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Abstract 

This study aims to calculate the anharmonic thermal expansion (TE) coefficient of metal crystals in the 

temperature dependence. The calculation model is derived from the anharmonic correlated Debye (ACD) model that 

is developed using the many-body perturbation approach and correlated Debye model based on the anharmonic 

effective potential. This potential has taken into account the influence on the absorbing and backscattering atoms of 

all their nearest neighbors in the crystal lattice. The numerical results for the crystalline zinc (Zn) and crystalline 

copper (Cu) are in agreement with those obtained by the other theoretical model and experiments at several 

temperatures. The analytical results show that the ACD model is useful and efficient in analyzing the TE of 

coefficient of metal crystals. 
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1. Introduction 

In recent years, the anharmonic thermal expansion (TE) coefficient has been widely used to determine many dynamic 

properties of materials [1]. Like the compressibility and heat capacity, the TE coefficient is important because it is one of the 

independent thermodynamic properties which can be measured experimentally with high precision [2]. Accurate information 

on the TE coefficient in the temperature dependence is required for the metallurgical industry as well as in engineering physics 

[3]. The TE coefficient is often used to determine the matching between different metal components in the alloy [4]. A large 

difference in the TE coefficients between the metal components can lead to adverse deformation in the alloy when the 

temperature changes [5]. Moreover, the position of atoms and their interatomic distance always changes and are not stationary 

under the influence of thermal vibrations [6]. This influence causes thermal disorder and anharmonic effects in the crystal 

lattice, so the TE coefficient is sensitive to the temperature change and can be varied with increasing temperature [7]. 

In materials science, high precision measurements of lattice parameters using the X-ray method based on the development 

of the theory of the crystal structures have become increasingly important. Moreover, the accurate determination of lattice 

parameters enables one to investigate the TE coefficient of various crystalline substances, even if the weight of the substances 

available for measurement is only a few milligrams [2, 4]. 

Besides, the extended X-ray absorption fine structure (EXAFS) technique is a widely employed probe of the dynamical 

behaviors and structural parameters in disordered systems [8]. It is because EXAFS spectroscopy can contain information on 

local structures around X-ray absorbing atoms and gives interatomic distances and coordination numbers in crystal lattices [9]. 
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This resulted in the EXAFS technique being developed and expanded greatly based on the rapid development of synchrotron 

radiation facilities worldwide [10]. In reality, thermal disorders can disturb the EXAFS oscillation [6, 9], so the TE coefficient 

is also sensitive to EXAFS oscillation under the influence of temperature. 

Nowadays, metals and advances in manufacturing processes have brought us the industrial revolutions, so it becomes 

irreplaceable materials in the growth of human civilization. They are used extensively in manufacturing machines for 

industries, agriculture or farming, and automobiles, including road vehicles, railways, airplanes, rockets, etc. [2-4]. The TE of 

coefficient of metal crystals has also been investigated using the anharmonic correlated Einstein (ACE) model [11-12] and 

experiments [11-13]. Still, this model only uses a unique correlated Einstein frequency to describe the atomic vibrations, so it 

cannot mimic the acoustic phonon branches presenting in lattice crystals. 

Recently, an anharmonic correlated Debye (ACD) model [14] can treat even the acoustic phonon branches presenting in 

lattice crystals because it describes the atomic vibrations using the frequencies varying from 0 to the correlated Debye 

frequency. It has also been efficiently used to investigate the anharmonic thermodynamic properties of many materials [9, 

15-16]. Still, it has not yet been used to analyze the anharmonic TE coefficient of metal crystals. Therefore, the calculation and 

analysis of the temperature-dependent TE coefficient of metal crystals based on extending the ACD model will be a necessary 

addition to experimental data analysis in the advanced material technique. 

2. Calculation of the Anharmonic TE Coefficient 

Usually, the TE coefficient ����� characterizes the net thermal expansion (NTE) caused by thermal vibrations in the 

crystal lattice [17], as shown in Fig. 1. 

