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Abstract. The environmental data used to calculate ecological niche models (ENM) 
are obtained mainly from ground-based maps (e.g., climatic interpolated surfaces). 
These data are often not available for less developed areas, or may be at an inappro-
priate scale, and thus to obtain this information requires fieldwork. An alternative 
source of eco-geographical data comes from satellite imagery. Three sets of ENM were 
calculated exclusively with variables obtained (1) from optical and radar images only 
and (2) from climatic and altitude maps obtained by ground-based methods. These 
models were compared to evaluate whether satellite imagery can accurately generate 
ENM. These comparisons must be made in areas with well-known species distribu-
tion and with available satellite imagery and ground-based data. Thus, the study area 
was the south-western part of Salamanca (Spain), using amphibian and reptiles as spe-
cies models. Models’ discrimination capacity was measured with ROC plots. Models’ 
covariation was measured with a Spatial Spearman correlation. Four modelling tech-
niques were used (Bioclim, Mahalanobis distance, GARP and Maxent). The results 
of this comparison showed that there were no significant differences between models 
generated using remotely sensed imagery or ground-based data. However, the models 
built with satellite imagery data exhibited a larger diversity of values, probably related 
to the higher spatial resolution of the satellite imagery. Satellite imagery can produce 
accurate ENM, independently of the modelling technique or the dataset used. There-
fore, biogeographical analysis of species distribution in remote areas can be accurately 
developed only with variables from satellite imagery.

Keywords.	 Remote Sensing, Geographical Information System, Ecological Niche 
Modelling (ENM), Reptiles, Amphibians, Spain.
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Introduction

Predictive modelling of species distribution is an important tool for conservation 
biology and biogeography. For instance, it is used to calculate the potential distribution 
of species (Bombi et al., 2009; Brito et al., 2009), evaluate the effects of climatic warming 
on species distribution (Araújo et al., 2006), and the suitability of protected areas (García, 
2006; Doko et al., 2011). Ecological niche models (hereafter referred to as ENM) are 
produced with environmental variables such as climatic, topographical and habitat data. 
Information about these environmental factors is obtained from a large variety of maps, 
produced by ground-based methods (climatic data from meteorological stations, altitude 
from geodesic methods, vegetation maps from analogical aerial photographies) and pub-
lished in paper or in digital format. We defined ground-based methods as those making 
field observations, taking in situ measurements and performing land surveying (Kerle et 
al., 2004). These data are frequently available for developed areas of the world (Martínez 
Vega, 1996), but may not be available for less developed areas, where particular types of 
data may not exist. Currently, climate surfaces at 1 km2 resolution have been produced 
for almost all the Earth by interpolation of data measured at meteorological stations (Hij-
mans et al., 2005). The variables obtained in that study were precipitation, as well as mini-
mum and maximum temperature. However, data quality across climate surfaces was not 
consistent because the number of meteorological stations in some areas is scarce (e.g., in 
the Sahara and in Siberia, see Fig. 1 in Hijmans et al., 2005). Maximum data uncertainty 
occurred in mountains, in isolated islands and in poorly sampled areas (Hijmans et al., 
2005). Furthermore, using climatic factors alone might not be sufficient for modelling spe-
cies distributions. For instance, it has been shown that vegetation data clearly improves 
the explanatory power of bioclimatic models (Thuiller et al., 2004; Seoane et al., 2004). 
Therefore, in less developed areas, it may be preferable to carry out fieldwork to collect 
environmental data. This might not be feasible, however, when fieldwork costs are high, 
the study area is very large, or there is no time for data collection (Muldavin et al., 2001). 
These constraints hamper the development of ENM.

