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Abstract 

This study aims to optimally control the level of a four-tank system at the steady state in the random disturbance 

environment using the stochastic approximation (SA) approach. Firstly, the stochastic optimal control problem of 

an equivalent discrete-time is introduced, where the voltages to the pumps are the control inputs. By minimizing the 

sum of squared errors, the liquid levels are estimated. Then, first-order necessary conditions are derived by defining 

the Hamiltonian function. Thus, the optimal voltages are calculated based on the estimated liquid levels to update 

the gradient of the cost function. Finally, for illustration, parameters in the system are considered and a simulation 

is conducted. The simulation results show that the state estimation and control law design can perform well, and the 

liquid levels are addressed along the steady state. In conclusion, the applicability of the SA approach for handling a 

four-tank system with random disturbances is demonstrated. 
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1. Introduction 

Water tank systems have been widely studied in engineering, such as mechanical and chemical systems. In particular, a 

four-tank system, which is a standard nonlinear dynamical system, has a more complex liquid-level control problem than two- 

and three-tank systems. Considering the interconnected structure between the inputs and outputs in these four tanks, changing 

a single input to control the system output is complex, and the stabilization of the system changes once a single input is changed. 

The four-tank system with coupling effects between the input and output causes complex nonlinear behavior, and this nonlinear 

process is troublesome to manage. Thus, it is challenging to stabilize the response output from a four-tank system that is a 

multiple-input multiple-output (MIMO) process [1-2]. Moreover, most industrial processes have the problem of controlling 

the liquid level in the tanks. Typically, liquids used in chemical plants and in mixing treatments in tanks must be controlled at 

a steady-state height, and the flow between tanks should be regulated [3] at the desired level. The various applications of 

liquid-level control, including nuclear power plants [4], food processing [5], and beverages and pharmaceuticals [6], have been 

well-presented in the literature.  

For simplicity, a four-tank system consisting of four interconnected tanks and two pumps are considered. This system 

aims to control the liquid level in the two lower tanks using two pumps. The inputs of the process are the voltage of the pumps, 

and the outputs are the liquid levels in the lower two tanks [7-8]. These two pumps convey liquid from a basin to four overhead 
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tanks. The liquid is freely drained from the two upper-level tanks into the two bottom-level tanks. Then, the liquid levels in 

the two bottom tanks are measured. In such a piping system, each pump affects the liquid levels in both the measured tanks. 

A portion of the flow from the pumps is directed to one of the tanks at the bottom level, while the rest of the flow from the 

pumps is directed to the overhead tank, which drains freely into the other tanks at the bottom level. The amount of flow between 

the inputs and the outputs can vary by adjusting the bypass valves of the system [9-10]. 

Several practical studies have been conducted on the control of the four-tank systems. Proportional-integral-derivative 

(PID), model predictive control (MPC), and fuzzy modified model reference adaptive control (FMMRAC) were implemented 

to control a four-tank system [11]. The system’s performance was analyzed using conventional proportional-integral (PI) and 

hybrid fuzzy PI controllers. Linear quadratic regulator (LQR), linear quadratic Gaussian regulator (LQGR), and H2 and H∞ 

controllers [12] were applied to manage the four-tank system separately. Then, compare their performances in terms of 

disturbance rejection to study the effects of these control systems on the four-tank system. Moreover, a distributed control and 

estimation method [13] was designed for a multivariate four-tank process, whereas active disturbance rejection techniques [14] 

and disturbance observers [15] were proposed for studying four-tank systems in the presence of random disturbances.  

Furthermore, some studies have been conducted on tank systems using the simultaneous perturbation stochastic 

approximation (SPSA) method. For example, the water cooling of sulfuric acid in a two-tank system was studied using the 

SPSA technique, where a neural model and a model-based predictive neural PID controller were developed [16]. A novel 

optimization method based on the SPSA approach was proposed to maximize the control performance of steam-generator level 

control [17]. The SPSA method was also developed and implemented on a dual-tank liquid-level control system to improve 

the performance of a PID control system for parameter optimization in the tank model and actual equipment [18]. In addition, 

the SPSA method was applied to optimize the trajectories of good placement in the reservoir management optimization 

problem [19]. However, few studies used the SA technique to manage four-tank systems. 

