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INTRODUCTION

Water temperature in lakes is governed by a complex
heat budget resulting from the combination of different heat
flux components that are mainly exchanged between the
lake and the atmosphere. Water temperature is the primary
driver of vertical stratification in lakes, thus it significantly
affects transport of mass (including nutrients and dissolved
oxygen), energy, and momentum within the water column.
It crucially controls several physical (e.g., thermal stratifi-
cation, mixing processes), geochemical (e.g., chemical re-
action rates, oxygen solubility), and ecological (e.g.,
metabolism, growth, and reproduction of organisms)
processes, with considerable influences on the overall lake
water quality, ecosystem functioning, and community com-
position (Wetzel, 2001; Gallina et al., 2013). It is therefore
evident that any significant changes in water temperature
may lead to alterations in the thermal regime of the lake
and in the community structure of many freshwater habitats

(Winder and Sommer, 2012; De Senerpont Domis et al.,
2013; Schabhüttl et al., 2013; Butcher et al., 2015), with
possible modifications of the biochemical compositions of
some algae species (Flaim et al., 2014). This is particularly
relevant considering that lakes have been demonstrated to
be highly sensitive to changes in environmental conditions
(Adrian et al., 2009; O’Reilly et al., 2015). 

In the light of the above considerations, large efforts
have been directed towards the development of models able
to predict water temperature, with a particular attention to
Lake Surface Temperature (LST). Several models of dif-
ferent type and complexity have been proposed to simulate
water temperature, ranging from simple regression models
(McCombie, 1959; Webb, 1974; Livingstone and Lotter
1998; Kettle et al., 2004; Sharma et al., 2008) to more com-
plex process-based numerical models (Perroud et al., 2009;
Martynov et al., 2010; Thiery et al., 2014). Regressions
models are attractive because they require little informa-
tion, usually only air temperature, but generally they are
not able to address some fundamental processes (e.g., the
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effect of thermal stratification) and their use may be ques-
tionable especially when it is necessary to extrapolate tem-
perature values beyond the limits of the measured time
series, as is typically the case in climate change studies. On
the other hand, deterministic models are designed to pro-
vide an exhaustive description of the thermal behaviour of
the lake, but they require detailed time series of meteoro-
logical variables, which are not always available for long
periods and with a sufficient accuracy. 

In order to overcome the limitations of traditional ap-
proaches, Piccolroaz et al. (2013) recently developed
air2water, a hybrid physically-based/statistical model,
which is able to provide a robust, predictive understanding
of LST dynamics knowing air temperature only. The hy-
brid formulation of the air2water model combines a phys-
ically based derivation of the governing equation with a
stochastic calibration of the parameters. In this way, the
information contained in the data is transferred directly to
model parameters, whose calibrated values can provide
significant information as to how the real system behaves
(thanks to the physical-based structure of the model). The
underlying rationale behind the development of this
model is to take advantage of the fact that the governing
laws of physics are generally well understood, to intro-
duce opportune simplifications while retaining all the fun-
damental processes (and their physical meaning)
involved. The purpose is to minimize data requirements
and computational effort, which still represent the most
common limitations, and to develop a as simple as possi-
ble but not simpler (citing a famous quote by Albert Ein-
stein) mathematical tool able to provide a reliable
description of a natural phenomenon on the basis of the
data that are available. The model has been successfully
tested considering lakes characterized by different mor-
phometric characteristics and using different sources of
data (see e.g., Toffolon et al., 2014a, who applied the
air2water model to 14 different lakes in the temperate re-
gion: 7 located in North America, 6 in Europe, and 1 in
Asia). In all cases, air2water performed similarly to more
complex process-based models (i.e., RMSE on the order
of 1°C for daily temperatures), even though these latter
models generally require a much larger amount of infor-
mation. The model has been shown to satisfactorily cap-
ture seasonal variations and inter-annual dynamics of
LST, and to provide key information to investigate the
role of stratification in controlling the thermal response
of lakes (Piccolroaz et al., 2015a).

This work provides the reader with practical guide-
lines for proper use of the air2water model and for critical
analysis of results, with the final goal of facilitating the
use of the model by scientists that do not necessarily have
a solid background on modelling or physics. However,
this work should not be considered simply as a collection
of best practices, but also as an attempt to foster commu-

nication among colleagues from different disciplines with
a common interest in aquatic science. The reader will find
answers to questions like: What is the meaning of model
parameters, how are they derived, and how should we se-
lect their a priori range of variation?; What is the maxi-
mum allowable percentage of missing data to obtain
reliable results?; How long should the calibration period
be?; What version of the model should be used?; Does
lake depth affect model performance?. Particular attention
is given to analysing the effects of data scarcity on model
performance in modelling LST. Finally, future directions
and perspectives concerning possible improvements of the
air2water model are discussed, with a particular emphasis
on cross-sectoral applications.

