

Appl. Gen. Topol. 20, no. 1 (2019), 75-79 doi:10.4995/agt.2019.9817 © AGT, UPV, 2019

On monotonous separately continuous functions

YAROSLAV I. GRUSHKA

Department of Nonlinear analysis, Institute of Mathematics NAS of Ukraine, Kyiv (grushka@imath.kiev.ua)

Communicated by O. Valero

Abstract

Let $\mathbb{T} = (\mathbf{T}, \leq)$ and $\mathbb{T}_1 = (\mathbf{T}_1, \leq_1)$ be linearly ordered sets and X be a topological space. The main result of the paper is the following: If function $\mathbf{f}(t, x) : \mathbf{T} \times X \to \mathbf{T}_1$ is continuous in each variable ("t" and "x") separately and function $\mathbf{f}_x(t) = \mathbf{f}(t, x)$ is monotonous on \mathbf{T} for every $x \in X$, then \mathbf{f} is continuous mapping from $\mathbf{T} \times X$ to \mathbf{T}_1 , where \mathbf{T} and \mathbf{T}_1 are considered as topological spaces under the order topology and $\mathbf{T} \times X$ is considered as topological space under the Tychonoff topology on the Cartesian product of topological spaces \mathbf{T} and X.

2010 MSC: 54C05.

KEYWORDS: separately continuous mappings; linearly ordered topological spaces; Young's theorem.

1. INTRODUCTION

In 1910 W.H. Young had proved the following theorem.

Theorem A (see [9]). Let $f : \mathbb{R}^2 \to \mathbb{R}$ be separately continuous. If $f(\cdot, y)$ is also monotonous for every y, then f is continuous.

In 1969 this theorem was generalized for the case of separately continuous function $f : \mathbb{R}^d \to \mathbb{R} \ (d \ge 2)$:

Theorem B (see [5]). Let $f : \mathbb{R}^{d+1} \to \mathbb{R}$ $(d \in \mathbb{N})$ be continuous in each variable separately. Suppose $f(t_1, \ldots, t_d, \tau)$ is monotonous in each t_i separately $(1 \le i \le d)$. Then f is continuous on \mathbb{R}^{d+1} .

Note that theorems A and B were also mentioned in the overview [2]. In the papers [6,7] authors investigated functions of kind $f: \mathbf{T} \times X \to \mathbb{R}$, where

Received 12 March 2018 – Accepted 10 September 2018

 (\mathbf{T}, \leq) is linearly ordered set equipped by the order topology, (X, τ_X) is any topological space and the function \boldsymbol{f} is monotonous relatively to the first variable as well continuous (or quasi-continuous) relatively to the second variable. In particular in [7] it was proven that each separately quasi-continuous and monotonous relatively to the first variable function $\boldsymbol{f} : \mathbb{R} \times X \to \mathbb{R}$ is quasi-continuous relatively to the set of variables. The last result may be considered as the abstract analog of Young's theorem (Theorem A) for separately quasi-continuous functions.

However, we do not know any direct generalization of Theorem A (for separately continuous and monotonous relatively to the first variable function) in abstract topological spaces at the present time. In the present paper we prove the generalization of theorems A and B for the case of (separately continuous and monotonous relatively to the first variable) function $\mathbf{f} : \mathbf{T} \times X \to \mathbf{T}_1$, where (\mathbf{T}, \leq) , (\mathbf{T}_1, \leq_1) are linearly ordered sets equipped by the order topology and X is any topological space.

2. Preliminaries

Let $\mathbb{T} = (\mathbf{T}, \leq)$ be any linearly (ie totally) ordered set (in the sense of [1]). Then we can define the strict linear order relation on \mathbf{T} such that for any $t, \tau \in \mathbf{T}$ the correlation $t < \tau$ holds if and only if $t \leq \tau$ and $t \neq \tau$. Together with the linearly ordered set \mathbb{T} we introduce the linearly ordered set

$$\mathbb{T}_{\pm\infty} = (\mathbf{T} \cup \{-\infty, +\infty\}, \leq),$$

where the order relation is extended on the set $\mathbf{T} \cup \{-\infty, +\infty\}$ by means of the following clear conventions:

(a): $-\infty < +\infty;$ (b): $(\forall t \in \mathbf{T}) \quad (-\infty < t < +\infty).$

Recall [1] that every such linearly ordered set $\mathbb{T} = (\mathbf{T}, \leq)$ can be equipped by the natural "internal" order topology $\mathfrak{Tpi}[\mathbb{T}]$, generated by the base consisting of the open sets of kind:

(2.1)
$$(\tau_1, \tau_2) = \{ t \in \mathbf{T} \mid \tau_1 < t < \tau_2 \},$$
where $\tau_1, \tau_2 \in \mathbf{T} \cup \{-\infty, +\infty\}, \tau_1 < \tau_2.$