Therefore, this study aims to explore the application of the SA approach [20] for controlling a four-tank system with 

random disturbances, which might occur from measurement and human errors. Since the actual state of the system, which is 

the water level in the tank, is uncertain in the presence of random disturbances, estimating the water level in the tank will be 

difficult. In this situation, researchers are motivated to propose a computational approach based on the SA approach to handle 

the state estimation of the system and control the water level at a steady state as the main contribution to this study. This 

computational algorithm is known as the stochastic approximation for state-control (SASC) algorithm.  

Firstly, a loss function is defined, where the differences between the actual and estimated output are minimized. Then, 

the SA updating rule is derived for obtaining state estimates after the first-order necessary condition is satisfied. In addition, a 

stochastic optimization problem is introduced to minimize the cost function when a sequence of control inputs can be 

determined to stabilize the system. Thus, the Hamiltonian function is defined, and the optimality conditions are derived. On 

this basis, the control law is designed through the SA updating rule based on state estimates. In this study, the performance of 

the SASC algorithm is given by mean squared errors (MSE) for state estimation and the cost function for the control effort. 

For illustration, the values of parameters in the system are considered, and the four-tank system’s discrete-time stochastic 

optimal control problem is solved iteratively using the SASC algorithm. Finally, the simulation results are presented and 

discussed after being compared with the results from the extended Kalman filter (EKF).  

The rest of this paper is organized as follows. Section 2 describes the mathematical model of a four-tank system and 

defines the system’s discrete-time nonlinear stochastic optimal control problem. Section 3 explains state estimation and control 

law design using the SA algorithm, and the iterative procedure with the SA updating scheme is summarized as the SASC 

algorithm. Section 4 presents and discusses simulation results obtained using the SASC algorithm. Finally, Section 5 presents 

a concluding remark.   
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2. Problem Description  

Consider a four-tank system [2-3] consisting of four connected tanks and two pumps, as shown in Fig. 1. Pump 1 extracts 

liquid from the basin below and pumps it to tanks 1 and 4, whereas pump 2 pumps liquid from the basin below to tanks 2 and 

3. Denote ��, ��, ��, and �� as the liquid level of tanks 1, 2, 3, and 4, respectively, while �� and �� are the flow parameters of 

pumps 1 and 2. 

 

Fig. 1 Four tanks system 

Suppose ��	�, ��	�, ��	�, and ��	� are the flows into tanks 1, 2, 3, and 4, respectively, while �
��
� and �
��
� represent 

the flow out of the electrical pumps 1 and 2. The flows into tanks 1 and 4 are equal to the flow out of electrical pump 1, whereas 

those into tanks 2 and 3 are equal to electrical pump 2. The relations between the flows at each outlet pipe and the total flows 

from pumps 1 and 2 depend on the flow parameters �� and �� are given as follows [6], 

1 1 1pumpq kv=  (1) 

2 2 2pumpq k v=  (2) 

1 1 1 1in
q k v γ=  (3) 

2 2 2 2in
q k v γ=  (4) 

( )3 2 2 21
in

q k v γ= −  (5) 

( )4 1 1 11
in

q k v γ= −  (6) 

where � and � are the pump coefficients, while �� and �� are the input voltages to the pumps. The flow out of tanks is given 

by Torricelli’s principle by using Bernoulli’s equation [7], 

1 1 1
2

out
q a gl=  (7) 
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2 2 2
2

out
q a gl=  (8) 

3 3 3
2

out
q a gl=  (9) 

4 4 4
2

out
q a gl=  (10) 

where ��, ��, ��, and �� are the cross-section of the outlet pipe of tanks 1, 2, 3, and 4, while g is the acceleration due to gravity. 