An alternative source of eco-geographical data comes from Remote Sensing platforms. 
Variables obtained from satellite imagery that are traditionally used in predictive model-
ling include vegetation indexes (such as the Normalized Difference Vegetation Index, 
NDVI), land cover (Kerr and Ostrovsky, 2003), and land surface temperature (Rogers et 
al., 2002). Other variables, such as ground humidity (Lavers et al., 1996), are used less 
frequently. Land-cover maps are obtained through a classification process, meanwhile 
vegetation indexes are obtained through mathematical calculations (Chuvieco, 2000). In 
comparison to data from ground-based maps, satellite imagery has several advantages, 
notably: 1) a worldwide coverage, allowing investigators to carry local, regional, national 
or continental studies; 2) several spatial resolutions, ranging from 1 km2 in the Advanced 
Very High Resolution Radiometer (AVHRR) to 1 m2 in the IKONOS; 3) several temporal 
resolutions, ranging from 16 days in the case of Landsat 5 TM to every day in the case 
of AVHRR; 4) a higher accuracy than ground-based methods, because satellite imagery 
data are not extrapolated as most climate data are; and 5) a lower cost in comparison with 
studies where it is necessary to obtain data from fieldwork. For example, many variables, 
such as altitude data from the Shuttle Radar Topography Mission (SRTM: www2.jpl.nasa.
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gov/srtm/); NDVI data from the AVHRR sensor (http://edcsns17.cr.usgs.gov/EarthExplor-
er/); or Landsat imagery (www.glovis.usgs.org), are now publicly available at no cost (Sil-
lero and Tarroso, 2010).

For these reasons, an important application for satellite imagery is the biogeographi-
cal analysis of species occurring in remote areas, where environmental data do not exist or 
are not publicly available, especially at high resolutions (Sader et al., 1991; Martínez Vega, 
1996). Remote areas often correspond to biodiversity hotspots where rare and endemic 
species are frequently the target of conservation planning (Myers et al., 2000). Most of the 
25 regions recognized as the most important hotspots of biodiversity in the world (see list 
in Myers et al., 2000) are located in less developed countries.

Nevertheless, there is a general lack of knowledge concerning the accuracy of ENM 
calculated with satellite imagery in comparison with other data sources (Thuiller et al., 
2004). It is important to evaluate the different environmental data sets available to model-
lers as well as to advice how to choose them from the available data, but to date this has 
generally not been well explored in the literature. It has been shown that climatic satel-
lite imagery data can improve ENM accuracy when combined with ground-based maps 
(Suarez-Seoane et al., 2004). However, there are not consistent results about ENM reli-
ability when using satellite imagery only. For instance, similar ENM were obtained with 
land-cover data (Venier et al., 2004; using bird species) and with climatic and NDVI data 
(Zimmermann et al., 2007; using tree species), but not with NDVI data only (Parra et al., 
2004; using bird species also). Therefore, other remote sensing data, such as topographical 
data, should be evaluated and applied to other animal groups (e.g., amphibians, reptiles), 
where relationships between ground-based maps and satellite imagery variables might be 
different. Moreover, it is very important to study the suitability and accuracy of satellite 
imagery as a data source in ENM because in remote areas satellite imagery is frequently 
the only data source that is available.

The objective of this paper was to analyse how ecological niche models are affected 
by the type of environmental variables used. Can environmental variables obtained from 
different methods represent in the same way the ecological requirements of the species? 
Therefore, will ENMs using different sets of variables identify those relationships between 
the species and the environment? Specifically, we want to evaluate if ENM developed sep-
arately with satellite imagery and ground-based map data can produce similar results. To 
achieve this, such a comparison must be made in areas where the species distribution is 
well known and where both satellite imagery and ground-based data are available. The 
province of Salamanca, in Central Spain, was selected because robust chorological (Sille-
ro et al., 2005) and environmental data (León Llamazares, 1991; Hijmans et al., 2005) are 
available. Amphibians and reptiles were selected as study species because they have a high 
correlation with environmental factors (Soares and Brito, 2007; Sillero et al., 2009). Also, 
to test the robustness of the statistical approaches and imagery used for predicting species 
models, the comparisons were performed with two ground-based maps and one satellite 
imagery dataset and four modelling methods. Specifically, the objective was to compare 
the predictive power and accuracy of four sets of models calculated using satellite imagery 
data and ground-based map data only, and next to evaluate if satellite imagery variables 
could be a useful data source to develop reliable ENM.
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Material and Methods

