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Abstract 

The classification accuracy of one-dimensional (1D) biomedical signals is limited due to the lack of 

independence of the extracted features. To address this shortcoming, the study applies a swarm intelligence algorithm 

based on plant root systems (PRSs) to feature engineering. Some basic features of 1D biomedical signals are 

integrated into a digitized soil, and a root matrix is generated from this digitized soil and the PRS algorithm. The 

PRS features are extracted from the root matrix and used to classify the basic features. Following classification with 

the same biomedical signals and classifier, the accuracy of the added PRS set is generally higher than that of the 

base set. The result shows that the proposed algorithm can expand the application of 1D biomedical signals to include 

more biomedical signals in classification tasks for clinical diagnosis. 
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1. Introduction 

One-dimensional (1D) biomedical signals are widely used in the medical field and are crucial for clinical diagnosis and 

treatment. Electrocardiograms (ECGs) are commonly used to diagnose heart-related diseases, and electroencephalograms 

(EEGs) are used to determine sleep quality or mental state [1]. Electrical-based biomedical signals perform well, and magnetic, 

vibration, and acoustic-based biomedical signals are popularly used in clinical applications [2-3]. However, with increasingly 

shorter sampling intervals and longer signal lengths, analyzing 1D biomedical signals without the assistance of a computer has 

become a research limitation. 

Machine learning classification is a cutting-edge computer-assisted 1D technique for analyzing biomedical signals [4]. 

Supervised classification is a machine-learning technique that helps doctors improve diagnostic accuracy by training classifiers 

with features of biomedical signals [5]. This technique is effective for complex and large datasets, and a well-designed 

classifier training model combined with high-quality dataset features frequently generates unexpectedly good outcomes. 

However, feature extraction methods are not as versatile as model building; thus, related research has received less attention. 

Traditional and classical methods are often used for the extraction of 1D biomedical signals. The curve length of the 

signal in the time domain and the total spectral power in the frequency domain are common classification features of ECG 

signals [6]. Meanwhile, Shannon entropy is utilized as a classification feature of electromyography (EMG) signals in clinical 

settings [7]. 
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Although these features may seem adequate, the naive Bayes classifier, which is the basis of machine learning theory, 

requires each condition to be independent during the classification process. In other words, features of biomedical signals 

extracted from classical feature engineering techniques should not be correlated [8]. This independence between features is 

undoubtedly challenging to achieve because both time- and frequency-domain features can always be connected by certain 

operations and their inverse. Therefore, new features with strong independence are needed to characterize 1D biomedical signals. 

After investigation, it was found that swarm intelligence computing might solve the above challenges. When a feature is 

extracted using swarm intelligence, the new feature has a distinguishing independence because each member of the swarm 

participates in making the choice. Moreover, the operations and transformations of the choice process are irreversible. The ant 

colony algorithm is a popular swarm intelligence algorithm, while the bee colony algorithm has been developed based on the 

swarming and social nature of bees [9]. Currently, dozens of swarm intelligence algorithms have been applied to feature selection 

[10]. However, they are all based on social animals, and the independence of extracted features is still lacking. Therefore, this 

study focuses on “social plants.” The root systems of plants are complex enough to form group intelligence as well. 

Holker et al. [11] hypothesized that the root system of plants is a type of swarm intelligence system. The root apices 

communicate with each other through electrical signals or chemical pheromones and build a massive “brain-like” system 

underground. Within such a complex root system, independent roots acquire water and nutrients through cooperation. To 

support proper growth and development, the root system competes with other root systems, beginning a “war” when it has an 

advantage and retreating when it is at a disadvantage [11]. 

A swarm intelligence algorithm based on a plant root system (PRS) is proposed and applied to feature engineering in this 

study. Specifically, the proposed PRS approach imitates the growth of plant roots, in which the root apices cooperate to absorb 

as much of the sustaining nutrients as possible.  

In the proposed approach, the base features used by the selected machine learning model to classify biomedical signals 

are equivalent to the nutrients in digitized soil. These base features are obtained using common feature extraction methods. 