The mathematical model of the four-tank system is described by the mass balance equation [11-12] given by 

Tank 1: 

1

1 1 3 1in out out

dl
A q q q

dt
= + −  (11) 

Tank 2:  

2

2 2 4 2in out out

dl
A q q q

dt
= + −  (12) 

Tank 3:  

3

3 3 3in out

dl
A q q

dt
= −  (13) 

Tank 4: 

4

4 4 4in out

dl
A q q

dt
= −  (14) 

where ��, ��, ��, and �� are the area of the cross-section of tanks 1, 2, 3, and 4, respectively. Eqs. (11)-(14) show that the net 

change in the volume in a tank is equal to the difference between the volume entering and leaving the tank. By substituting 

Eqs. (3)-(10) into Eqs. (11)-(14), the dynamics of the four-tank system are given as follows, 

31 1 1 1

1 3 1

1 1 1

2 2
adl a k

gl gl v
dt A A A

γ
= − + +  (15) 

2 2 4 2 2

2 4 2

2 2 2

2 2
dl a a k

gl gl v
dt A A A

γ
= − + +  (16) 

( )2 23 3

3 2

3 3

1
2

kdl a
gl v

dt A A

γ−
= − +  (17) 

( )1 14 4
4 1

4 4

1
2

kdl a
gl v

dt A A

γ−
= − +  (18) 

Define the state variable � = ���, ��, ��, ����  with �� = ��, �� = ��, �� = ��, and �� = ��, and let the control variable    

� = ���, ����  with �� = ��  and �� = ��, the dynamics of the four-tank system in Eqs. (15)-(18) can be formulated in its 

equivalent discrete-time state equation [21], 

( ) ( ) ( )1 ,x k f x k u k+ =     (19) 

where � = ���, ��, ��, ����: ℜ� × ℜ� → ℜ� is the system dynamics given by 

31 1 1

1 1 1 3 1

1 1 1

2 2
aa k

f x gx gx u
A A A

γ
τ
 

= + − + + 
 

 (20) 
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2 4 2 2

2 2 2 4 2

2 2 2

2 2
a a k

f x gx gx u
A A A

γ
τ
 

= + − + + 
 

 (21) 

( )2 23

3 3 3 2

3 3

1-
2

ka
f x gx u

A A

γ
τ
 

= + − + 
 

 (22) 

( )1 14

4 4 4 1

4 4

1-
2

ka
f x gx u

A A

γ
τ
 

= + − + 
 

 (23) 

with � as the sampling time. The output variable � = ���, ���� is defined by 

( ) ( )y k h x k=     (24) 

where the output measurement channel ℎ = �ℎ�, ℎ���: ℜ� → ℜ� is 

1 1
h x=  (25) 

2 2
h x=  (26) 

which represents the solution for the liquid level of tank 1 and 2 as ��� � and ��� �, respectively. Therefore, the discrete-time 

system [22] consists of Eqs. (19) and (24), which are disturbed by random noises, are denoted as 

( ) ( ) ( ) ( )1 ,x k f x k u k G kω+ = +    (27) 

( ) ( ) ( )y k h x k kη= +    (28) 

where G is a 4 × 4 coefficient matrix, whereas !�� ∈ ℛ�,  = 0,1, ⋯ , ' − 1, and )�� ∈ ℛ�,  = 0,1, ⋯ , ', are the additive 

Gaussian white noises with zero mean, and their respective covariance matrices are given by *+ ∈ ℛ�×� and ,- ∈ ℛ�×�. 

( ) 00x x=  (29) 

The initial state Eq. (29) is a random vector with the mean and state error covariance matrix are, respectively, given by 

( )0 0E x x=  (30) 

( )( )0 0 0 0 0

T
E x x x x M − − =
   (31) 

where ./ ∈ ℛ�×� is a positive definite matrix and 01 2 is the expectation operator. It is assumed that the initial state, process 

noise, and measurement noise are statistically independent. Here, the aim is to determine a set of admissible control sequences 

��� ∈ ℛ�,  = 0,1, ⋯ , ' − 1, such that the following expected cost function  

( ) ( ) ( ) ( )
1

0

,
N

k

J u E x N L x k u kϕ
−

=

 
= +       

 
  (32) 

is minimized over the dynamical system given in Eqs. (27) and (28), where 3: ℜ� → ℛ  is the terminal cost and                  

4: ℜ� × ℜ� → ℛ is the cost under summation. This problem is known as the discrete-time nonlinear stochastic optimal control 

problem for the four-tank system and is referred to as problem (P). 

