhood of the point θ in the space $\mathbb{R}_+^{\mathfrak{c}}$ and suppose that $\{F \in Fin(\mathbb{R}) : U_F \neq \mathbb{R}_+\} = \{K_1, \ldots, K_m\}$. Then,

$$\{\infty\} \cup (\mathbb{R} \setminus (K_1 \cup \ldots \cup K_m)) \subseteq G(\infty) = \{y \in \mathbb{R}_\infty : \rho_{\mathfrak{c}}(\infty, y) \in \prod_{F \in Fin(\mathbb{R})} U_F\}.$$

However, a τ -metrizable space may be metrizable considering addition conditions as the following assertions show.

Proposition 2.6. A n-metric space is metrizable for every finite cardinal number n.

Proof. Let (X, ρ_n) be a *n*-metric space and T_{ρ_n} be the topology induced by ρ_n . Consider a vector expression of the form $\rho_n(x, y) = (\rho_n^1(x, y), \dots, \rho_n^n(x, y))$ for every $x, y \in X$. The mapping $\rho : X \times X \to \mathbb{R}_+$ defined by

$$\rho(x,y) = \max\{\rho_n^1(x,y),\dots,\rho_n^n(x,y)\}$$

for every $x, y \in X$ is a metric on X. It is easy to see that the metric topology is the same as T_{ρ_n} .

Definition 2.7. Two τ -metrics $\rho_{1\tau}$ and $\rho_{2\tau}$ on a set X are called equivalent if they induce the same topology on X, that is $T_{\rho_{1\tau}} = T_{\rho_{2\tau}}$.

Example 2.8. Let ρ_{τ} be a τ -metric on X. Consider a set Λ such that $|\Lambda| = \tau$ and let us set $\rho_{\tau}(x, y) = \{\rho_{\tau}^{\lambda}(x, y)\}_{\lambda \in \Lambda}$ for every $x, y \in X$. The mapping $\rho_{\tau}^* : X \times X \to \mathbb{R}^{\tau}_+$ defined by $\rho_{\tau}^*(x, y) = \{\min\{1, \rho_{\tau}^{\lambda}(x, y)\}\}_{\lambda \in \Lambda}$ for every $x, y \in X$ is a τ -metric on X equivalent to ρ_{τ} .

Proposition 2.9. An \aleph_0 -metric space is metrizable.

Proof. Let (X, ρ_{\aleph_0}) be an \aleph_0 -metric space. Consider the equivalent \aleph_0 -metric $\rho_{\aleph_0}^*$ to ρ_{\aleph_0} of Example 2.8. Let $\rho_{\aleph_0}^*(x, y) = (\rho_{\aleph_0}^{*1}(x, y), \rho_{\aleph_0}^{*2}(x, y), \ldots)$ for every $x, y \in X$. The mapping $\rho : X \times X \to \mathbb{R}_+$ defined by

$$\rho(x,y) = \sum_{i=1}^{\infty} \frac{1}{2^i} \rho_{\aleph_0}^{*i}(x,y)$$

for every $x, y \in X$ is a metric on X. The process of proving that the topology induced by the metric ρ coincides with the topology $T_{\rho_{\aleph_0}}$ is similar to the proof of the Theorem 4.2.2 of [2].

Corollary 2.10. If $\tau \leq \aleph_0$, then every τ -metrizable space is metrizable.

τ -metrizable spaces

Proof. Follows directly from Propositions 2.6 and 2.9.

Proposition 2.11. For each $\tau > \aleph_0$ there is a τ -metrizable space X_{τ} with $w(X_{\tau}) = \tau$, which is not metrizable.

 \Box

Proof. Let X_{τ} be the Alexandroff's one-point compactification of a discrete space X of cardinality τ , where $\tau > \aleph_0$. The space X_{τ} is not metrizable (because it is not separable). It is known that $|Fin(X)| = |X| = \tau$. Therefore, in the same manner as in Example 2.5, we can prove that the space X_{τ} is τ -metrizable. Let us note that $w(X_{\tau}) = \tau$.

Proposition 2.12. For every $\tau \ge \aleph_0$ and every τ -metrizable space X, we have $\chi(X) \le \tau$.