The sum of the nutrients absorbed during growth also serves as the first auxiliary feature, and the growth area of the root 

system is the second auxiliary feature. These auxiliary features are referred to as auxiliary PRS features. During model training, 

the most significant advantage of the PRS features based on swarm intelligence is that they are ideally independent (with a 

low correlation with the other features) and highly correlated with the dependent variable. The independence of the PRS 

features is derived from the brain-like structure of the root system, where the co-determination of the root tips reduces the 

correlation with the base features.  

As an advantage, PRS auxiliary features of biomedical signals are obtained from the proposed algorithm. After appending 

these features to the training set, the correlation between the features decreases and leads to reduced bias and variance and 

improved accuracy in machine learning classification. Most importantly, the PRS algorithm is universally applicable for the 

feature engineering of most 1D biomedical signals. This technology also enables 1D biomedical signals to become more 

competitive in the clinical field by improving the accuracy of machine learning classification. 

2. Method 

2.1.   Extraction of base features 

The growth of natural plants requires suitable soil; similarly, the extraction of PRS features requires digitized soil (a 

feature matrix) composed of base features. When extracting base features, time-domain features are generally preferred over 

frequency-domain and nonlinear features. Time-domain features are more reliable than nonlinear features for involving a lower 

computational burden for nonstationary 1D biomedical signals. [12]. Moreover, time-domain features are more dependable 

than frequency-domain features because they avoid the risk of spectral leakage caused by signal decomposition [13]. 
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Time-domain feature selection is essential for base feature extraction. The number of features needs to be carefully 

considered: a small number of features limits the growth of the root system, while a large number of features may adversely 

affect classifier performance [14]. For the base features, this study selected 12 features that have relatively low computational 

complexity and have been successfully used for classification [15-16]. The definitions of the base features are listed in Table 1, 

which �� represents the 1D biomedical signal in the segment �̅, N is the length of the signal, and �̅ is the average value of ��. 

Table 1 Time-domain features 
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Among the 12 features comprising the base features set, the statistical features are the most basic, including VAR, STD, 

RMS, SKW, KURT, and the MAV, which is similar to the average rectified value. Three features related to frequency are also 

included: ZC, i.e., the amplitude value of a signal that crosses the zero-amplitude axis; SSC, i.e., the frequency of a signal 

within the time domain; and the WAMP, i.e., the sum difference between the signal amplitudes for two adjacent samples. The 

last three features indicate energy and complexity: SSI represents signal segment energy, NLE approximates signal amplitude 

energy, and WL measures signal complexity. These twelve base features collectively represent a 1D biomedical signal series. 

The new features derived from these representative values closely approximate the actual measurement values. 

2.2.   Feature sorting 

For the development of a root system, the site where the seed is planted requires nutritious soil. In this study, the base 

features were modeled based on the distribution of nutrients. Each element ��,� of the base feature set ��×�〈 〉 must be 

sorted. First, the dataset must be normalized using a scaling technique during the preprocessing stage to eliminate scale 
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differences among various elements while sorting. Min-max normalization was used to scale the data within the range [0,1] 

and maintain the relationships that existed among the original data [17]. The min-max normalization based on the feature set 

���×�〈 〉 can be expressed as: 

, min

max min

m n

m n
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B

B B
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− 
 =

 − 
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β
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where n = 1, 2, …, 12 and m = 1, 2, …, the length of ��. 

Feature importance measurements can reduce the initial number of features by eliminating those features with a low 

importance score and improving classifier performance [18]. In this study, the features were sorted based on their worth. To 

score a feature’s worth, the information associated with the feature was used. Features with higher scores were those closest 

to the center location. Information gain was first input into a decision tree and used to rank the priority of feature nodes; this 

was then expanded and applied to importance measurement. 

Assuming the class label of a feature has two distinct values that define binary classes �C1,C2�. Info��� �, also known as 

the entropy of ���×�〈 〉, can be defined as  
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The ��� with the highest information gain was chosen to replace the center of !���,  ���, … ,  ����# and the other features were sorted 

individually from the center to the two sides with decreasing information gain. Thus, a sorted base feature set was obtained. 