METHODS

Study sites and available data

The air2water model is applied to two lakes charac-
terized by significantly different morphological and ther-
mal characteristics: Lake Superior and Lake Erie (USA)
(Fig. 1). Lake Superior is the largest, deepest, and most
northern of the Great Lakes, while Lake Erie is the small-
est, shallowest, and most southern of the two lakes in this
study (Tab. 1). Long-term data of air and surface water
temperature are available from different sources. In this
work the following sources of data are used: GLSEA daily
LST retrieved from satellite imagery (i.e., skin tempera-
ture) provided by National Oceanic and Atmospheric Ad-
ministration (NOAA) Great Lakes Environmental
Research Laboratory (GLERL, webpage: http://www.
glerl.noaa.gov/glsea/asc_ 1024/) and derived from NOAA
polar-orbiting satellites equipped with AVHRR sensors,
and daily air temperature at 2 meters above ground from
ERA-Interim reanalysis (provided by the European Centre
for Medium-Range Weather Forecasts, ECMWF and
downloaded from http://apps.ecmwf.int/datasets/data/in-
terim-full-daily/levtype=sfc/). Both datasets cover the 20-
year period 1995-2014 and contain spatially distributed
data (with resolution equal to about 1.3 km and 80 km in
the two cases, respectively). The data have been post-
processed in order to evaluate lake-average values, i.e.,
temperature values have been aggregated at the lake scale.
Moreover, in order to allow the analyses, as presented in
the Results section, the missing data in the LST series
have been replaced by interpolation with a moving aver-
age filter of 10 days. 

Fig. 1 shows the typical annual cycles of air and water
temperature for the two lakes, and suggests the existence
of markedly different thermal behaviours: i) due to the
higher latitude, air temperature over Lake Superior is gen-
erally colder than for Lake Erie (annual mean, minimum,
and maximum equal to about 3.9°C vs 9.6°C, -13.9°C vs
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-6.4°C, and 17.8°C vs 23.5°C, for the two lakes respec-
tively) and the maximum air temperature occurs later (be-
ginning of August vs middle of July); ii) the amplitude of
the phase lag (hysteresis) between air and water temper-
ature is more evident for Lake Superior than for Lake Erie
indicating a larger thermal inertia due to the larger water
volume; iii) consequently, the onset of direct thermal strat-
ification (i.e., when Tw≥4°C)) in Lake Superior occurs
later in the year (end of May vs middle of April) as well
as the period of maximum stratification (i.e., when Tw is
maximum; end vs beginning of August); iv) the shape of
LST annual cycle deviates from the nearly sinusoidal pat-
tern of air temperature in Lake Superior, contrary to what
happens in the case of Lake Erie; and v) Lake Superior is
generally colder than Lake Erie (mean annual LST equal
to 6.5°C and 11.3°C in the two lakes, respectively).

The choice of these two case studies is not only mo-
tivated by the large amount of high quality and freely
available data, but also, and more importantly, by the fact
that they are good examples of deep and shallow temper-
ate lakes characterized by markedly different thermal re-
sponses to external forcing. This requisite is certainly of
major importance in order to write as much as possible
exhaustive and generally valid guidelines for best prac-
tices around the use of the air2water model.

The air2water model

The air2water model is based on a lumped heat
budget of the surface volume of the lake at daily time
scale, and is derived from the following volume-inte-
grated heat equation:

                                                      (eq. 1)

from which the variation of water temperature (Tw) in time
(t: hereafter expressed in days) is directly dependent on
the product between the heat flux into the upper water vol-
ume (Hnet) and the surface area of the lake (A), and in-
versely dependent on the surface volume of water
involved in the heat exchange with the atmosphere (Vs:
hereafter also referred to as the reactive volume), density
(ρ) (1000 kg m–3), and specific heat capacity at constant
pressure (Cp) (4186 J kg–1 °C–1). Hnet can be expressed as
the combination of several contributions entering and ex-
iting the upper water volume (VS) (see Fig. 2 for a
schematic, and Supplementary Material A for details),
which are primarily controlled by: the net shortwave (HS)

and longwave (Ha) radiation actually absorbed by the sur-
face volume (i.e., accounting for water reflectivity), the
longwave radiation emitted from the lake (HW), the latent
heat flux due to evaporation and condensation (Hl), and
the sensible heat flux due to convection (HC). Heat flux
due to precipitation, the heat exchanged with inlets/out-
lets, and the heat exchanged between surface volume and
deep water or sediments can be considered as insignificant

Fig. 1. Geographical location of Lake Superior and Lake Erie in
the Great Lakes region and in North America. Typical annual cy-
cles (averaged over the period 1995 to 2014) of air and water tem-
perature for the two lakes.

Tab. 1. Main morphological characteristics of the investigated lakes.

                              Volume (km3)               Surface area (km3)         Maximum depth (m)         Average depth (m)            Geographic coordinates

Lake Superior              12,000                                82,100                                  406                                     147                                 47.7°N 87.5°W
Lake Erie                       480                                  25,667                                   64                                       19                                  42.2°N 81.2°W

Non
-co

mmerc
ial

 us
e o

nly



39S. Piccolroaz

factors, and are not explicitly included in the formulation
of air2water. However, their contribution is indirectly ac-
counted for in the calibration of parameters. Following
Livingstone and Padisák (2007), air temperature can be
considered as a proxy for the integrated effect of the ex-
ternal forcing, and it can be assumed, together with LST,
as the key factor controlling the heat balance of the sur-
face layer of the lake. This is the central concept of the
air2water model. In particular, Hnet is included in a linear
form obtained by Taylor expansion in terms of both air
(Ta) and water (TW) temperatures, as follows:

(eq. 2)

whereand T̄W are reference values (e.g., long term averages
of Ta and TW, respectively), and Hnet,0=Hnet | T̄a ,T̄W

is the part
of Hnet that is independent on air and water temperatures.
In general, however, Hnet,0 can vary in time. As a first ap-
proximation, this is accounted for by defining Hnet,0 as the
sum of a constant value and a sinusoidal function of time
with a period of 1 year, the latter term summarizing, albeit
in a simplified form, the combined effect due to the vari-
ability of all meteorological variables other than air tem-
perature (e.g., solar radiation, wind speed, air humidity,
cloudiness) at annual time scale. Equation (1) can be
therefore rewritten as follows:

(eq. 3)

where the definition of parameters âi,i=1, 2, 3, 5, 6 can be
derived from equation (2) once the single heat flux terms
are evaluated through suitable empirical relationships
(Martin and McCutcheon, 1998). Refer to Supplementary
Material A for details about the linearization Hnet of , and
the definition of parameters âi. 