3. Stochastic Approximation (SA) Approach 

Now, consider the following recursive equation, 

1i i i

i
a gθ θ+ = − ×  (33) 
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where 5�  is the set of parameters to be estimated, 6� = 6�5�� is the stochastic gradient, and ��  is the gain sequence. This 

equation is known as the SA approach [20]. Thus, the state estimation and the optimal control design based on the SA approach 

will be further discussed. 

3.1.   State estimation 

Consider the state mean propagation [23-24] for Eqs. (27) and (28), given by 

( ) ( ) ( )1 ,x k f x k u k+ =     (34) 

( ) ( )y k h x k=     (35) 

where �̅�� and �8�� are the expected state sequence and the expected output sequence, respectively. To find the optimal state 

estimate, introduce the following weighted least-squares problem [21-22],  

( ) ( ) ( ) ( ) ( ) ( ){ }

( ) ( ){ } ( ) ( ) ( ){ }

1

0

1

1
min

2

1

2

T

sse
x

T

J x x k x k M x k x k

y k h x k R y k h x kη

−

−

= − −      

+ − −      

 (36) 

where 9::; is the sum of squares error, ./ is the initial state error covariance, and ,- is the output noise covariance. By taking 

the first-order derivative, the gradient of the sum squares of errors is defined by 

( ) ( ) ( ) ( ) ( ) ( ) ( ){ }
11

0

T

x sseJ x M x k x k C R y k h x kη

−−
∇ = − − −        (37) 

where < = =ℎ =�⁄ . Thus, by using the SA approach [20] in Eq. (33), the optimal state estimate is obtained from 

( ) ( ) ( )
1

1,
ˆ ˆ

i i i

i x sse
x k x k a J x k

+  = − ×∇
   (38) 

where �?,� > 0 is the learning rate and the optimal output estimate is determined by 

( ) ( )ˆ ˆ
i i

y k h x k =
   (39) 

Remarks: The state estimate �A is the optimal state estimate, which minimizes the sum of squares of error 9::;. The norm of the 

state estimate �A and the state mean �̅ is relatively close within a small tolerance. Using the SA approach for state estimation 

does not need the state error covariance matrix equation as derived in the Kalman filtering approach [21-22].  

3.2.   Optimality conditions 

Refer to the problem (P), the expected cost function [24] in Eq. (32) can be defined by 

( ) ( ) ( ) ( )
1

0

,
N

k

J u x N L x k u kϕ
−

=

= +        (40) 

and the state propagation from Eq. (34) is considered. Define the Hamiltonian function [19], 

( ) ( ) ( ) ( ) ( ) ( )ˆ, 1 ,
T

H u L x k u k p k f x k u k= + +        (41) 

where B�� ∈ ℛ�,  = 0,1, ⋯ , ' is the costate sequence to be determined later. Thus, the augmented cost function becomes 

( ) ( ) ( ) ( ) ( )
1

0

1 1
N

T

k

J u x N H k p k x kϕ
−

=

′ = + − + +     (42) 
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Examining the increment in the augmented cost function 9′ due to increments in all variables, which are �̅��, B��, and 

��� According to the Lagrange multiplier theory, this increment D9′ should be zero at a constrained minimum [21-22]. Thus, 

taking the first-order derivative of the augmented cost function and Hamiltonian function, the following optimality conditions 

are derived. 