Study area

The study area corresponded to the range of a scene of the Landsat 5 Thematic Mapper 
image, row 203, path 32, of June 23, 1999, on the Salamanca province (Fig. 1). This part of the prov-
ince of Salamanca, located in Central Western Spain (Fig. 1) was selected because it is an area with 
good information about the distribution of species as well as the eco-geographical characteristics of 
the region. Salamanca is a 12500 km2 plain (12884 raster cells) with an average altitude of 700 to 
900 m. To the south, this plain is interrupted by the mountains of the Sistema Central, ranging from 
900 m to 2425 m, and to the north-west by the Duero river canyon, ranging from 750 m to 112 m. 
The climate is Mediterranean, with low precipitation (average of 400 mm throughout the year), and 
summer drought, and with cool temperatures in winter. These general climate characteristics are 
modified perceptibly by the relief to the south and north-west. The precipitation in the mountain 
ranges increases with altitude and the average exceeds 700 mm per year.

Species

Amphibians and reptiles were selected because they are taxonomic groups that can be mod-
elled more accurately than other animal groups, as they exhibit low mobility and high correlation 

Fig. 1. Location of the Landsat 5 Thematic Mapper image in Salamanca. Location of the Salamanca prov-
ince in the Iberian Peninsula (Map 1) and range of the scene of the Landsat 5 Thematic Mapper image, 
row 203, path 32, of June 23, 1999, on the Salamanca province (Map 2). The background is the hillshade 
model of the SRTM DEM with a spatial resolution of 100 m.
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with environmental factors, such as temperature or precipitation (Soares and Brito, 2007; Sillero et 
al., 2009). Species distribution data were collected from the most recent herpetological atlas of Sala-
manca (Sillero et al, 2005), where observations were presented at the level of a 1 km x 1 km UTM 
grid. For modelling purposes, a subset of species was selected according to two criteria: 1) the distri-
bution area was accurately delimited, following opinions from specialists published in herpetological 
atlases (Pleguezuelos et al., 2002; Sillero et al., 2005); and 2) the extension of their distributions, 
because the predictive and the explanatory power of ENM might depend on range size. Species with 
restricted ranges may be modelled with a higher accuracy than widespread species, as it is easier 
to define their ecological niche (Stockwell and Peterson, 2002; Seoane et al., 2005; Marmion et al., 
2009). Using species of different biogeographical affinities (see Sillero et al., 2009), the effect of spe-
cies types in ENMs’ results is reduced. As in other statistical methods, in order to obtain reliable 
conclusion on method performances, it is necessary to include all the variation in the independent 
variables. Therefore, four widespread species and four restricted-range species were selected (Sillero 
et al, 2005). The widespread species were (Fig. 2): three amphibians, Pleurodeles waltl (n = 71 loca-
tions), Salamandra salamandra (n = 87), Bufo calamita (n = 129), and one reptile, Natrix maura 
(n = 83). The restricted species were (Fig. 2): one amphibian, Rana iberica (n = 41), and three rep-
tiles, Acanthodactylus erythrurus (n = 37), Lacerta schreiberi (n = 35), Podarcis carbonelli (n = 46). In 
summary, four amphibians and four reptiles were used in the analysis.

Fig. 2. Amphibian and reptile records for species distribution models in Salamanca province. Amphib-
ians: A, Pleurodeles waltl; B, Salamandra salamandra; C, Bufo calamita; D, Rana iberica. Reptiles: E, Acan-
thodactylus erythrurus; F, Lacerta schreiberi; G, Podarcis carbonelli; H, Natrix maura. Each black square 
represents a record in a 1x1 km UTM square grid.
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Environmental data sources

Three data sources were used to calculate ground-based map models: (1) a bioclimatic atlas 
of Salamanca (León Llamazares, 1991); (2) the WorldClim series (Hijmans et al., 2005; http://www.
worldclim.org/); and (3) a Digital Elevation Model (DEM) built with the contour lines of 1:50000 
topographic maps by the Junta de Castilla y León (Spain). Vegetation data were not included in 
ground-based variables as all maps available for the study area were produced by remote sensing 
techniques (in fact, all vegetation maps are currently performed using satellite imagery). These three 
data sources were combined in two datasets: GrB-L, with variables from León Llamazares (1991) 
and the DEM; and GrB-W, with variables from Worldclim series and the DEM. Only variables 
with a correlation lower than ± 0.8 were included in the ground-based map models: GrB-L dataset 
included 12 variables, and GrB-W dataset included 7 variables. In the Appendix 1 is described the 
methodology for obtaining and preparing the ground-based map variables (see Table A1).