By introducing the dimensionless ratio δ=VS /Vr

(which can be also interpreted as the ratio between the av-
erage depth of the surface layer DS=VS /A and that of the
reference layer Dr=Vr /A.), eq. (3) can be rewritten as the
following ordinary differential equation, representing the
full version of the air2water model:

                   
(eq. 4)

where parameters ai,i=1, 2, 3, 5 are defined as
ai=âiA/(Vr ρCp)=âi/(Dr ρcp). In this form, the geometrical
characteristics of the lake (surface area, volume, and
depth) are not required to be explicitly specified, since are
implicitly accounted for in the model parameters ai, which
require calibration. In order to ensure proper model cali-
bration excluding unrealistic solutions, the model param-
eters are allowed to vary within a physically plausible
range, which can be easily estimated knowing (even ap-
proximately) the mean depth of the lake, as will be thor-
oughly discussed in the Results section. Equation (4) is
numerically integrated with a daily time step (i.e., dt=1
day; see also the Methods section for further details). 

Finally, in order to account for the significant seasonal
variability of the reactive volume as a consequence of ther-
mal stratification, Piccolroaz et al. (2013) assumed that the
dimensionless ratio (δ) is a function of the difference be-
tween LST and a reference value of the deep water temper-
ature (Th), through the following empirical relationship:

              
(eq. 5)

where Th can be assumed to be 4°C for dimictic lakes, and
the minimum or maximum water temperature for warm and
cold monomictic lakes, respectively, and a4, a7, and a8 are
model parameters. From the first formula in equation (5) it
is easy to see that the dimensionless ratio δ is theoretically
defined in a range from 0 to 1, with δ decreasing for in-
creasing thermal stratification (here represented by the dif-
ference Tw–Th), thus mimicking the fact that the surface
water volume affected by the surface heat budget gets pro-
gressively thinner. Conversely, δ=1 when the lake is
isothermal (i.e., Tw–Th), suggesting that the reference vol-
ume can be interpreted as the maximum water volume in-
volved in the heat exchange with the atmosphere during the
year. The same considerations apply to the second formula
in equation (5), which is valid when the lake is inversely
stratified (i.e., when ). In this case, however, the possible
effect of heat flux reduction due to ice cover is also in-
cluded by a fictitious increase of the effective volume (see
the second term on the right-hand side). In order to simulate
ice formation at the surface, a lower bound is imposed on
by introducing a threshold value. This threshold is generally
0°C when the water temperature is measured close to the
surface, but it can be higher when temperature is measured
at deeper depths. Despite being simple, the parameteriza-
tion of δ presented in equation (5) is suitable to reproduce

Fig. 2. Main heat fluxes involved in the heat budget of the sur-
face layer. See Supplementary Material A for the description of
the single terms.
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seasonal and interannual patterns of thermal stratification,
as it has been clearly demonstrated for the cases of Lake
Constance (Toffolon et al., 2014a) and Lake Superior (Pic-
colroaz et al., 2015a).

Equations (4) and (5) taken together constitute the
air2water model in its full, 8-parameter version. Two sim-
plified versions of the model are also available: a 6-para-
meter version where δ=1 when the lake is inversely
stratified; and a 4-parameter version which, beyond the
above simplification, does not include the externally im-
posed sinusoidal forcing (i.e., a5=0). This latter version
can be considered particularly appropriate when the an-
nual cycles of Tw and/or of Ta are approximately sinu-
soidal: in fact, from basic principles of trigonometry, the
sum of sinusoidal functions with the same period (i.e., 1
year) but different amplitude and phase, yields another si-
nusoid with different amplitude and phase but the same
period. Therefore, two sinusoids are enough, and the term

can be removed. 
For the reason given in the Results section (second

paragraph), the whole analysis is performed considering
only the 4- and 6-parameter versions of the air2water
model, without loss in generality.

Numerical solution and model calibration

The second release of the air2water model is now
available at https://github.com/spiccolroaz/air2water,
where the source code (written in Fortran 90/95), the pre-
compiled executable files (Linux/Windows), a readme
file, and an example application are freely downloadable
(the code is published under the Creative Commons At-
tribution-ShareAlike 3.0 license). In this new release, the
main improvement concerns the numerical solution of the
ordinary differential equation (4), which, together with
equations (5), constitutes the air2water model. Users can
now choose among Euler, Runge-Kutta 2nd order, Runge-
Kutta 4th order, and Crank-Nicolson numerical schemes.
The first three schemes are explicit, and in summer, when
δ→0, it may happen that a daily time step is too large to
adequately integrate equation (4), possibly generating nu-
merical instabilities. In order to avoid this situation and
provide an accurate prediction of Tw, an adaptive sub-step-
ping procedure has been implemented, in which the orig-
inal integration time step of one day is divided into a
number of equal sub-steps according to the stability con-
ditions of the method (Butcher, 2008). Predictions of Tw

are anyway provided at daily time scale. Conversely, the
last numerical scheme is implicit, 2nd order accurate, and
unconditionally stable: a sub-stepping procedure is not re-
quired and the daily time step is used for the whole sim-
ulation, making it generally faster (but less accurate than
Runge-Kutta 4th order) than the previous schemes. In this
case, in order to obtain a closed-form analytical expres-

sion of equation (4), is handled explicitly, thus only to the
numerator of the right-hand side of equation (4) has been
discretized according to the Crank-Nicolson scheme. 