(a) Stationary condition  

( ) ( ) ( ) ( ) ( ) ( ) ( )ˆ, , 1 0
T

u k u k
L x k u k f x k u k p k∇ + ∇ + =        (43) 

(b) State equation  

( ) ( ) ( )ˆ1 ,x k f x k u k+ =     (44) 

(c) Costate equation  

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )ˆ, , 1
T

x k x k
p k L x k u k f x k u k p k= ∇ + ∇ +        (45) 

(d) Output equation 

( ) ( )y k h x k=     (46) 

(e) Boundary conditions  

( ) 0
ˆ 0x x=  (47) 

( ) ( ) ( )x N
p N x Nϕ= ∇     (48) 

Remark: For the sake of convenience, the following standard cost function in quadratic criterion [23-24] could be calculated 

( ) ( ) ( ) ( )
1

2

T
x N x N S N x Nφ =    (49) 

( ) ( ) ( ) ( ) ( ) ( )
1

,
2

T T
L x k u k x k Qx k u k Ru k = +      (50) 

when a proper cost function is not provided. Thus, the necessary conditions are simple.  

3.3.   Optimal control design 

Define an equivalent stochastic optimization problem [20] to problem (P), and this problem is regarded as the problem 

(Q), given by 

( )Minimize J u′→  (51) 

where the necessary conditions in Eqs. (44) and (45) are satisfied. Hence, solving the problem (Q) would allow the design of 

the control law. By this, the gradient of the objective function in Eq. (42) is expressed by 

( ) ( )u u
J u H k′∇ = ∇  (52) 

where 

( ) ( ) ( ) ( ) ( )ˆ, , 1
T

u u u
H L x k u k f x k u k p k∇ = ∇ + ∇ +        (53) 

and the necessary condition for the problem (Q) is given by Eq. (43). Hence, the control law is updated from 

( ) ( ) ( )
1

2,

i i i

i u
u k u k a J u k

+  ′= − ×∇
   (54) 
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where ��,� > 0 is the learning rate. Here, the principle of separation is assumed to be satisfied when applying the SA approach 

[20] for state estimation and optimal control design. This statement is true for solving stochastic optimal control problems. 

3.4.   SA for state-control algorithm 

From the discussion above, the computational procedure for applying the SA approach to state estimation and control law 

design is summarized as an iterative algorithm named the SASC algorithm. The steps of the SASC algorithm are as follows: 

Data: Given �, ℎ, F, 3, 4, ', ./, G+, ,-, ��, ��, and �. 

Step 0: Determine the initial control ���/ = �/  for  = 0,1, ⋯ , ' − 1 and the initial state �A��/ = �/  for  = 0,1, ⋯ , ' 

Set the tolerance H and the iteration I = 0. 

Step 1: Calculate the sum of squares error  9::;1�A���2 from Eq. (36), and the stochastic gradient ∇K9::;1�A���2 from Eq. (37), 

respectively. 

Step 2: Update the state estimate �A���L� from Eq. (38). 

Step 3: Compute the output estimate �A��� from Eq. (39). 

Step 4: Solve the state equation forward in time from Eq. (44) with the given initial state �̅/ to obtain the state solution �̅���.    

Step 5: Solve the costate equation backward in time from Eq. (45) with the given final costate B�'� to provide the costate 

solution B���. 

Step 6: Compute the output measurement �8���  from Eq. (46). 

Step 7: Calculate the cost function 91���2� from Eq. (42) and calculate the stochastic gradient ∇�91���2� from Eq. (53). 

Step 8: Update the control law ����L� from Eq. (54). 

Step 9: Test the convergence. If �A���L� = �A��� and ����L� = ���� within a given tolerance H, stop, else set the iteration 

I = I + 1 and go to Step 1. 

Remarks: From the steps of the SASC algorithm, the initial value of the state and control can be set to a zero vector in Step 0. 

The state estimation procedure is implemented from Step 1 to Step 3, and the two-point boundary-value problem is solved 

from Step 4 to Step 5. While the optimal control law is designed from Step 7 to Step 8, and the appropriate stopping criteria 

for the iteration can be set in Step 9. 