Proof. Let X be a τ -metrizable space and ρ_{τ} be a τ -metric on the space X with $\tau \geq \aleph_0$. Consider a set Λ such that $|\Lambda| = \tau$. The family \mathcal{B}_{θ} of all products $\prod_{\lambda \in \Lambda} W_{\lambda}$, where finitely many W_{λ} are intervals of the form [0, b) with rational b and the remaining $W_{\lambda} = \mathbb{R}_+$, form a local basis of the point θ in the space \mathbb{R}^+_+ . Hence, for every $x \in X$, the family

$$\mathcal{B}(x) = \{ G(x) = \{ y \in X : \rho_\tau(x, y) \in B \} : B \in \mathcal{B}_\theta \}$$

is a local basis of the point x in the space X. Since $|\mathcal{B}_{\theta}| = \tau$, we have $|\mathcal{B}(x)| \leq \tau$.

3. A τ -metrization theorem

Metrization theorems are theorems that give sufficient conditions for a topological space to be metrizable (see [2, 5]). In this section we obtain a generalization of the classical metrization theorem of Urysohn.

Lemma 3.1. If (X, ρ_{τ}) is a τ -metric space and A is a subspace of X, then the topology induced by the restriction of the τ -metric ρ_{τ} to $A \times A$ is the same as the subspace topology of A in X.

Theorem 3.2. Every Tychonoff space of weight $\tau > \aleph_0$ is τ -metrizable.

Proof. Let X be a Tychonoff space such that $w(X) = \tau > \aleph_0$. The space $I^{\tau} = \prod_{\lambda \in \Lambda} X_{\lambda}$, where $X_{\lambda} = I$ for every $\lambda \in \Lambda$ and $|\Lambda| = \tau$ is τ -metrizable (see Example 2.4). Assuming each copy X_{λ} of I has its usual metric d_{λ} , the mapping $d_{\tau} : I^{\tau} \times I^{\tau} \to \mathbb{R}^{\tau}_+$ defined by $d_{\tau}(x, y) = \{d_{\lambda}(x_{\lambda}, y_{\lambda})\}_{\lambda \in \Lambda}$ for every $x = \{x_{\lambda}\}_{\lambda \in \Lambda} \in I^{\tau}$ and $y = \{y_{\lambda}\}_{\lambda \in \Lambda} \in I^{\tau}$ is a τ -metric on I^{τ} . We shall prove that X is τ -metrizable by imbedding X into the τ -metrizable space I^{τ} , i.e. by showing that X is homeomorphic with a subspace of I^{τ} . But this follows immediately from the fact that the Tychonoff cube I^{τ} is universal for all Tychonoff spaces of weight τ (see [2, Theorem 2.3.23]). By Lemma 3.1, the space X is τ -metrizable.

As every τ -metrizable space is Tychonoff (see [1]), we get the following result.

Corollary 3.3. A space of weight $\tau > \aleph_0$ is τ -metrizable if and only if it is *Tychonoff.*

Remark 3.4. We can use Theorem 3.2 to find τ -metrizable spaces, where $\tau > \aleph_0$, that are not metrizable. Below we consider some examples. Example 3.5 is a c-metrizable space which is not second-countable, Example 3.6 is a c-metrizable space which is not normal and Example 3.7 is a 2^{τ} -metrizable space, where $\tau \ge c$, which is not metrizable.

Example 3.5. Let S be the Sorgenfrey line, that is the real line with the topology in which local basis of x are the sets [x, y) for y > x. Since X is separable but not second-countable, it cannot be metrizable. Furthermore, S is Tychonoff and $w(S) = \mathfrak{c}$. From Theorem 3.2 it follows that the Sorgenfrey line is a \mathfrak{c} -metrizable space.

Example 3.6. Let $P = \{(\alpha, \beta) \in \mathbb{R}^2 : \beta > 0\}$ be the open upper half-plane with the Euclidean topology and $L = \{(\alpha, \beta) \in \mathbb{R}^2 : \beta = 0\}$. We set $X = P \cup L$. For every $x \in P$ let B(x) be the family of all open discs in P centered at x. For every $x \in L$ let B(x) be the family of all sets of the form $\{x\} \cup D$, where D is an open disc in P which is tangent to L at the point x. The family T of all subsets of X that are unions of subfamilies of $\cup \{B(x) : x \in X\}$ is a topology on X and the family $\{B(x) : x \in X\}$ is a neighbourhood system for the topological space (X, T). The space X is called the Niemytzki plane (see, for example, [2, 4]). X is a Tychonoff space with $w(X) = \mathfrak{c}$, which is not normal. Therefore, by Theorem 3.2, X is a \mathfrak{c} -metrizable space, but not metrizable.