 
Fig. 1 Thermal expansion of metal with a change in temperature 

The TE coefficient can be determined [11-12] by: 
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where � is the absolute temperature, ���� is the instantaneous distance between the backscattering and absorbing atoms, �� is 

the equilibrium distance between the backscattering and absorbing atoms, and ��	���� is the first EXAFS cumulant and can be 

expressed in terms of the power moments of the radial pair distribution (RD) function [18-19]: 

( ) ( ) ( )1
0T r T rσ = −  (2) 

Normally, the Morse potential can validly determine the pair interaction (PI) potential of the crystals [20-21]. If this 

potential is expanded up to the third-order around its minimum position, it can be written as 
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where � is the dissociation energy, � is the width of the potential, and x is the deviation distance between the backscattering 

and absorbing atoms. 

To determine the thermodynamic parameters of a system, it is necessary to specify its anharmonic effective (AE) potential 

and force constants [8, 22]. One considers a monatomic system with an AE potential (ignoring the constant contribution) is 

extended up to the third-order: 
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where ���  is the effective force constant, �� is the local force constant giving asymmetry of potential due to the inclusion of 

anharmonicity, and these force constants are considered in the temperature independence. 

In the relative vibrations of absorbing Eq. (1) and backscattering Eq. (2) atoms, including the effect of correlation and 

taking into account only the nearest-neighbor interactions, the AE potential [23-24] is given using the PI potential, i.e. 
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where �� ( 1i = , 2) is the mass of the ith atom and equals m in the monatomic crystals, respectively, � = �	��/��	 + ��� is 

the reduced mass of the absorber and backscatter, ��� is a unit vector, the sum i is the over absorbers ( 1i = ) and backscatters 

( 2i = ), the sum j is over the nearest neighbors, and. 

The ACD model is derived from the dualism of an elementary particle in quantum theory and is perfected based on the 

correlated Debye model using the AE potential and many-body perturbation approach [9, 14]. It is often used effectively in 

treating monatomic systems with less complex phonon density of states and multiple acoustic phonons [15-16]. In this model, 

the atomic vibrations can be quantized and treated as a system consisting of many phonons, in which each atomic vibration 

corresponds to a wave that has a frequency ���� and is described via the dispersion relation 

( ) 0sin , 2 ,  
2D D

kqa
q q

m a

π
ω ω ω

 
= = ≤ 

 
 (6) 

where � is the phonon wavenumber in the first Brillouin (FB) zone, a is the lattice constant, and �� is the correlated Debye 

frequency and characterizes the atomic thermal vibrations. 

The general expression of the first EXAFS cumulant in the ACD model was calculated in the temperature dependence by 

Hung et al. [14]. Still, these obtained expressions are not optimized yet because they still depend on the lattice constant a. In 

this investigation, the previous ACD model has been extended to calculate the temperature-dependent TE coefficient of metal 

crystals. 

After using the general expression of the first EXAFS cumulant and converting from variable � to variable � in the 

formula p=��/2, the temperature-dependent first cumulant of metal crystals are obtained as 
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Substituting this cumulant into Eq. (1) to calculate the temperature-dependent TE coefficient of metal crystals, it yields 
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Using an approximation exp"−ℏ����/�%�& ≈ 0, the TE coefficient of metal crystals in the low-temperature (LT) limit 

�� → 0� can be calculated from Eq. (8), i.e. 
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Using an approximation exp"−ℏ����/�%�& ≈ 1 − ℏ����/�%� , the TE coefficient of metal crystals in the 

high-temperature (HT) limit �T → ∞� can be calculated from Eq. (8), that is 
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Thus, an extended ACD model has been perfected to efficiently calculate the temperature dependence of the TE coefficient of 

metal crystals. The obtained expressions using this model can satisfy all their fundamental properties in the temperature 

dependence. These expressions have also been optimized to not depend on the lattice constant a as in the previous ACD model 

[14-15]. 