Satellite imagery was selected from the Landsat 5 Thematic Mapper (TM) and the second ver-
sion of the Shuttle Radar Topography Mission (SRTM) adapted to the official Spanish reference sys-
tem (European Datum 1950 for Spain and Portugal; http://topografia.montes.upm.es/informacion/
sig/mde/index.html). These two sensors have a high spatial resolution (30 m and 100 m, respec-
tively) and a high spectral resolution (7 channels: three in the visible spectrum, four in the infrared; 
and 16 m of vertical precision, respectively) (Chuvieco, 2000; Rabus et al., 2003). Landsat 5 TM clas-
sifies vegetation more accurately than other sensors (e.g., Systeme pour l’Observation de la Terre, 
SPOT), because it has more channels specifically distributed to map vegetation types (Gao, 1999). 
A total of 14 variables with a correlation lower than ± 0.8 were included in the satellite imagery (SI) 
models (see Table A2). The methodology for obtaining and preparing the satellite imagery variables 
is described in the Appendix 1.

In order to analyse the similarity among the variables of the three datasets, a Spatial Princi-
pal Component Analysis (SPCA) was performed for each dataset. Then, the first component of each 
SPCA was used to calculate the correlation among the three datasets. Therefore, a Spatial Spearman 
correlation (SSC) was used to measure this covariation among datasets with ArcInfo software 9.2 
(Band Collection Statistics tool). It was not possible to calculate the SSC directly with the datasets’ 
variables due to the different number and types of variables.

Ecological niche models

The activity patterns of species complicate the accurate determination of reliable absence data 
in a given locality. Consequently, ground-based map and satellite imagery models were calculated 
using four modelling techniques that use presence-only occurrence data, thus calculating the eco-
logical realized niche (sensu Sillero, 2011): Bioclim (Nix, 1986), Mahalanobis distance (Sokal and 
Rohlf, 1995), GARP (Stockwell and Noble, 1992), and Maxent (Phillips et al., 2004, 2006). Model-
ling techniques are explained in the Appendix 1. In other words, four sets of models were executed 
for each dataset (GrB-L, GrB-W and satellite imagery) and for each of the eight species, resulting in 
a total of 96 models.

Comparisons of model predictive ability

The models were compared in two ways: (1) all models were tested with receiver operated 
characteristics (ROC) plots. The area under the curve (AUC) of the ROC plot was taken as a meas-
ure of the discrimination capacity of the models (Liu et al., 2005; Elith et al., 2006; VanderWal et al., 
2009). Comparisons were performed using an ANOVA test for repeated measures when variables or 
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their logarithmic transformations were normal and homoscedastic; if not, the nonparametric Wil-
coxon test was used (Sokal and Rohlf, 1995). (2) A Spatial Spearman correlation (SSC) was used to 
measure the covariation among models by pairs of datasets with ArcInfo software 9.2 (Band Col-
lection Statistics tool). Models from several datasets can obtain high AUC values (thus models per-
formed well), but they can be spatially dissimilar: species are then predicted in different places. For 
this reason, it is necessary to measure how spatially similar they are. The AUC values of both spe-
cies groups (widespread and restricted) were compared using the Mann-Withney U test. Statistical 
analyses were performed with OpenStat software (http://www.statpages.org/miller/openstat/).

Results

Similarity among datasets

The first pair of each SPCA explained 73.44, 74.46, and 47.12% of the variance of the 
GrB-L, GrB-W, and SI datasets, respectively. The most similar pair of datasets was GrB-
W/SI (SSC = 0.58), followed by the pair GrB-L/SI (SSC = -0.37). Therefore, the less simi-
lar pair was GrB-W/GrB-L (SSC = -0.33).