Example 3.7. Let $\beta D(\tau)$ be the Čech-Stone compactification of the discrete space $D(\tau)$ of cardinality $\tau \ge \mathfrak{c}$. Then, $w(\beta D(\tau)) = 2^{\tau}$ (see [2, Theorem 3.6.11]). Since $\beta D(\tau)$ is zero-dimensional (see [2, Theorem 3.6.13]), it is Tychonoff. The space $D(\tau)$ is not compact. Therefore, $\beta D(\tau)$ is not metrizable (see [3, Exercise 9, §38, Ch.5]). From Theorem 3.2 it follows that $\beta D(\tau)$ is 2^{τ} -metrizable. Particularly, if one assumes the continuum hypothesis, the Čech-Stone compactification $\beta \omega$ of the discrete space of the non-negative integers $\omega = \{0, 1, 2, \ldots\}$ is \mathfrak{c} -metrizable.

Remark 3.8. A space X may be τ -metrizable for some infinite cardinal number $\tau < w(X)$, as shown in the following example.

Example 3.9. Let Λ be a set of cardinality $\tau > \aleph_0$, $D(\kappa)$ the discrete space of cardinality $\kappa > \tau$, and $F = \prod_{\lambda \in \Lambda} X_\lambda$, where $X_\lambda = D(\kappa)$ for every $\lambda \in \Lambda$, with the Tychonoff product topology. We note that the points of F are functions from Λ to $D(\kappa)$. The space F is not metrizable for $\chi(F) = \tau$ (see [2, Exercise 2.3.F(b)]). Moreover, $w(F) = \kappa$ (see [2, Exercise 2.3.F(a)]). We prove that the space F is τ -metrizable. For every $\lambda \in \Lambda$ we define:

(1) $\rho_{\lambda}(f, f) = 0$ for each $f \in F$.

(2)
$$\rho_{\lambda}(f,g) = \begin{cases} 0, & \text{if } f(\lambda) = g(\lambda) \\ 1, & \text{otherwise} \end{cases}$$
 for each $f,g \in F$ with $f \neq g$.

The mapping $\rho_{\tau} : F \times F \to \mathbb{R}^{\tau}_{+}$ defined by $\rho_{\tau}(f,g) = \{\rho_{\lambda}(f,g)\}_{\lambda \in \Lambda}$ for every $f,g \in F$ is a τ -metric on F. We prove that the topology $T_{\rho_{\tau}}$ induced by the τ -metric ρ_{τ} coincides with the Tychonoff product topology.

τ -metrizable spaces

Let $f \in F$, $\prod_{\lambda \in \Lambda} U_{\lambda}$ be an open neighbourhood of the point θ in the space \mathbb{R}_+^{τ} , and suppose that $\{\lambda \in \Lambda : U_\lambda \neq \mathbb{R}_+\} = \{\lambda_1, \dots, \lambda_m\}$. For the open neighbourhood $\prod_{\lambda \in \Lambda} W_{\lambda}$ of the point f, where

$$W_{\lambda} = \begin{cases} \{f(\lambda)\}, & \text{if } \lambda \in \{\lambda_1, \dots, \lambda_m\} \\ D(\kappa), & \text{otherwise} \end{cases}$$

we have $\prod_{\lambda \in \Lambda} W_{\lambda} \subseteq G(f) = \{g \in F : \rho_{\tau}(f,g) \in \prod_{\lambda \in \Lambda} U_{\lambda}\}.$ Now, let $f \in F$ and $\prod_{\lambda \in \Lambda} W_{\lambda}$ be an open neighbourhood of the point f in the space F, and suppose that $\{\lambda \in \Lambda : W_{\lambda} \neq D(\kappa)\} = \{\lambda_1, \ldots, \lambda_m\}$. For the open neighbourhood $\prod_{\lambda \in \Lambda} U_{\lambda}$ of the point θ , where

$$U_{\lambda} = \begin{cases} [0, \frac{1}{2}), & \text{if } \lambda \in \{\lambda_1, \dots, \lambda_m\} \\ \mathbb{R}_+, & \text{otherwise} \end{cases}$$

we have $G(f) = \{g \in F : \rho_{\tau}(f,g) \in \prod_{\lambda \in \Lambda} U_{\lambda}\} \subseteq \prod_{\lambda \in \Lambda} W_{\lambda}.$

4. Compact τ -metrizable spaces

It is well known that every compact metrizable space is separable. An analogous result for τ -metrizable spaces is stated in this section.