Let (X, τ_X) , (Y, τ_Y) and (Z, τ_Z) be topological spaces. By $\mathbf{C}(X, Y)$ we denote the collection of all continuous mappings from X to Y. For a mapping $\mathbf{f}: X \times Y \to Z$ and a point $(x, y) \in X \times Y$ we write

$$\boldsymbol{f}^{x}(y) := \boldsymbol{f}_{y}(x) := \boldsymbol{f}(x, y).$$

Recall [3] that the mapping $f : X \times Y \to Z$ is referred to as *separately continuous* if and only if $f^x \in \mathbf{C}(Y,Z)$ and $f_y \in \mathbf{C}(X,Z)$ for every point $(x,y) \in X \times Y$ (see also [6–8]). The set of all separately continuous mappings $f : X \times Y \to Z$ is denoted by $\mathbf{CC}(X \times Y,Z)$ [3,6–8].

Let $\mathbb{T} = (\mathbf{T}, \leq)$ and $\mathbb{T}_1 = (\mathbf{T}_1, \leq_1)$ be linearly ordered sets. We say that a function $f : \mathbf{T} \to \mathbf{T}_1$ is **non-decreasing** (**non-increasing**) on **T** if and only if for every $t, \tau \in \mathbf{T}$ the inequality $t \leq \tau$ leads to the inequality $f(t) \leq_1 f(\tau)$

 $(f(\tau) \leq_1 f(t))$ correspondingly. Function $f : \mathbf{T} \to \mathbf{T}_1$, which is non-decreasing or non-increasing on **T** is called by *monotonous*.

3. Main Results

Let $(X_1, \tau_{X_1}), \ldots, (X_d, \tau_{X_d})$ $(d \in \mathbb{N})$ be topological spaces. Further we consider $X_1 \times \cdots \times X_d$ as a topological space under the Tychonoff topology $\tau_{X_1 \times \cdots \times X_d}$ on the Cartesian product of topological spaces X_1, \ldots, X_d . Recall [4, Chapter 3] that topology $\tau_{X_1 \times \cdots \times X_d}$ is generated by the base of kind:

$$\left\{U_1 \times \cdots \times U_d \mid (\forall j \in \{1, \ldots, d\}) \left(U_j \in \tau_{X_j}\right)\right\}.$$

Theorem 3.1. Let $\mathbb{T} = (\mathbf{T}, \leq)$ and $\mathbb{T}_1 = (\mathbf{T}_1, \leq_1)$ be linearly ordered sets and (X, τ_X) be a topological space.

If $\mathbf{f} \in \mathbf{CC}(\mathbf{T} \times X, \mathbf{T}_1)$ and function $\mathbf{f}_x(t) = \mathbf{f}(t, x)$ is monotonous on \mathbf{T} for every $x \in X$, then \mathbf{f} is continuous mapping from the topological space $(\mathbf{T} \times X, \tau_{\mathbf{T} \times X})$ to the topological space $(\mathbf{T}_1, \mathfrak{Tpi}[\mathbb{T}_1])$.

Proof. Consider any ordered pair $(t_0, x_0) \in \mathbf{T} \times X$. Take any open set $V \subseteq \mathbf{T}_1$ such that $\boldsymbol{f}(t_0, x_0) \in V$. Since the sets of kind (2.1) form the base of topology $\mathfrak{T}\mathfrak{pi}[\mathbb{T}_1]$, there exist $\tau_1, \tau_2 \in \mathbf{T}_1 \cup \{-\infty, +\infty\}$ such that $\tau_1 <_1 \boldsymbol{f}(t_0, x_0) <_1 \tau_2$ and $(\tau_1, \tau_2) \subseteq V$, where $<_1$ is the strict linear order, generated by (non-strict) order \leq_1 (on $\mathbf{T}_1 \cup \{-\infty, +\infty\}$). The function \boldsymbol{f} is separately continuous. So, since the sets of kind (2.1) form the base of topology $\mathfrak{T}\mathfrak{pi}[\mathbb{T}]$, there exist $t_1, t_2 \in \mathbf{T} \cup \{-\infty, +\infty\}$ such that

(3.1)
$$t_1 < t_0 < t_2$$
 and

(3.2)
$$\boldsymbol{f}\left[(t_1, t_2) \times \{x_0\}\right] \subseteq (\tau_1, \tau_2)$$

Further we need the some additional denotations.

- In the case, where $(t_1, t_0) \neq \emptyset$ we choose any element $\alpha_1 \in \mathbf{T}$ such that $t_1 < \alpha_1 < t_0$ and denote $\widetilde{\alpha}_1 := \alpha_1$. In the opposite case we denote $\alpha_1 := t_0, \ \widetilde{\alpha}_1 := t_1$.
- In the case $(t_0, t_2) \neq \emptyset$ we choose any element $\alpha_2 \in \mathbf{T}$ such that $t_0 < \alpha_2 < t_2$ and denote $\widetilde{\alpha}_2 := \alpha_2$. In the opposite case we denote $\alpha_2 := t_0, \ \widetilde{\alpha}_2 := t_2$.