Area under the curve

Examples of ENM for two species are presented in Fig. 3. AUC values were higher 
than 0.5 in all the sets of models, i.e. results were not achieved by chance alone (Fig. 4). 
Only in three cases, AUC value was lower than 0.8 (Bioclim GrB-L and SI; and GARP 
GrB-L). In the GARP and Maxent models, Natrix maura was always the species with the 
lowest AUC value meanwhile Rana iberica and Lacerta schreiberi were the species with 
the highest values, in four and two datasets, respectively (Fig. 4). In the Bioclim and 
Mahalanobis models, this pattern is not evident. Considering each modelling method inde-
pendently, there were highly significant differences in AUC values among the three data-
sets (Table 1 and Fig. 4), in the case of Bioclim (Wilcoxon test; t = 2.366; P < 0.01; n = 
24; df = 24) and GARP (Wilcoxon test; t = 1.96; P = 0.025; n = 24; df = 7). AUC values 
from satellite imagery (SI) dataset (Bioclim, SI mean = 0.836 ± 0.080; GARP, SI mean = 
0.869 ± 0.084) were higher than the other two datasets (Bioclim, GrB-L mean = 0.669 ± 
0.173; GrB-W mean = 0.785 ± 0.072; GARP, GrB-L mean = 0.796 ± 0.114; GrB-W mean 
= 0.801 ± 0.057). The differences in AUC values were not significant when comparing the 
other two modelling methods: Mahalanobis distance (ANOVA for repeated measures: n = 
24; df = 20; F = 1.50; P = 0.262); and Maxent (Wilcoxon test: n = 24; df = 7; t = 1.153; P = 
0.124). There was not a clear pattern when comparing both groups of species (widespread 
vs. restricted); only in four cases (Bioclim GrB-L and GrB-W; Mahalanobis GrB-W; and 
Maxent SI), AUC values were higher in the restricted species (Table 2 and Fig. 4).

Spatial Spearman Correlations

Spatial Spearman Correlations values were in generally low; only few pairs were 
higher than 0.5, namely for the Bioclim, GARP and Maxent models (Fig. 5). Here again, 
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Fig. 3. Examples of species distribution models. The species are Rana iberica (first column of maps) and 
Acanthodactylus erythrurus (second column of maps). The first row corresponds to Bioclim models, the 
second to Mahalanobis models, the third to GARP models and the fourth to Maxent models. Inside each 
row, maps correspond to GrB-L, GrB-W and satellite imagery dataset, from left to right, respectively. Grey 
scale stands for habitat suitability values with darker tones corresponding to maximum values.
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Table 1. Mean and Standard Deviation (SD) of AUC (Area Under the ROC Curve) values for the four 
modelling methods. Variables from two datasets of ground-based maps (GrB-L and GrB-W) and one of 
satellite imagery (SI) were used to calculate the species distribution models. See the text and Appendix 
1 for details. *: There was no solution in the Mahalanobis model of L. schreiberi for the dataset GrB-L. 
Therefore, the AUC mean did not include this model.

Method Dataset Mean SD

Bioclim GrB-L 0.669 0.173
GrB-W 0.785 0.072

SI 0.836 0.080
Mahalanobis GrB-L* 0.986 0.010

GrB-W 0.995 0.008
SI 0.985 0.021

GARP GrB-L 0.796 0.114
GrB-W 0.801 0.057

SI 0.860 0.084
Maxent GrB-L 0.864 0.073

GrB-W 0.830 0.074
SI 0.874 0.058

Fig. 4. AUC values of species distribution models. Models were calculated with two datasets of ground-
based maps (GrB-L and GrB-W) and one of satellite imagery (SI). AE: Acanthodactylus erythrurus; BC, 
Bufo calamita; LS: Lacerta schreiberi; NM, Natrix maura; PC, Podarcis carbonelli; PW: Pleurodeles waltl; 
RIB, Rana iberica; SS: Salamandra salamandra. There was no solution in the Mahalanobis model of L. 
schreiberi for the dataset GrB-L.
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Table 2. Results from Mann-Whitney U test (the first line corresponded to Z statistics and the second 
line to the P value). AUC (Area Under the ROC Curve) and Spatial Spearman Correlations (SSC) values 
were compared between two species groups (widespread and restricted) for the four modelling methods. 
The widespread species were: Pleurodeles waltl, Salamandra salamandra, Bufo calamita, Natrix maura; the 
restricted species were: Rana iberica, Acanthodactylus erythrurus, Lacerta schreiberi, Podarcis carbonelli. 
Variables from two datasets of ground-based maps (GrB-L and GrB-W) and one of satellite imagery (SI) 
were used to calculate the species distribution models. See the text and Appendix 1 for details. There was 
no solution in the Mahalanobis model of L. schreiberi for the dataset GrB-L. Therefore, AUC and SSC 
value was not included this model.