Model calibration is performed through a Monte
Carlo-based optimization approach in which a large num-
ber of parameter sets are sampled and evaluated in terms
of a given metric of model efficiency. Here, the Root
Mean Square Error (RMSE) between observed and mod-
elled values is considered as an optimization metric,
meaning that at the end of the optimization loop the best
set of parameters is identified as the one providing the
smallest RMSE. The sampling procedure is performed
through the Particle Swarm Optimization (PSO) algo-
rithm, a simple and powerful population-based stochastic
optimization technique firstly proposed by Kennedy and
Eberhart (1995) for solving engineering problems, and
successively applied to a variety of different fields, in-
cluding hydrology (Gill et al., 2006; Piccolroaz et al.,
2015b). For further details about this optimization proce-
dure, the reader is referred to Supplementary Material B. 

Numerical integration of equation (4) requires that the
series of air temperature (i.e., the external forcing) be con-
tinuous and at daily resolution. Therefore gaps (in case
they exist) must be reconstructed e.g., by replacement
with the average value of all air temperature measure-
ments available in the data set for the same specific day
of the year when the data is missing. Conversely, the time
series of observed LST can contain missing data. In this
case, missing data are not replaced, and they simply do
not contribute to the evaluation of the prediction perform-
ance (e.g., through the evaluation of RMSE between ob-
served and simulated LST). This allows for using
air2water with LST observational time series at any fre-
quency (e.g., weekly, monthly, seasonal) that is not nec-
essarily the daily, or simply with irregular time series. The
effect on model performance of the presence of missing
LST data will be analysed in detail in the Results section.

As a final note, besides RMSE the user can choose be-
tween other metrics of model performance: the Nash-Sut-
cliffe Efficiency index (NSE, Nash and Sutcliffe, 1970)
and the Kling-Gupta Efficiency index (KGE, Gupta et al.,
2009). In addition, model calibration can be performed
using Simple Random Sampling or the Latin Hypercube
Sampling technique (McKay et al., 1979) besides the
PSO, which are computationally more expensive but ex-
plore more uniformly the space of parameters, allowing
for conducting sensitivity analyses of model parameters.

RESULTS

Evaluating the a priori range of model parameters

As mentioned in the Methods section, to ensure proper
model calibration, model parameters are required to be
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defined within a physically consistent a priori range of
variation. This range should be sufficiently wide to allow
for the existence of an optimal and physically plausible
set of parameters, and at the same time it should not be
indiscreetly large to avoid convergence to unrealistic so-
lutions. Suitable a priori ranges of variations for param-
eters ai,i=1, 2, 3, 5 can be evaluated on the basis of
physical considerations, recalling that ai=âi/(Dr ρcp). Re-
liable estimates of âi and Dr are therefore required. The
possible range of variation of parameters âi can be ob-
tained from equations (A11)-(A15) in Supplementary Ma-
terial A, considering all possible values and combinations

of the physical coefficients that appear in these equations
(Martin and McCutcheon, 1998). Also the reference depth
Dr , i.e., the mean depth of the largest water volume in-
volved in the surface heat budget of the lake during the
year, see Methods) can be assumed to vary within a range
of possible values. Reasonably, Dr is bounded from above
by the average depth of the lake (D=V/A, where V and A
are volume and surface area of the lake, respectively), i.e.,
when Dr=D the whole lake participates to the heat ex-
change with the atmosphere when the water column is
well mixed. However, for the case of very shallow lakes
(e.g., having the mean depth on the order of a few meters),

Fig. 3. Estimate of the a priori range of variation of model parameters as a function of the mean depth of the lake , and regression re-
lationships as determined by Toffolon et al. (2014a) analyzing 14 lakes with different morphologies.
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the effective volume participating to the heat budget may
partially involve lake sediments making the effective vol-
ume larger than the mere lake water volume (Toffolon et
al., 2014a). This possibility is implicitly accounted for in
the calibration of model parameters without the need of
specifying any additional input information, but simply
setting the upper bound of Dr to be larger than D (10 m is
a reasonable and safe choice). As for the lower bound of
Dr, experience suggests that a simple option is to linearly
vary it from D=1 m for m to 50 m for m, which is cer-
tainly a conservative underestimate. In fact, in Lake
Baikal (Russia, the world’s deepest lake) D=744 m and
50 m only roughly represents the thickness of the epil-
imnion during strong thermal stratification (Piccolroaz
and Toffolon, 2013), suggesting that the Dr is certainly
larger than this value. Parameter , which is the phase of
the sinusoidal term with amplitude a5 summing up all con-
tributions to the heat budget with the exception of the di-
rect effect of air temperature, simply varies from 0 to 1.
Parameter a4 controls the intensity of the stratification
(thus the volume that is affected by the heat exchange),
and, based on practical experience, its possible range of
variation can be defined as in Fig. 3d. 