It is not hard to verify, that in the all cases the following conditions are performed:

$$\begin{aligned} \alpha_1, \alpha_2 \in \mathbf{T}, \quad \widetilde{\alpha}_1, \widetilde{\alpha}_2 \in \mathbf{T} \cup \{-\infty, +\infty\}; \\ \alpha_1 \le \alpha_2; \\ \widetilde{\alpha}_1 < \widetilde{\alpha}_2; \end{aligned}$$

(3.3) $[\alpha_1, \alpha_2] \subseteq (t_1, t_2), \text{ where } [\alpha_1, \alpha_2] = \{t \in \mathbf{T} \mid \alpha_1 \le t \le \alpha_2\};$

$$(3.4) t_0 \in (\widetilde{\alpha}_1, \widetilde{\alpha}_2) \subseteq [\alpha_1, \alpha_2]$$

According to (3.3), $\alpha_1, \alpha_2 \in (t_1, t_2)$. Hence, according to (3.2), interval (τ_1, τ_2) is an open neighborhood of the both points $f(\alpha_1, x_0)$ and $f(\alpha_2, x_0)$.

© AGT, UPV, 2019

Ya. I. Grushka

Since the function f is separately continuous on $\mathbf{T} \times X$, then there exist an open neighborhood $U \in \tau_X$ of the point x_0 (in the space X) such that:

(3.5)
$$\boldsymbol{f}\left[\left\{\alpha_{1}\right\}\times\boldsymbol{U}\right]\subseteq\left(\tau_{1},\tau_{2}\right);$$

(3.6) $\boldsymbol{f}[\{\alpha_2\} \times U] \subseteq (\tau_1, \tau_2).$

The set $(\tilde{\alpha}_1, \tilde{\alpha}_2) \times U$ is an open neighborhood of the point (t_0, x_0) in the topology $\tau_{\mathbf{T} \times X}$ of the space $\mathbf{T} \times X$. Now our aim is to prove that

(3.7)
$$\forall (t,x) \in (\widetilde{\alpha}_1, \widetilde{\alpha}_2) \times U \ (\boldsymbol{f}(t,x) \in (\tau_1, \tau_2) \subseteq V)$$

So, chose any point $(t,x) \in (\tilde{\alpha}_1, \tilde{\alpha}_2) \times U$. According to the condition (3.4), we have $(t,x) \in [\alpha_1, \alpha_2] \times U$, that is $\alpha_1 \leq t \leq \alpha_2$ and $x \in U$. In accordance with (3.5), (3.6), we have $\boldsymbol{f}(\alpha_1, x) \in (\tau_1, \tau_2)$ and $\boldsymbol{f}(\alpha_2, x) \in (\tau_1, \tau_2)$. Hence, since the function $\boldsymbol{f}_x(\cdot) = \boldsymbol{f}(\cdot, x)$ is monotonous on \mathbf{T} and $\alpha_1 \leq t \leq \alpha_2$, we deduce $\boldsymbol{f}(t,x) \in (\tau_1, \tau_2) \subseteq V$. Thus, the correlation (3.7) is proven. Hence, the function \boldsymbol{f} is continuous in (every) point $(t_0, x_0) \in \mathbf{T} \times X$.

Theorem A is a consequence of Theorem 3.1 in the case $\mathbf{T} = X = \mathbb{R}$, where \mathbb{R} is considered together with the usual linear order on the field of real numbers and usual topology.

Corollary 3.2. Let $\mathbb{T}_0 = (\mathbf{T}_0, \leq_0)$, $\mathbb{T}_1 = (\mathbf{T}_1, \leq_1)$, ..., $\mathbb{T}_d = (\mathbf{T}_d, \leq_d)$ $(d \in \mathbb{N})$ be linearly ordered sets, and (X, τ_X) be a topological space.

If the function $\mathbf{f} : \mathbf{T}_1 \times \cdots \times \mathbf{T}_d \times X \to \mathbf{T}_0$ is continuous in each variable separately and $f(t_1, \ldots, t_d, \tau)$ is monotonous in each t_i separately $(1 \le i \le d)$ then \mathbf{f} is a continuous mapping from the topological space $(\mathbf{T}_1 \times \cdots \times \mathbf{T}_d \times X, \tau_{\mathbf{T}_1 \times \cdots \times \mathbf{T}_d \times X})$ to the topological space $(\mathbf{T}_0, \mathfrak{Tpi} [\mathbb{T}_0])$.