Method
AUC SSC

GrB-L GrB-W SI GrB-L/SI GrB-L/GrB-W GrB-W/SI

Bioclim 2.31
0.01 (**)

2.02
0.02 (**)

1.44
0.07 (NS)

1.15
0.12 (NS)

0.72
0.24 (NS)

0.29
0.39 (NS)

Mahalanobis 0.35
0.36 (NS)

1.73
0.04 (*)

0.29
0.39 (NS)

1.3
0.1 (NS)

2.12
0.02 (NS)

1.24
0.11 (NS)

GARP 1.44
0.07 (NS)

1.44
0.07 (NS)

1.59
0.06 (NS)

1.44
0.07 (NS)

1.15
0.12 (NS)

1.01
0.16 (NS)

Maxent 1.44
0.07 (NS)

1.44
0.07 (NS)

1.73
0.04 (*)

0.87
0.19 (NS)

1.15
0.12 (NS)

0.58
0.28 (NS)

**: Highly significant; *: Significant; NS: Non significant.

Table 3: Mean and Standard Deviation (SD) of Spatial Spearman Correlations (SSC) for the four model-
ling methods. Variables from two datasets of ground-based maps (GrB-L and GrB-W) and one of satel-
lite imagery (SI) were used to calculate the species distribution models. See the text and Appendix 1 for 
details. *: There was no solution in the Mahalanobis model of L. schreiberi for the dataset GrB-L. There-
fore, SSC were not calculated for the pair combinations with this model.

Method Dataset Mean SD

Bioclim GrB-L/SI 0.29 0.17
GrB-W/GrB-L 0.32 0.19

SI/GrB-W 0.20 0.10
Mahalanobis GrB-L/SI* 0.08 0.10

GrB-W/GrB-L* 0.34 0.10
SI/GrB-W 0.43 0.10

GARP GrB-L/SI 0.33 0.24
GrB-W/GrB-L 0.23 0.29

SI/GrB-W 0.29 0.12
Maxent GrB-L/SI 0.49 0.20

GrB-W/GrB-L 0.60 0.11
SI/GrB-W 0.47 0.16

**: Highly significant; *: Significant; NS: Non significant.
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Rana iberica and Lacerta schreiberi were the species with the highest values when using 
the GARP and Maxent models; however, these two species had the lowest values using 
the Bioclim model. In the Mahalanobis models, Natrix maura had the lowest values in 
two comparisons. There was no solution in the Mahalanobis model of L. schreiberi for the 
dataset GrB-L; therefore, this model was not included in the subsequent analysis.

There were significant differences among dataset pairs of comparisons using the 
Mahalanobis (Wilcoxon test: n = 24; df = 7; t = 2.366; P = 0.009) and Maxent models 
(Wilcoxon test: n = 24; df = 7; t = 1.820; P = 0.034; Table 3 and Figure 5). SSC were high-
er when comparing the pair of datasets GrB-L and GrB-W than the other two pairs, in 
Mahalanobis models, and when comparing the pair of datasets GrB-W and SI, in Max-
ent models. For the other two sets of models, there were no significant differences among 
pairs of comparisons: Bioclim (Wilcoxon test: n = 24; df = 7; t = 0.700; P = 0.242; Table 
3); GARP (Wilcoxon test: n = 24; df = 7; t = 0.700; P = 0.242; Table 3). Also, there was 
no significant difference among SSC values of widespread and restricted species groups 
(Table 2 and Fig. 5).