2.3.   Generating nutritious soil based on features 

Digitized soil consisting of the sorted base feature set cannot only be wide; it must also have depth. Therefore, continuous 

feature discretization (from scalar to vector) is necessary. In this process, equal-width interval binning is the most common 

method used for discretizing data to produce nominal values from continuous features [20]. With this binning method, if feature 

$ has values bounded by $�%&  and $�'� , the method computes k equally sized bin widths as follows: 

max mina a

k

−
=δ  (5) 

And it constructs bin boundaries at $�'� + )*, where ) = 1, 2, … , , − 1. To imitate the natural environment of the root system, 

this study set , = 15.  
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In addition, the vertical distribution of soil nutrients should follow the laws of nature. Most nutrients are concentrated in 

the shallowest layer and decrease with depth because nutrients return to the soil through biocycles. Thus, the discrete feature 

set /�0×��  was arranged in decreasing order from top to bottom. By contrast, the horizontal distribution of nutrients is 

associated with crustal movement. The kernel convolution values 12 and 1� were used to calculate the reconstituted nutrient 

distributions. 

Nutritional reconstructions are divided into two types: 12, which affects the nutrient distribution in shallower layers; and 

1�, which affects the nutrient distribution in deeper layers. The convolution kernel is then defined as: 
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The nutritious soil used to generate the root system is written as 3�0×��, which is a result of the /�0×�� convolution with 

kernels 12  and 1� . The calculated target matrix requires zero padding with a size of 1 before each convolution. The 

completed soil with the mineral nutrition generation process is shown in Fig. 1. The following matrix for the distribution 

of nutrients in the soil is referred to as the nutrient matrix. The elements of the base feature set are arranged in order of 

importance, from the center to either side. Each element in the set is then discretized. Finally, the soil matrix is obtained 

using two convolution calculations. 

 
Fig. 1 Top-to-bottom order of soil matrix construction 

2.4.   Plant root system algorithm 

In plants, either the radicle or primary root is the first organ to emerge from the seed coat. Before the first leaf grows, the 

energy required by the cotyledon for root development comes from the seed itself. Additional inorganic nutrients (including 

water) are essential. Only a small fraction of these nutrients come from the seed itself, and the rests are from the surrounding 

soil which contains mineral nutrients [21]. The rule that is inherent in the genes of higher plants is to develop a sufficiently 

large first leaf and long roots before the energy stored in the seed is exhausted. The proposed algorithm follows this rule. As 

organic matter cannot be synthesized by photosynthesis before the first leaf has grown, the task is to absorb more mineral 

nutrients by growing a sufficient large root system with limited energy (root division) in a limited time. The matrix distribution 

for the roots in the soil is hereafter referred to as the root matrix. 

In the proposed approach, the aforementioned natural processes must be transformed into a data-processing program. 

First, the root and nutrient matrices form a four-dimensional tensor, as shown in Fig. 2. The initial root matrix is a zero matrix, 

where the upper-center location assigning values can create a radicle matrix. To absorb more nutrients, the rule of root division 
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is to preferentially proliferate at the global maximum in the mapping nutrient matrix. Neighboring root tips are also necessary. 

The radicle matrix, photosynthetic day, and daily root division are used as modification parameters. The developmental process 

can be characterized by the root distribution area and total nutrient absorption. Fig. 3 shows the natural and digital processes 

used to build a brain-like root system. The figure also depicts that the growth of digital roots is dependent on the base features 

in this study. By extracting the PRS features from the brain-like root system, the correlation with the base features is reduced. 