Fig. 3 shows the range of variation of all parameters
as a function of D, evaluated based on the above consid-
erations and setting the coefficients in equations (A11)-
(A15) according to typical values that they assume in the
temperate region. Note that in principle this estimate is
coherent with the 6- and 8-parameter versions of the
model, while in the 4-parameter version the meaning of
the parameters is slightly different as parameter a5 is ab-
sorbed into parameters a1, a2, and a3. In general, however,
experience suggests that the same range of parameters can
be safely used for all versions of the model. Fig. 3 also
shows the relationships between model parameters and
lake average depth D as determined by Toffolon et al.
(2014a) where 14 temperate lakes were analysed which
were characterized by significantly different morpholo-
gies, using the 4-and 8-parameter versions of the model

(here the relationships obtained for the full 8-parameter
version are assumed valid also for the 6-parameter version
given the strong similarity between the two versions of
the models). The regressions between model parameters
and are D in Tab. 2.

From the combined analysis of Fig. 3 and Tab. 2, two
main comments can be made: First, the regression lines
are well within the physical a priori ranges of parameters,
suggesting that these ranges are properly defined. The
only exception is parameter a1 in the 6-parameter version,
whose regression line is beneath the lower physical bound
for D>300 m. However, for such deep lakes, previous re-
sults suggest that this relationship is likely not significant
(see e.g., the case of Lake Baikal in the original paper by
Toffolon et al., 2014a), and in any case the overall de-
pendence on D is weak. Second, and perhaps more im-
portant, despite by definition parameters ai,i=1, 2, 3, 5,
should depend inversely on depth, the regression lines do
not simply scale with D–1 (see e.g., the exponents of the
power laws in Tab. 1). This is indicative that air2water is
able to suitably reproduce the complex thermal behaviour
of a lake, by transferring the information contained in the
observed data directly to model parameters, which, in
turn, have a significant dependence on lake depth. 

Post-calibration analysis 

The optimal set of parameters resulting from the cali-
bration procedure is required to be well centred within the
a priori range of variation, in order to exclude any confine-
ment effect due to bounds that are too narrow. This is ex-
pected to always be the case when using the a priori range
of parameters discussed in the previous section. However,
it is always preferable to perform an a posteriori sensitivity
analysis, aimed at excluding the eventuality of parameter
ranges that are too narrow and at the same time evaluating
parameters’ identifiability and significance. This analysis
is easily done producing and analysing the shape of the so-
called dotty plot”, which are projections of the measure of
model performance (in this case expressed through RMSE)
obtained after the calibration procedure within the hyper-
space of parameters, onto single parameter axes (Beven and
Freer, 2001; see Fig. 4 for a schematic). Preferably, dotty
plots should be obtained using Simple Random Sampling
or Latin Hypercube Sampling techniques for model cali-
bration instead of PSO, to avoid clustering around the best
solution. If a dotty plot is sharp and well defined (as in Fig.
4a) it means that the parameter is significant and well iden-
tifiable, while if it is flat and scattered (as in Fig. 4b) it
means that the parameter is not significant or the model is
overparameterized. Detailed discussions about parameters
identifiability of the three versions of the air2water model
can be found in Piccolroaz et al. (2013) and Toffolon et al.
(2014a). Parameters are well identifiable for all versions of
the model (being slightly higher in the 4-parameter version

Tab. 2. Equations of the regression relationships between model
parameters and the mean depth of the lake found by Toffolon et
al. (2014a) analysing 14 lakes with different morphologies, and
shown in Fig. 3.

Parameter Regression equation
                                     4 parameters                  6(8) parameters

a1                             –0.042+0.017 log (D)         0.488–0.096 log (D)
a2                                    0.223 D–0.635                       0.207 D–0.672

a3                                    0.175 D–0.540                       0.262 D–0.659

a4                                     35.4 D–0.360                         31.3 D–0.330

a5                                             –                                0.843 D–0.732

a6                                             –                         0.628–0.030 log (D)

Non
-co

mmerc
ial

 us
e o

nly



43S. Piccolroaz

due to lower number of parameters), with the only excep-
tion of parameters a7 and a8 in the full, 8-parameter version.
The main reason is that these parameters are not fully in-
dependent, and may produce significant interactions. A
more appropriate parameterization of δ during inverse strat-
ification and ice formation periods is currently under de-
velopment. Since a7 generally achieves relatively high
values implying δ~1 for TW≤4°C (Toffolon et al., 2014a),
the following analysis is performed considering only the 4-
and 6-parameter versions, still retaining full generality. 

Results of the 4- and 6-parameter versions of the model
for the cases of lakes Superior and Erie are presented in
Fig. 5 and Fig. 6. In both cases, the calibration of the pa-
rameters was performed using two-thirds of the data set (13
years, from 1995 to 2007) and leaving one-third for the val-
idation (7 years, from 2008 to 2014). Fig. 5 shows scatter-
plots for the two lakes and the two versions of air2water
during the calibration period. No systematic deviation
(bias) is observed, and the dispersion along the diagonal
does not exhibit significant trends. Both these characteris-
tics are confirmed by the relatively small values of RMSE
and values of the coefficient of determination (R2) close to
one: RMSE=1.00°C and R2=0.97 and RMSE=0.93°C and
R2=0.97 for Lake Superior (4- and 6-parameter versions),
and RMSE=0.87°C and R2=0.99 and RMSE=0.82°C and
R2=0.99 for Lake Erie (same model versions). In Figure 6
simulated LST is compared with observations during the
validation period, showing close agreement overall.
RMSEs in validation are: 0.90°C and 0.79°C for Lake Su-
perior (4- and 6-parameter versions), and 0.73°C and
0.68°C for Lake Erie (same model versions). Fig. 6 displays
the ability of the model to appropriately capture seasonal
dynamics and interannual variability. This suggests that
air2water is a valuable tool for long-term predictions of
LST, in both deep and shallow lakes. The model shows
slightly weaker performance in the case of Lake Superior
due to its more complex thermal behaviour, which is sig-