Discussion

The high accuracies obtained in almost all models based on satellite imagery and 
ground-based datasets indicated that, in general, all models performed reliably and are 
robust. The predictive power of the four sets of modelling methods was similar, with the 

Fig. 5. Spatial Spearman Correlation (SSC) values of species distribution models. SSC were calculated com-
paring pairs of different dataset models. AE: Acanthodactylus erythrurus; BC, Bufo calamita; LS: Lacerta 
schreiberi; NM, Natrix maura; PC, Podarcis carbonelli; PW: Pleurodeles waltl; RIB, Rana iberica; SS: Sala-
mandra salamandra. There was no solution in the Mahalanobis model of L. schreiberi for the dataset GrB-L.
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AUC values and Spatial Spearman correlations (SSC) not being significantly different in 
almost all cases. When there were significant differences, (Bioclim and GARP models), it 
was the satellite imagery dataset which obtained higher AUC values. Probably, this result 
is not due only to the dataset itself, but also may be produced by the modelling tech-
nique employed: Bioclim and GARP have a lower accuracy compared with other models 
(Elith et al., 2006); and the dataset GrB-L is probably the less accurate as it results from 
data interpolation. Therefore, both methods together with the dataset may produce worst 
results. The lower accuracy of GrB-L is confirmed by the SSC of SPCA results: SI data-
set is more similar to the other two datasets, than those datasets (GrB-L and GrB-W) 
between them. For the Mahalanobis and Maxent models, the SSC was higher when com-
paring the pair of datasets GrB-L/GrB-W and GrB-W/SI. As confirmed by the results of 
the SPCA SSC, dataset SI is a good surrogate of GrB-W. However, the high SSC between 
the models of the datasets GrB-L and GrB-W is not concordant: the value should be lower 
as they are the most dissimilar datasets.

However, the P-value for Maxent SSC comparisons was very low. In some models (Bio-
clim, Mahalanobis, and Maxent; see Table 2), species with a restricted range had high AUC 
values, while widely dispersed species had lower AUC values, suggesting that species with a 
restricted range could be more accurately modelled than widely dispersed species. On the 
other hand, in presence only models, the maximum achievable AUC is lower in widespread 
species (Phillips et al., 2006). This might further affect the AUC differences between wide-
spread and restricted range species. Nevertheless, SSC values were similar for both groups 
of species. Although this result had been confirmed clearly in earlier studies (e.g., Stockwell 
and Peterson, 2002; Seoane et al., 2005; VanDerWal et al., 2009), our results do not allow to 
assess the same conclusion. Restricted species are modelled with a larger accuracy because 
their ecological niches have a smaller geographical extension, and therefore they are more 
easily identified (see VanDerWal et al., 2009). Hence, higher SSC values among restricted 
species should be expected in comparison with widespread species.

In other studies, ENM were improved when climate data from satellite imagery were 
combined with habitat variables (Suarez-Seoane et al., 2004). Also, the incorporation of 
land cover data improved the explanatory power of ENM calculated only with ground-
based variables, although it did not improve the predictive power (Thuiller et al., 2004). 
These results confirmed that satellite imagery data improve model results when added to 
ground-based data. However, ENM calculated separately or in combinations with regional 
climate surfaces and from land cover data also had similar accuracy (Venier et al., 2004). 
Model performance was also similar when NDVI variables were combined with climatic 
and topographical datasets using ground-based data. Zimmermann et al. (2007) found 
that ground-based variables outperform the satellite imagery predictors, although models 
calculated with only satellite imagery data provided high model accuracies, due to the cor-
relation between climate and satellite imagery variables. Our findings support results by 
Vernier et al. (2004) and Zimmermann et al. (2007), although these studies used only two 
datasets and one modelling technique. In another study (Parra et al., 2004), models per-
formed relatively well with two ground-based datasets (one with only climatic variables 
and other with only topographical data) and poorly with NDVI variables (used as unique 
data source, for deriving several variables). Probably, these partial datasets were not able 
to define completely the species’ ecological niche. Therefore, results could depend on the 
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technique or dataset implemented. In fact, Bioclim was considered as the main factor for 
general low model performance (Parra et al., 2004). As here, the aim of Parra et al. (2004) 
was not to test among modelling methods but to test among environmental datasets.