 

Fig. 2 Four-dimensional data tensor of biomedical signals 
 

 
Fig. 3 Natural and digital processes for building brain-like root systems 

In Table 2, the root growth process can be written as a pseudocode. In the proposed algorithm, the core steps of root 

development involve seeking the global maximum location of the nutrient matrix map relative to the root matrix location using 

a tensor of a biomedical signal base feature set. The entire root system makes decisions in a brain-like fashion to improve total 

nutrient absorption. The root distribution can be drawn in the coordinate system as a polygon. The area of this polygon serves 

as a feature. This study uses a well-known tool to calculate the polygon area proposed by Paul Bourke in 1988. The procedure 

provided two results, which are both referred to as PRS features: nutrient feature (NF), representing the total number of nutrients 

absorbed during root system development in the digitized soil; and root feature (RF), representing the area of root distribution. 

The calculations of NF and RF are shown in Table 2 as the nutrient amount (na) and area (A). A is calculated based on Eq. (8) 

and Fig. 4, wherein the polygon is closed and composed of line segments between N vertices 4�' , 5'6, 7 = 0 to 9 − 1. 
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Fig. 4 Example of 10-vertex closed polygon constructed from a root matrix 

Table 2 Plant root system algorithm 

Algorithm 1 Plant root system 

 Pseudocode Comments 

1 Input:  

2 :ℝ&×<: distribution of the radicle in soil (initial root matrix); x, y are the number of rows and columns of 

the distribution matrix 3 :ℕ&×<: distribution of nutrients in the soil (nutrient matrix); 

4 Output: 

 5 na: nutrients absorbed by the roots; 

6 A: root distribution area; 

7 @$ ← 0;  

8 ℝ&×< ← :ℝ&×<; 
ℝ&×< : distribution of the growing root in 

the soil (root matrix) 

9 for 7 = 1 → /$C do 
day is the number of days for the first leaf 

to appear 

10 for each ℝD&EF,<EFG = 1 do �HI ∈ 41,2, … , �6, CHI ∈ 41,2, … , C6 

11 K ← L:ℕD&M�EF,<EFG, :ℕD&N�EF,<EFG, :ℕD&EF,<M�EFG, :ℕD&EF,<EFN�GO; ℝD&EF,<EFG ∈ ℝ&×<ℕD&EF,<EFG ∈ :ℕ&×< 

12 return m to P; P is a matrix 

13 end for each  

14 decreasing sort P to M; M is a vector 

15 for ) = 1 → Q do; 4Q R QS@TUℎ WX Y6 Q is a limit of root division in one day 

16 YZ)[ mapping back to Z�HI, CHI[; Z�HI, CHI[is a location of the matrix 

17 if ℝD&EF,<EFG \ 1 do  

18 ℝD&EF,<EFG ← 1;  

19 

20 

21 

na← ] 0, YZ)[ = 0
^Z_[

�M|^Z'[| + 0.49, YZ)[ \ 0 absorption rate 

22 end if  

23 do @$ + +;  

24 return @$ and ℝ&×<  @$ is the first output  

25 end for  

26 do ℝ� ← ℝ root extraction as polygon 

27 do d ← $eS$�ℝ� �; $eS$ of the polygon d is the second output 

28 return d;  

29 end procedure  

Incorporating the extracted PRS features into the unprocessed base feature set produced a set for classification, which 

was composed of 14 features. Finally, the final feature set can be obtained by performing min-max normalization. The 

flowchart in Fig. 5 explains the PRS feature extraction process. The entire process is divided into two parts. The first involves 

creating a nutrient matrix with common features. The core idea is to develop digitized soil with an appropriate size and nutrient 

distribution through a mathematical calculation between features. The second part involves developing the root matrix using 

the nutrient matrix and seeds. The core idea is to limit the root division rule for radicles using parameters. 
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Fig. 5 The flow chart of the calculation of FRS features 

3. Datasets and Evaluation Methods 

The accuracies of various classifiers were considered for evaluation. The key measure for each classifier is the change in 

accuracy before and after adding root-based features to the original feature set. Accuracy is often used in epidemiology [22]. 

For a sample, a correct classification is true, and an incorrect classification is false. The accuracy is usually expressed as a 

percentage, calculated by dividing the total number of correct samples by the sum of all samples. A result closer to 100% will 

be more accurate. 