Let us consider a set Λ such that $|\Lambda| = \tau \ge \aleph_0$ and let $\mathcal{B}_{\varepsilon}$ be the family of all open subsets $\prod_{\lambda \in \Lambda} W_{\lambda}$ of the product \mathbb{R}^{τ}_{+} , where finitely many W_{λ} are intervals of the form $[0, \varepsilon)$ and the remaining $W_{\lambda} = \mathbb{R}_+$.

Definition 4.1. Let (X, ρ_{τ}) be a τ -metric space. A subset A of X is called O_{ε} -dense in (X, ρ_{τ}) , where $O_{\varepsilon} \in \mathcal{B}_{\varepsilon}$, if for every $x \in X$ there exists $a \in A$ such that $\rho_{\tau}(x,a) \in O_{\varepsilon}$.

Definition 4.2. A τ -metric space (X, ρ_{τ}) is called ε -totally bounded if for every $O_{\varepsilon} \in \mathcal{B}_{\varepsilon}$ there exists a finite subset A of X which is O_{ε} -dense in (X, ρ_{τ}) . The τ -metric space (X, ρ_{τ}) is called totally bounded if it is ε -totally bounded for every $\varepsilon > 0$.

Recall that the density d(X) of a topological space X, is defined to be $d(X) = \min\{|D| : D \text{ is a dense subset of } X\}.$

Proposition 4.3. For every totally bounded τ -metric space X, the inequality $d(X) \leq \tau$ holds.

Proof. Let $n \in \{1, 2, \ldots\}$. For each $O_{1/n} \in \mathcal{B}_{1/n}$, let $A(O_{1/n})$ be a finite $O_{1/n}$ dense subset of X and consider the subset $A_n = \bigcup \{A(O_{1/n}) : O_{1/n} \in \mathcal{B}_{1/n}\}$ of X with $|A_n| \leq \tau$. The subset $A = \bigcup_{n=1}^{\infty} A_n$ of X is dense and $|A| \leq \tau$.

Proposition 4.4. Every compact τ -metric space X is totally bounded.

Proof. Let $\varepsilon > 0$. For every $O_{\varepsilon} \in \mathcal{B}_{\varepsilon}$ the family

 $\{G(x) = \{y \in X : \rho_{\tau}(x, y) \in O_{\varepsilon}\} : x \in X\}$

forms an open cover of X. By compactness of X, there exists a finite subset A of X such that $\bigcup_{a \in A} G(a) = X$. For every $x \in X$ there exists $a \in A$ with

 $x \in G(a)$. Therefore, $\rho_{\tau}(x, a) \in O_{\varepsilon}$ and the subset A of X is O_{ε} -dense in (X, ρ_{τ}) .

Theorem 4.5. For every compact τ -metrizable space X we have $d(X) \leq \tau$.

Proof. Let X be a compact τ -metrizable space. According to Proposition 4.4, the space X is totally bounded. Therefore, by virtue of Proposition 4.3, $d(X) \leq \tau$.

ACKNOWLEDGEMENTS. The author would like to thank both referees for their valuable comments and suggestions.

References

- A. A. Borubaev, On some generalizations of metric, normed, and unitary spaces, Topology and its Applications 201 (2016), 344–349.
- [2] R. Engelking, General topology, Sigma Series in Pure Mathematics, 6. Heldermann Verlag, Berlin, 1989.
- [3] J. R. Munkres, Topology: a first course, Prentice-Hall, Inc., Englewood Cliffs, N.J., 1975.
- [4] L. A. Steen and J. A. Jr. Seebach, Counterexamples in topology, Dover Publications, Inc., Mineola, NY, 1995.
- [5] S. Willard, General topology, Dover Publications, Inc., Mineola, NY, 2004.