nificantly controlled by stratification and thermal inertia
(Piccolroaz et al., 2015a). Furthermore, the relative wors-
ening of the 4-parameter version relative to the 6-parameter
version is higher in this case (RMSE increases by 14% in
validation) than in Lake Erie (RMSE increases by 7%).
This suggests that the hypotheses at the basis of the deri-
vation of the simplest, 4-parameter version of the air2water
model (see Methods) are likely to be more appropriate in
the case of shallow lakes, and anyway when air and water
temperature annual cycles shows a nearly sinusoidal pattern
(see Methods and Fig. 1). 

Effects of missing data on model performance

In this section, the effect on model performance of the
presence of missing data in the time series of observed
LST is analyzed and discussed. In fact, long-term contin-
uous observations of LST are only rarely available, thus
often limiting their practical use. For example, in lakes
that freeze, offshore monitoring buoys are generally re-
moved during winter to prevent damage from ice. Also
LST time series retrieved from satellite imagery, which
are generally more continuous during the year, may have
gaps during periods of cloudiness. Finally, the constant
and continuous in-situ monitoring of a lake requires suf-
ficient funding and qualified personnel which are not al-
ways available, especially over long-term periods. 

The performance of the air2water model is evaluated
by progressively increasing the number of gaps in the LST
series, from 10% to 90%, by increments of 10%. Percent-
ages of missing data of 95%, 97%, 99%, and 99.5% are
also considered, which roughly correspond to the availabil-
ity of 18, 11 (monthly), 4 (seasonal), and 2 measurements
per year, on average. In order to perform a robust statistical
analysis, for each of the considered missing data scenarios
an ensemble of 100 series of LST is obtained from the orig-
inal, continuous series of observations, by randomly ex-
cluding the correspondent number of data. Then, the model
is calibrated on the basis of these artificially deteriorated
13-year series of data (1995 to 2007), and validated on the
remaining 7-year period (2008 to 2014). In order to allow
for a fair and unbiased comparison among model perform-
ance obtained for the different scenarios and for the refer-
ence (i.e., continuous time series, no gaps) simulation, the
validation period is not modified and the same continuous
series shown in Fig. 6 is used in all cases. 

Results of the analysis for both the 4- and the 6-para-
meter versions of the model are shown in Fig. 7. For each
scenario, the RMSEs obtained for the ensemble of simu-
lations are presented through a box plot, where the circle
indicates the median value of the distribution. By com-
paring the median values with the RMSEs of the reference
simulations (continuous lines), it is possible to conclude
that, as a general tendency, no degradation of model per-
formance will occur until a data gap of about 50%-60%

Fig. 4. Schematic of (a) a sharp and well defined dotty plot and
(b) a flat and scattered dotty plot. Each black dot corresponds to
one model simulation (one parameter set) and the red dot repre-
sents the optimal parameter set.
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for the 6-parameter version, and until a data gap of about
70% for the 4-parameter version. In any case the whole
box plot is within 10% of the reference value until a data
gap of about 90%-95%. When the percentage of the data
gap is larger, model performance diminishes, which oc-
curs faster for the 6-parameter version of the model and
for the deepest lake. In fact, when the data gap is signifi-
cantly large the structure of the 6-parameter version of the
model may become too complex (i.e., there are too many
parameters) relative to the number of observations, thus
running the risk of overfitting (Vapnik, 1999). This is
more evident in deep lakes, which are characterized by
more complex thermal dynamics due to the significant
role played by stratification and thermal inertia (Piccol-
roaz et al., 2015a).

It is possible to conclude that the 6-parameter version
of the model is preferable to the 4-parameter version when
the amount of missing data is lower than 95% (i.e., when
data are available at about bi-weekly resolution, on aver-
age). Up to 95% missing data, the model still performs
reasonably well compared to the reference case when the
LST series in calibration is complete. With more than 95%
of data missing, the air2water model should be used cau-
tiously, making a case by case assessment evaluating
whether results are reasonable compared to the expected
behaviour of the lake, and preferring the simplest 4-para-
meter version. In particular, this version of the model
shows acceptable performance until the percentage of
missing data reaches about 97% (i.e., when data are avail-
able at about monthly resolution, on average), and partic-
ularly for the shallow Lake Erie. 

As a final remark, note that some boxplots in Fig. 6 are
partially (and to a minor extent) beneath the reference value
of RMSE, which indicates that there are a few cases where
the optimal set of parameters obtained with a less complete
series of LST observations provide slightly better perform-
ances in validation. This is likely due to the specific time
period considered in the analysis and to the quality of LST
observations, and is not explored further here.