Accuracy
+

=
+ + +

TP TN

TP FP TN FN
 (9) 

where true positive (TP) and false positive (FP) are the number of true and false positive samples. True negative (TN) and 

false negative (FN), which are the number of true and false negative samples. 

3.1.   DatasetsU3 

When selecting a dataset of biomedical signals, a nonstationary signal is preferred. Almost all biomedical signals are 

nonstationary because the human system is always in a state of dynamic equilibrium under the control of the brain [23]. 

Accordingly, three biomedical signals were selected: a vibroarthrographic (VAG) signal, the vibration signal generated by the 

friction between the knee cartilage during flexion-extension to detect knee joint disorders, captured by acceleration sensors near 

the kneecap [24]; forearm EMG, the electrical signal generated by the extensor carpi radialis longus during fist relaxation, 

captured by electrodes near the muscles of the small arm [25]; and the audio signal recorded by a smartphone web application 

to detect cough emanating from the lungs and airways of a patient who may be infected with COVID-19, captured by a 

microphone placed near the head [26]. All signals are binary, classified as young or old for the VAG signals, rest or fist for the 

EMG signals, and positive or negative for the cough sound signals. Table 3 presents the detailed characteristics of these signals. 

Table 3 Properties of biomedical signals 

Dataset Signal type Class Sample size Sampling rate Length Noise reduction 

VAG of the knee joint Vibration 2 144 2000 Hz 3-5 k Yes 

EMG of hand Electrical 2 72 1000 Hz 3-5 k No 

Coughing sound Sound 2 121 22.5 kHz 60-80 k No 
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3.2.   Evaluating PRS features 

Classifiers for feature testing should be selected following the principle of interpretability, avoiding black boxes as much 

as possible [27]. The logistic regression (LR) model, which is widely used in classification problems and has the advantage of 

outputting probabilities, was chosen as the main linear classifier in this study. However, the LR classifier is also limited by 

these probabilities. In some cases, a result of 51% or even 99% pointing to a given class can produce mismatching, which 

means that the predicted class may not be accurate even though the probability of the prediction is high. [27].  

In contrast to LR, a support vector machine (SVM), which focuses on maximizing the probability of group membership, 

attempts to find the separating hyperplane that maximizes the distance of the closest points to the border. As the feature sets 

have more than 12 dimensions, a polynomial kernel-based nonlinear SVM was used as the main nonlinear classifier. A linear 

discriminant analysis (LDA) and quadratic discriminant analysis (QDA) were used as complementary classifiers to the LR and 

SVM classifiers. These machine learning-based classifiers were used to test the feature set [28]. 

Feature extraction methods for biomedical signals typically use both time- and frequency-domain features. Because all base 

features in this study were time-domain features, two frequency-domain features were used to complete the comparison feature 

set [6]. Specifically, this study uses the maximum power spectrum density (MaxPSD) and median power spectrum density 

(MedPSD) as auxiliary features to the base features in the comparison set. The two frequency-feature extraction techniques were 

based on Fourier transforms [6]. The MaxPSD and MedPSD measures were added to the unprocessed base feature set to create a 

comparison set that included the same 14 features as the experimental set. The comparison set was then normalized using min-

max normalization to ensure that the features were on the same scale. Finally, the accuracy of the PRS algorithm was compared 

to the accuracy of the comparison set. Implementations of signal processing, feature engineering, the PRS algorithm, and 

classifiers were supported by RStudio and related packages, and the result has been provided in subsequent sections. 

4. Results 

The study used four datasets to evaluate the performance of each classification model. The first dataset, referred to as the 

base set, contained only 12 time-domain features as listed in Table 1. The second and third datasets, named base + NF and 

base + RF respectively, contained one PRS feature and 12 time-domain features each, in addition to those in the base set. 