Proof. We will prove this corollary by induction. For d = 1 the corollary is true by Theorem 3.1. Assume, that the corollary is true for the number d - 1, where $d \in \mathbb{N}$, $d \geq 2$. Suppose, that function $\mathbf{f} : \mathbf{T}_1 \times \cdots \times \mathbf{T}_d \times X \to \mathbf{T}_0$ is satisfying the conditions of the corollary. Then we may consider this function as a mapping from $\mathbf{T}_1 \times X_{(d)}$ to \mathbf{T}_0 , where $X_{(d)} = \mathbf{T}_2 \times \cdots \times \mathbf{T}_d \times X$. According to inductive hypothesis, function $\mathbf{f}(t_1, \cdot)$ is continuous on $X_{(d)}$ for every fixed $t_1 \in \mathbf{T}_1$. So \mathbf{f} is a separately continuous mapping from $\mathbf{T}_1 \times X_{(d)}$ to \mathbf{T}_0 . Moreover, \mathbf{f} is monotonous relatively to the first variable (by conditions of the corollary). Hence, by Theorem 3.1, \mathbf{f} is continuous on $\mathbf{T}_1 \times X_{(d)}$.

Theorem B is a consequence of Corollary 3.2 in the case $\mathbf{T}_0 = \mathbf{T}_1 = \cdots = \mathbf{T}_d = X = \mathbb{R}$, where \mathbb{R} is considered together with the usual linear order on the field of real numbers and usual topology. In the case $\mathbf{T}_0 = \mathbb{R}$, $\mathbf{T}_j = (a_j, b_j)$, $X = (a_{d+1}, b_{d+1})$ where $a_j, b_j \in \mathbb{R}$ and $a_j < b_j$ $(j \in \{1, \ldots, d+1\})$ and intervals (a_j, b_j) are considered together with the usual linear order and topology, induced from the field of real numbers, we obtain the following corollary.

Corollary 3.3. If the function $f : (a_1, b_1) \times \cdots \times (a_d, b_d) \times (a_{d+1}, b_{d+1}) \rightarrow \mathbb{R}$ $(d \in \mathbb{N})$ is continuous in each variable separately and $f(t_1, \ldots, t_d, \tau)$ is monotonous in each t_i separately $(1 \le i \le d)$ then f is a continuous mapping from $(a_1, b_1) \times \cdots \times (a_{d+1}, b_{d+1})$ to \mathbb{R} .

Remark 3.4. In fact in the paper [5] the more general result was formulated, in comparison with Theorem B. Namely the author of [5] had considered the real valued function $f(t_1, \ldots, t_d, \tau)$ defined on an open set $G \subseteq \mathbb{R}^{d+1}$, $d \in$ \mathbb{N} such that f is continuous in each variable separately and monotonous in each t_i separately $(1 \le i \le d)$. But this result of [5] can be delivered from Corollary 3.3, because for each point $\mathbf{t} = (t_1, \ldots, t_d, \tau) \in G$ in the open set Gthere exists the set of intervals $(a_1, b_1), \ldots, (a_{d+1}, b_{d+1})$ such that $\mathbf{t} \in (a_1, b_1) \times$ $\cdots \times (a_{d+1}, b_{d+1}) \subseteq G$.

References

- G. Birkhoff, Lattice theory, Third edition. American Mathematical Society Colloquium Publications, Vol. XXV, American Mathematical Society, Providence, R.I., New York, 1967.
- [2] K. C. Ciesielski and D. Miller, A continuous tale on continuous and separately continuous functions, Real Analysis Exchange 41, no. 1 (2016), 19–54.
- [3] O. Karlova, V. Mykhaylyuk and O. Sobchuk, Diagonals of separately continuous functions and their analogs, Topology Appl. 160, no. 1 (2013), 1–8.
- [4] J. L. Kelley, General topology, University series in higher mathematics, Van Nostrand, 1955.
- [5] R. L. Krusee and J. J. Deely, Joint continuity of monotonic functions, The American Mathematical Monthly 76, no. 1 (1969), 74–76.
- [6] V. Mykhajlyuk, The Baire classification of separately continuous and monotone functions, Scientific Herald of Yuriy Fedkovych Chernivtsi National University 349 (2007), 95–97 (Ukrainian).
- [7] V. Nesterenko, Joint properties of functions which monotony with respect to the first variable, Mathematical Bulletin of Taras Shevchenko Scientific Society 6 (2009), 195–201 (Ukrainian).
- [8] H. Voloshyn, V. Maslyuchenko and O. Maslyuchenko, On layer-wise uniform approximation of separately continuous functions by polynomials, Mathematical Bulletin of Taras Shevchenko Scientific Society 10 (2013), 135–158 (Ukrainian).
- [9] W. Young, A note on monotone functions, The Quarterly Journal of Pure and Applied Mathematics (Oxford Ser.) 41 (1910), 79–87.