3. Numerical Result and Discussion 

In this section, the obtained expressions using the ACD model in Sec. 2 are applied to the numerical calculations of 

crystalline zinc (Zn) and crystalline copper (Cu) that have the hexagonal close-packed (HCP) and face-centered cubic (FCC) 

structures, respectively. Herein, the local force constants ���  and �� , the correlated Einstein frequency �� , and the 

temperature-dependent first EXAFS cumulant ��	����  and TE coefficient �����  are the quantities to be performed in 

numerical calculations. These obtained numerical results are compared with those obtained using the ACE [11-12, 22-23, 25] 

and experiments [11-13, 22, 26-28]. From these obtained comparisons, the development and effectiveness of the ACD model 

are analyzed and discussed in investigating the temperature-dependent thermal expansion coefficient of metal crystals. The 

following is the presentation of these numerical results: 

The AE potential of Zn and Cu can be calculated using Eq. (5) based on the Morse potential in Eq. (3) and the crystal 

structure properties of these metals. After ignoring the overall constant in the obtained result and comparing it with Eq. (4), the 

local force constants ���  and ��  are deduced in the expressions of the Morse potential parameters D and �, while the 

correlated Debye frequency �� is calculated using Eq. (6) via the effective force constant ��� . 

The values of the local force constants ���  and �� and the correlated Debye frequency �� of Zn and Cu are given in 

Table 1. Herein, the obtained results of the correlated Debye frequency �� using the ACE [22, 25] are inferred from the 

correlated Einstein frequency �- and related expression �� = √2�- [9, 23-24, 28]. Meanwhile, the obtained results using the 

experimental EXAFS data are derived from the measured Morse potential parameters and Eq. (6). It can be seen that the 

obtained results using the ACD model fit with those obtained using the ACE [22-23, 25] and experimental data [22, 27], 

especially for the correlated Debye frequency �� and effective force constant ��� . 

Table 1 The thermodynamic parameters ��, ��, and ��  of Zn and Cu obtained using 
the ACD and ACE models and experiments 

Metal Method Mass D (eV) α (Å-1) r0 (Å) ���  (eVÅ-2) �� (eVÅ-3) �� (×1013Hz) 

Zn ACD model 65.377b 0.1698c 1.7054c 2.7931c 2.3887a 1.0528a 3.7552a 
 ACE model 65.377b 0.1698c 1.7054c 2.7931c 2.4692d 1.0528d 3.8066d 
 Experiment  0.1685d 1.7000d 2.7650d 2.4348d 1.0348d 3.7801d 

Cu ACD model 63,546b 0.3429c 1.3588c 2.8860c 3.1655a 1.0753a 4.3848a 
 ACE model 63,546b 0.3429c 1.3588c 2.8860c 3.1655e 1.0753e 4.3848e 
 Experiment  0.3300f 1.3800f  3.2000f 1.3000f 4.4086f 

aThis work, bReference [29], cReference [21], dReference [22], eReference [23, 25], fReference [27] 

The dispersion relation ���� of Zn and Cu in the FB zone is calculated by Eq. (6) and is represented in Fig. 1. It can be 

shown that the obtained results using the ACD are a symmetric function of a linear chain of q, and its maximum value is �� at 

the bounds of the FB zone with � = ±0/2, as seen in Fig. 2. These characteristics of the dispersion relation ���� are 

completely consistent with similar obtained results of other crystals in previous works, such as the crystalline iron (Fe) [15], 

crystalline molybdenum (Mo) [15], and crystalline wolfram (W) [15], and crystalline germanium (Ge) [16]. 
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The temperature dependence of the first EXAFS cumulant ��	���� of (a) Zn and (b) Cu in a range from 0 to 700 K is 

represented in Fig. 3, in which the obtained results using the ACD model are calculated by Eq. (7). Herein, the values of Cu are 

smaller than those of Zn, which is because the local force constants �� of these metals are roughly equivalent, but Cu has the 

effective force constant ���  larger than those of Zn, and this cumulant decreases rapidly as the effective force constant 

increases, as seen in Table 1. It can be seen that the obtained results using the ACD model are in good agreement with those 

obtained using the ACE [11-12] model and experiments [11-12, 26, 28]. Also, in comparison with the experimental values, the 

obtained results using ACD are better in agreement with those obtained using the ACE model, especially in the LT region. For 

example, the obtained results of Zn using the ACD model, ACE model, and an experiment at � ≃  77 K are ��	� ≃ 