Finally, a fourth dataset was used that included all 14 features (the 12 time-domain features and the 2 PRS features). This 

dataset, referred to as PRS with all features, was used to evaluate the performance of each classification model when all features 

were included. All datasets including the VAG, EMG, and cough signals were input individually into the LR, SVM, LDA, and 

QDA classifiers. Each classifier was trained with learning rates ranging from 40% to 80% of the total samples (in increments 

of 10%). The remaining samples were used as test data. The classification accuracy was then calculated using Eq. (9). The 

results for the VAG, EMG, and cough signals are summarized in Figs. 6-8, where the vertical coordinate represents the average 

accuracy of 100 classifications using various learning rates with a one-way ANOVA test after the Shapiro test. 

As shown in the figures, all input sets for the three types of biomedical signals exhibit an increasing trend in accuracy 

with a raised learning rate. However, the most notable results are that the sets including the NF or RF features show greater 

accuracy than merely the base set.  This result is consistent with the hypothesis of this study that the new feature introduced 

by the algorithm as a control variable that is less correlated with other existing variables reduces the overall correlation between 

variables reduces bias in training, and improves classification accuracy. 

Focusing on the VAG signal in Fig. 6. First, the input sets containing the NF tend to perform better. The QDA classifier 

with the set containing the NF and RF has the highest classification accuracy. Further analysis indicates that the classification 

accuracy improves by 3.12% using the base set and 3.65% for the base+NF set when the training rate is increased to 80% for 

the LR classifier.  
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(a) LDA classifier (b) LR classifier 

  

(c) SVM classifier (d) QDA classifier 

Fig. 6 Accuracy of VAG signal for four classifiers 

 

  

(a) LDA classifier (b) LR classifier 

  

(c) SVM classifier (d) QDA classifier 

Fig. 7 Accuracy of EMG signal for four classifiers 

Fig. 7 indicates that the classification accuracy for the EMG signal is as high as 98% for all four classifiers, which is 

considerably higher than the maximum values for the other biomedical signals. The set containing the NF or RF shows a higher 

accuracy under most conditions except for the QDA classifier applied at an 80% training rate. Fig. 8 shows that the cough 

signal is less accurate and regular than the other signals. In this study, the largest improvement in accuracy is observed at a 
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60% training rate for the QDA classifier, which is an improvement of approximately 10% compared to the initial stage. In 

addition, although the accuracy monotonically increased as the training rate raised, there were several monotonic changes in 

all biomedical signals. This result is most likely due to errors during random sampling; therefore, a repetitive sampling 

comparison was implemented as follows: 

  

(a) LDA classifier (b) LR classifier 

  

(c) SVM classifier (d) QDA classifier 

Fig. 8 Accuracy of cough signal for four classifiers 

 

   

(a) VAG signal (b) EMG signal (c) Cough signal 

Fig. 9 Accuracy of the PRS and comparison sets with a 60% learning rate for the SVM classifier 

Fig. 9 compares the accuracy of the base set, PRS-features sets, and frequency-domain feature sets using a 60% learning 

rate for the SVM classifier. Tukey’s multiple comparison tests of the means using a 95% family-wise confidence level were 

conducted on the raw data shown. For the VAG signal, the average differences between the PRS-features set and the base set 

were greater than 3.71%, while the PRS-features sets and frequency-domain features sets were greater than 1.63%. All p-

values were less than 0.05. The EMG and cough signals followed the same pattern. In summary, the results indicate that the 

sets containing only the base features had a consistently lower accuracy rate; however, the PRS-features sets had a consistently 

higher accuracy rate. 
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5. Discussion 

For the VAG signals, the PRS features-sets showed a maximum accuracy of 93%, which is higher than that reported in 

previous studies [3, 24]. These results validate the findings of Rauber et al. [14] in 2015 that only appropriate features could 

improve the performance of the classifiers. Although the PRS-features sets did not achieve the 80% accuracy reported by 

Chaudhari et al. [26] in 2020, a 76% accuracy could be achieved with only one-tenth of the sample size. This study was unable 

to find published classification results for the EMG signals; however, the authors believe that a classification accuracy of up 

to 98% is quite satisfactory. 