How length of the calibration period and percentage
of missing data affect model performance

The analysis presented in the previous section is spe-
cific of a 13-year long calibration period, and here it is gen-
eralized by considering different lengths of the calibration
period, with the aim to provide an overview of the conse-
quences of data scarcity on model performance. The final
aim is to provide the user of the air2water model with a
criterion to assess whether the observational dataset used
for model calibration is sufficiently informative to obtain
a reliable calibration or not. The same analysis described
above is therefore extended considering different lengths
of the calibration period: 1, 2, 3, 5, 8, and 13 years (as a
tribute to Leonardo Fibonacci). In order not to introduce
biases in the results, when testing calibration periods
shorter than 13 years, the sequences of years are randomly
extracted from the original 13-year long series ranging
from 1995 to 2007. Then, in analogy with the previous
analysis, an ensemble of 100 artificially deteriorated series
of LST is randomly generated for each combination of per-
centage of gaps and length of the calibration period. 6 cal-

Fig. 5. Scatter plot of observed against simulated LST during the calibration period (1995-2007) for (a) Lake Superior and (b) Lake
Erie, and for the 4- and 6- parameter versions of the air2water model.

Non
-co

mmerc
ial

 us
e o

nly



45S. Piccolroaz

ibration period lengths and 9 percentages of missing data
are investigated for a total of 54 different combinations
(hereafter referred to as scenarios) and 5400 model runs. 

Results are presented in Fig. 8, which shows the rela-
tive deterioration of each scenario with respect to the best
performing case (through the ratio RMSEi/min
({RMSEi}54

i =1), where RMSEi is the median root mean
square error of the i-th scenario in validation, and ranges
from 1 to 54), for the two lakes and the two versions of
the model. Results confirm and extend the previous analy-
sis: a larger degradation (in relative terms) of model per-
formance with increasing deterioration of the dataset is
observed for the 6-parameter version (and, secondarily,
for the deepest lake). In this case, at least 8 years of data
with no more than 80% of missing data are required to
avoid a worsening of more than 10% from the best sce-
nario, for both Lake Superior and Lake Erie. Conversely,
with the 4-parameter version a calibration period of 2 or
3 years with up to 80% or 90% missing data is sufficient
to obtain the same deterioration in model performance
(again in relative terms), for Lake Superior and Lake Erie,
respectively. Furthermore, in general, similar model per-
formances can be achieved with a lower number of total
observations (i.e., larger percentage of missing data) if the
calibration period is longer. In other words, a longer cal-
ibration period with fewer measurements may be more in-
formative than a shorter calibration period with more data,

suggesting the high value of disposing of a series of data
characterized by significant interannual variability. As an
example, model performance is roughly the same when

Fig. 6. Comparison between simulated and observed surface
water temperature during the validation period (2008–2014) for
(a) Lake Superior and (b) Lake Erie, and for the 4- and 6- pa-
rameter versions of the air2water model. Observed air temper-
ature data are also presented.

Fig. 7. Box plots of RMSEs values obtained in validation considering different percentages of missing data in the calibration time series
of LST, for (a) Lake Superior and (b) Lake Erie. The circle indicates the median value of the distributions. For each missing data
scenario, an ensemble of 100 artificially deteriorated series of LST is randomly generated.
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considering a 13-year long period with 95% of gaps (i.e.,
237 valid data) or a 8-year long period with 80% of gaps
(i.e., 584 valid data; see Fig. 8b).

Finally, RMSEi obtained using the 4-paramters and 6-
parameters versions of the model are compared for the
two lakes, making possible to draw a map of preference
(in absolute terms) between the two versions of the model
as a function of the different scenarios (see Fig. 9). In both
cases, the 4-paramters version of the air2water model is
more performant, thus it is to be preferred, versus the 6-
parameter version when the calibration period is shorter
than about 5 years, or when it is longer but with more than
97% of gaps. The same considerations about model over-
fitting discussed in the previous section apply also here.

DISCUSSION 

In previous works, Piccolroaz et al. (2013, 2015a) and
Toffolon et al. (2104a) have already demonstrated the
high potential of the air2water model as a simple, yet ef-
fective, predictive tool for simulating LST when only air
temperature data are available. The model is able to prop-
erly simulate the hysteresis loop between air and water
temperature in both shallow and deep lakes, and to accu-
rately capture seasonal and interannual fluctuations of
LST. The model also allows for the simulation of stratifi-
cation dynamics in lakes, without the need to introduce a
complex description of the air-water interface processes

Fig. 8. air2water model performance (in terms of increasing RMSE in validation) as a function of the amount of missing data and cal-
ibration period length, for Lake Superior and Lake Erie, and for the 4- and 6- parameter versions.

Non
-co

mmerc
ial

 us
e o

nly



47S. Piccolroaz

based on a detailed quantification of the single heat flux
components. Furthermore, it has been successfully ap-
plied using different sources of data, as e.g., LST meas-
ured at buoys or retrieved from satellite and air
temperature from observations or re-analysis, suggesting
a high degree of flexibility concerning the possibility to
use different types of data as input. This is possible be-
cause of the physically-based structure of the model al-
lowing for the acquisition of information about the studied
system directly from the data, through the calibration of
model parameters. This process is further facilitated given
the extreme simplicity of the air2water model, which
makes it particularly prone to automatic calibration pro-
cedures within a Monte Carlo-like framework. In this
way, model parameters assimilate the information con-
tained in the observations, and in turn the user may learn
how the real system behaves from the values of the pa-
rameters, identifying what are the most important
processes controlling the thermal response of the lake. In-
formativeness of observations is a crucial aspect that
should be considered carefully in order to exclude an im-
proper calibration of the model parameters, and an unre-
liable, or at least uncertain, prediction of LST. This critical
detail is addressed in the Results section, where air2water
model users can find some recommended best practices
for a proper use of the model. 