5.29×102�Å, �(	) ≃5.34×102�Å [11], and �(	) ≃ 5.26×102�Å [28], respectively. Meanwhile, the obtained results of Cu 

using the ACD model, ACE model, and an experiment at � ≃ 80 K are �(	) ≃ 3.26×102�Å, �(	) ≃ 3.34×102�Å [12], and  

�(	) ≃ 3.00×102�Å [26], respectively. Moreover, both the ACD and ACE [11-12] models show the contribution of quantum 

effects in the LT region, but the obtained results using the ACE model [11-12] are slightly greater than those obtained using the 

ACD model. The minor difference lies in that the ACE model [11-12] uses only one effective frequency to describe the atomic 

thermal vibrations, as depicted in Fig. 3. 

  
(a) The obtained result of Zn (b) The obtained result of Cu 

Fig. 2 The dispersion relation of metals obtained from the ACD model 
 

  
(a) The obtained results of Zn (b) The obtained results of Cu 

Fig. 3 The temperature-dependent first EXAFS cumulant of metals obtained using 
the ACD and ACE models and experiments 

The temperature dependence of the TE coefficient ��(�) of (a) Zn and (b) Cu in a range from 0 to 700 K is represented in 

Fig. 4, in which the obtained result using the ACD model is calculated by Eq. (8). Herein, the values of Zn are bigger than those 

of Cu because the temperature-dependent first EXAFS cumulant of Cu changes more slowly than those of Zn, as seen in Fig. 3. 

It can be seen that the obtained results using the ACD model agree with those obtained using the ACE [11-12] model and 
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experiments [11-13]. For example, the obtained results of Zn using the ACD model, ACE model, and an experiment at � ≃ 

300 K are �� ≃ 1.57×1023K2	 , �� ≃ 1.56×1023K2	  [11], and �� ≃ 1.58×1023K2	  [11], respectively. Meanwhile, the 

obtained results of Cu using the ACD model, ACE model, and an experiment at � ≃ 100 K are �� ≃ 0.76×1023K2	, �� ≃ 

0.71×1023K2	 [12], and �� ≃ 0.80×1023K2	 [13], respectively. The quantum effects in the ACD model [14] can be shown 

by the obtained results in the LT limit low temperatures. As shown in the temperature range from above 0 K and below about 

10 K, the obtained results of the first EXAFS cumulant are a region of an almost unchanged value, while the obtained results of 

the TE coefficient correspond to a region of values greater than zero. Moreover, the obtained results using the ACD model are 

not destroyed quickly in the LT limit as those obtained using the ACE model [11-12], which fits perfectly with Eq. (9) and 

shows that the ACD model can fully describe the quantum effects. Also, the obtained results using the ACD model increase 

with the rise of temperature T and approach the constants in the HT limit, which fits perfectly with Eq. (10) and shows that the 

ACD model can efficiently describe the anharmonic effects, as seen in Fig. 4. These results are consistent with those obtained 

by using the quantum methods [11-12, 23]. 

  
(a) The obtained results of Zn (b) The obtained results of Cu 

Fig. 4 The temperature-dependent TE coefficient of metals obtained using 
the ACD and ACE models and experiments 

4. Conclusions 

In this investigation, the expansion and development of an efficient model have been performed to calculate and analyze 

the temperature-dependent TE coefficient of metal crystals. The calculated results of the anharmonic TE coefficient using the 

ACD model satisfied all of their fundamental properties. The TE coefficient increases with increasing temperature T, which 

means that the crystal lattice expands strongly at higher temperatures. These results can also describe the influence of 

anharmonic effects at high temperatures and the influence of the quantum effects at low temperatures on the TE coefficient. 

The good agreement of the obtained numerical results for Zn and Cu with those obtained using the ACE model and 

experiments at various temperatures shows the effectiveness of the present model in investigating the temperature-dependent 

TE coefficient of metal crystals. This model can be applied to calculate and analyze the anharmonic TE coefficient of other 

crystals at a temperature ranging from absolute zero degree to their melting points. 
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