 

Fig. 10 Correlation between individual features of the EMG signal 

The swarm intelligence approach’s most significant characteristic is to extract a feature set with exceptionally low 

correlations by simulating the development of natural PRS. The feature correlations for the EMG signals are shown in Fig. 10, 

where the circle at the intersection of a feature row and the column of another feature represents the correlation between the 

two features. A cool-toned circle indicates a positive correlation, and a warm-toned circle indicates a negative correlation, and 

the smaller the circle size, the weaker the correlation. In addition, there was no negative correlation in this result, and all results 

were positive. 

Surprisingly, the two features based on the PRS algorithm had nearly zero correlation with the other features. By contrast, 

the time and frequency-domain features were more or less correlated. The low correlation between the PRS features and other 

features was because of the different feature extraction methods. The development of a root system is a product of group 

decision-making, which reduces the correlation between the root matrix and the nutrient matrix in a tensor. Thus, the 

performance of the classifier improved after the addition of PRS features. 

Another significant advantage of the PRS algorithm is the simplicity of interpretation. Although the full procedure of the 

proposed method might appear lengthy, the algorithm is rather lightweight. The nutrient matrix construction comprises two-

thirds of the work, whereas the construction of the root matrix and the extraction of the PRS features constitute the remaining 

one-third. If the length of the biomedical signal does not exceed 100,000 and the sample size is less than 200, the training 

process can be completed within 5 min. 

The proposed PRS algorithm performed better than expected. Nevertheless, this study had certain limitations. First, the 

improvement of the accuracy rate was modest for each classification model. As shown in Fig. 7, a mere 1% improvement in 

accuracy is insufficient to offset the error bar. One possible explanation for this might be the small sample size, which resulted 

in inadequate model training [29]. Second, although the overall accuracy using the PRS features tended to be higher than that 

of the base and classical feature sets for each classifier, some exceptions still existed. 
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These phenomena are likely related to the possibility that extracting features based on the PRS algorithm does not work 

well in the presence of outliers. Root growth is based on values in the soil matrix, which are obtained by performing statistical 

calculations on biomedical signals. Errors are passed down, causing a reduction in accuracy. This is the reason for an obtained 

lower accuracy at high training rates. Although the PRS was initially successfully used for feature engineering in the field of 

biomedical signals, it has some limitations, and further research is required. One limitation is that this study only considered a 

simple classification problem and did not consider multivalued classification. Moreover, the effect of imbalanced datasets on 

learning was not studied. More experiments are needed to verify the diversity of the signal types. 

In the past, swarm intelligence and swarm intelligence algorithms, such as ant colony algorithms and bee colony 

algorithms, were mostly developed based on the behavior of social animals. Currently, intelligent algorithms have also been 

modeled on certain static systems, including rivers and the PRS used in this study. This study contributes toward renewed 

interest in the development of such algorithms. 

6. Conclusions 

In conclusion, this study has made significant strides in the field of biomedical signal processing by introducing a novel 

feature extraction algorithm, the PRS algorithm. Inspired by swarm intelligence and the natural growth of roots, the PRS 

algorithm effectively explores the feature space and identifies the most discriminative features for classification. Notably, the 

PRS algorithm exhibits good interpretability and low correlation with traditional feature extraction methods, setting it apart 

from existing techniques. 

Through a series of experiments, our findings demonstrated a substantial improvement in classification accuracy when 

utilizing the PRS algorithm, as compared to conventional methods. These results underscore the potential of the PRS algorithm 

in revolutionizing the way biomedical signals are processed and analyzed, ultimately paving the way for more effective clinical 

applications. 

This study serves as a strong foundation for future research in extending the use of biomedical signals for clinical 

applications. As part of our ongoing investigation, we plan to validate the PRS algorithm with a broader range of biomedical 

signals, assess its performance in diverse scenarios, and explore its potential applicability in 2D signal applications. By building 

upon the successes of the PRS algorithm, we aim to advance the field of biomedical signal processing and contribute to more 

accurate and efficient diagnostic tools in clinical settings. 
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