Our results showed that satellite imagery data can produce ENM of acceptable accu-
racy, independently of the modelling technique or the dataset used. This is very impor-
tant when the study area is in a remote region, or when spatial resolution of the ground-
based layers is coarse, as satellite imagery may be the only feasible source of data (Martín-
ez Vega, 1996; Sillero and Tarroso, 2010). In fact, remote sensing data have been applied 
for many years in epidemiological studies (Hay et al., 1996), particularly in tropical areas, 
where it is very difficult to measure environmental variables that require continuous mon-
itoring (Rogers et al., 2002). For example, accurate data on altitude (lower than 1 km2) 
is produced currently by radar images (e.g., SRTM and ASTER GDEM; see Sillero and 
Tarroso, 2010). Moreover, for some countries (e.g., Mauritania) digital topographical maps 
are not available. A source for altitude data is radar images. Climatic data come from 
interpolation of weather stations, but in areas without such stations like the Sahara desert, 
the interpolated results can be very inaccurate (see Hijmans et al., 2005). Using again the 
example of Mauritania, all vegetation maps have been produced by satellite imagery data. 
However, works by Parra et al. (2004), Vernier et al. (2004) and Zimmermann et al. (2007) 
did not compare the satellite imagery models with models calculated exclusively with 
ground-based data, to measure which type of variables produced more accurate ENM. 
According to the present study, biogeographical analysis of species distribution in remote 
areas can be accurately calculated using variables from satellite imagery only. Small dif-
ferences may be found when modelling other species, namely in groups with low envi-
ronmental dependency (e.g., birds, mammals). Everything will depend on the capacity of 
remote sensing data in explaining the habitat species’ requirements.

As satellite imagery (e.g., NDVI) observe the actual spatial variation (Han et al., 
2004), satellite imagery can describe the environment more accurately than ground-based 
data sources. Satellite imagery is produced with higher spatial and spectral resolutions 
than conventional field methods used to produce ground-based data (Kerr and Ostrovs-
ky, 2003; Turner et al., 2003). This supposes a larger diversity of values in the variables 
obtained from the satellite imagery than those derived from the ground-based data. This 
is proved by the low proportion of explained variance presented by the first component 
of the PCA analysis of the SI dataset. Whereas a climatic map obtained by interpolation 
shows only few values inside a particular area, satellite imagery may capture subtle dif-
ferences in either the soil or the vegetation characteristics. For instance, an artificial grass 
field is not distinguished from a natural one by conventional aerial photography, but the 
infra-red image is able to detect the chlorophylical activity of the natural grass field (Chu-
vieco, 2000). When using satellite imagery, two adjacent grass fields, one artificial and the 
other natural, therefore would be identified as two different structures. In an ENM, the 
habitat suitability index of the two fields probably would be the same if satellite image-
ry was not used. This is also applicable to adjacent micro-habitats. Furthermore, climate 
variables alone cannot distinguish possible reflectance differences between early and late 
plant species. Therefore, in some situations, areas with different habitat suitability indexes 
can be detected more accurately with satellite imagery, resulting in more accurate ENM 
(Suarez-Seoane et al., 2004). An example of this could be an ENM of deciduous broad-
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leaved trees, as multi-temporal imagery can distinct phenology compared to evergreen 
needle-leaf trees (Zimmermann et al., 2007).

Satellite imagery has also disadvantages or short comings. The temporal record of sat-
ellite imagery is recent and short (Chuvieco, 2000). Thus, our capacity to perform histori-
cal studies with satellite imagery is lower than with interpolated-climate data (Hijmans et 
al., 2005). Moreover, one of the most important programmes of acquiring satellite imagery 
(Landsat) is not completely functional any more (both Landsat 5 and 7 are not working 
properly). Other disadvantage of satellite imagery is the relatively low number of environ-
mental variables that sensors can provide (Sillero and Tarroso, 2010). Manual photo-inter-
pretation can obtain more exact products than automatic image classification algorithms 
(although there are examples proving the opposite, such as the first edition of CORINE 
project for Spain; pers. obs.).

Despite these disadvantages, an important advantage of satellite imagery data over 
ground-based data is its capacity to produce temporal series of information from the same 
area (Hay et al., 1998; França and Setzer, 1998; Azzali and Menenti, 2000; Lucas et al., 
2000a; Lucas et al., 2000b; Sobrino, 2000; Green and Hay, 2002). Therefore, it is possible to 
study the same ecological processes over time, such as habitat monitoring (Kobayashi and 
Dye, 2005), land cover mapping (Stow et al., 2006) and climate change detection (Roerink 
et al., 2003). Future work should include more complete temporal series of climatological 
data, land cover and vegetation productivity.
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