The simplicity and robustness of the air2water model
suggest its possible use in different context and for differ-
ent purposes, heading towards new challenges:
• The investigation of the response of lakes to air tem-

perature variations under climate change scenarios. In
this perspective, the air2water model represents a
valuable alternative tool to simpler regression models,
which require the same data in input but are not able

to address some fundamental processes (e.g., the hys-
teresis cycle between air and water temperature); but
also to more complex process-based models, which
require a significantly larger amount of input data
without showing significantly better performances
(see e.g., Results in Thiery et al., 2014).

• The direct coupling with atmospheric circulation and
weather forecasting models. Recent attempts in this
direction have been made adopting complex one-di-
mensional lake models (e.g., using k-e turbulence
model as in Goyette and Perroud 2012), but have in-
evitably shown some limitations as e.g., expensive
computational cost and the need of ground-truth in-
formation. Simpler models have also been used to this
aim (dating back to Hostetler et al., 1993), but in any
case requiring the entire set of meteorological data.
Again, the simplicity, parsimony, and robustness of
air2water make it a good candidate for being adopted
as a lumped lake model integrated in meteorological
models.

• The coupling with simple water quality, ecological
and biogeochemical modules in order to investigate
processes that are significantly controlled by water
temperature, as e.g., nutrients, dissolved oxygen, and
aquatic ecosystem dynamics. This would be a good
opportunity to cross the boundaries (according to Tof-
folon et al., 2014b) between the various disciplines of
aquatic science facilitating the dialogue and collabo-
ration between scientists from different background.
Indeed, fragmentation of limnology into expert, spe-
cialised fields, with limited interaction is a well-
known major issue of this branch of science (Peters,
1990; Lewis, 1995; Salmaso and Mosello, 2010).

• The definition of regionalization relationships be-
tween model parameters and morphological charac-
teristics of lakes, with the final aim to apply the model
to ungauged lakes. Expanding the analysis of Toffolon
et al. (2014a) that analysed 14 temperate lakes char-
acterized by different morphology, by including addi-
tional lakes possibly at different latitudes (e.g., tropical
and polar lakes) is particularly interesting. In this re-
gard, the growing availability of collections of lakes’
observational data at the global scale is particularly at-
tractive (e.g., Global Lake Temperature Collaboration
- GLTC, Sharma et al., 2015; Global Lake Ecological
Observatory Network - GLEON, Weathers et al.,
2013), also for testing the air2water model on lakes
outside of the temperate zone (e.g., tropical or polar
lakes). Furthermore, the application of air2water glob-
ally may provide interesting insights into how LST in
lakes around the world is expected to respond to cli-
mate change in the future, possibly identifying some
meaningful hotspots as in O’Reilly et al. (2015).

Fig. 9. Diagram of preference between the 4- and 6- parameter
versions of the air2water model as a function of the amount of
missing data and calibration period length, for Lake Superior
and Lake Erie.
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CONCLUSIONS

The results of this work provide the reader with guide-
lines and best practices for using the air2water model, as
a simple tool to predict LST when only air temperature is
available. After having briefly recalled the derivation of
the model and the meaning of parameters, the model is
used to simulate LST in two lakes characterized by sig-
nificantly different depths: Lake Superior and Lake Erie
(USA). These two case studies are chosen as clear and
emblematic examples of a deep and a shallow temperate
lake characterized by markedly different thermal re-
sponses to external forcing, with the aim of making the
results of the analysis as much as possible general and
comprehensive. The whole analysis is carried out consid-
ering the 4- and 6-parameter versions of the model. The
full, 8-parameter version is not considered here, due to
the sub-optimal parameterization of during inverse strat-
ification and ice formation periods, whose improvement
is currently under development.

In this work, the possible user of the air2water model
is provided with all the fundamental information for a
proper use of the model: from the initial definition of ap-
propriate a priori range of variations of model parameters
to an effective post-processing analysis of results, passing
through a sensitivity analysis about the influence of miss-
ing data on model performance. Particular attention is
paid to this last point, which can be summarized as fol-
lows: i) longer calibration periods with overall less num-
ber of measurements is likely to be more informative than
shorter calibration periods with more data (suggesting the
high value of disposing of time series with high interan-
nual variability); ii) when the number of missing data in-
creases, model performance diminishes more for the
6-parameter version, suggesting the risk of model over-
fitting; iii) for short calibration time series (e.g., shorter
than about 5 years in this case), the 4-parameter version
of the model is likely to be preferable anyway; and iv) as
a secondary effect, model performance diminishes more
for deeper lakes when data are missing, compared to shal-
low lakes, due to complex thermal behaviour that is
chiefly influenced by lake depth. 

Coherently with one of the main goals of this work,
which is to foster the dialogue among the several branches
of aquatic science, a flowchart of the main modelling
steps is shown in Fig. 10, which is intended to make the
sequence of the operational phases at the basis of the use
of air2water clearer and easier to follow also to users with
different mathematical and/or technical backgrounds. In-
deed, the air2water model has been developed with the
clear intention to offer a simple tool that can indifferently
be used by physicists and biologists, modellers and ex-
perimentalists, possibly generating new collaborations to-
wards an integrated understanding of how LST responds

to climate forcing and what are the effects on the ecolog-
ical status of the lake. 

In this perspective, everyone that is interested can col-
laborate to improve the model with comments, suggestions
and contributions, which are highly welcomed and easy to
share through https://github.com/spiccolroaz/air2water.
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