4. Simulation Results 

Table 1 Parameters in problem (P) 

System parameters Values 

The cross-sectional area of the outlet hole for the tanks �� = 0.071 PQ�, �� = 0.057 PQ�, �� = 0.071 PQ�, �� = 0.057 PQ� 

The cross-sectional area of the tanks �� = 28 PQ�, �� = 32 PQ�, �� = 28 PQ�, �� = 32 PQ� 

Pump proportionality constants � = 3.14 PQ�/X:, � = 6.29 PQ�/X: 

Flow coefficient of the pumps �� = 0.35, �� = 1.35 

Gravitational acceleration 6 = 981 PQ/[� 

Initial liquid level ���0� = 10.43, ���0� = 15.98, ���0� = 6.6, ���0� = 9.57 

Estimation and control parameters Values 

Sampling time � = 0.1 [ 

Final time step ' = 80 

Weighting matrices \] = �̂×�, G = DI�6�10, 10, 10_, 10_�, , = 100`�×� 

Covariance matrices ./ = 0.2`�×�, G+ = 0.01`�×�, ,- = 0.01`�×� 
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Consider the system parameters for the four-tank system [3, 9], and the estimation and control parameters defined for the 

problem (P) listed in Table 1. Using these parameters, an illustrative example of the simulation of the four-tank system is 

studied to demonstrate the practicality of the SASC algorithm. The simulation of this study is conducted in the environment 

of the GNU Octave 7.2.0. 

Table 2 presents the simulation results for controlling the four-tank system with random disturbances. The implementation 

of the SASC algorithm required 1,254 iterations to achieve convergence. For benchmark purposes, the results of the SASC 

algorithm were compared with results from the EKF algorithm since the EKF algorithm is the standard technique for nonlinear 

filtering and estimation. 

The optimal cost of 3.4959 × 107 units obtained using the SASC algorithm was 1.15 % less than the optimal cost given 

by the EKF algorithm. This reduction demonstrated the practical application of the SASC algorithm in minimizing the cost 

function of the system. However, the performance of the SASC algorithm for state estimation, measured through the sum of 

squares error (SSE) and the MSE, was 98.7 % more accurate than that of the EKF algorithm. Therefore, the efficiency and 

accuracy of the SASC algorithm for solving the discrete-time nonlinear stochastic optimal control of the four-tank system were 

demonstrated.  

Table 2 Simulation result 

Algorithm Optimal cost SSE MSE 

EKF 3.5366 × 107 2.307386 × 10–1 2.884233 × 10–3 

SASC 3.4959 × 107 3.091891 × 10–3 3.864864 × 10–5 

Fig. 2 shows the final output trajectories when the SASC algorithm achieved convergence. The liquid level in tank 1, in 

which y� represents the actual liquid level and yb� is the estimated liquid level in tank 1, which was reduced from 10.43 cm 

and reached about 4.5 cm after 2 seconds at the final time of the iteration. While the liquid level in tank 2, in which y� represents 

the actual liquid level and yb� is the estimated liquid level in tank 2, which reached about 37.5 cm after 2 seconds at the final 

time of the iteration after increasing from 15.98 cm. In the random disturbance situation, it was challenging to maintain the 

steady state of the liquid level in tanks 1 and 2. However, the final liquid levels in both Tanks 1 and 2 were approximately 

determined in a satisfactory form by using the SASC algorithm. 

  

(a) Output trajectory y� – the liquid level in tank 1 (b) Output trajectory y� – the liquid level in tank 2 

Fig. 2 Final output trajectories and real output trajectories 

The final state trajectories are shown in Fig. 3. The liquid levels in tanks 1 and 2 exhibited fluctuation behaviors disturbed 

by random noise and were not easy to measure smoothly. Using the SASC algorithm, these trajectories were estimated 

acceptedly, and their trajectories were approximately measured. Conversely, the liquid levels in tanks 3 and 4 were unaffected 

by random disturbances. This is because their trajectories were smoothly predicted at their respective steady states 

approximately along with zero. 
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Fig. 4 shows the final control trajectories for regulating the liquid levels in the tanks. The optimal input voltage to pump 

1 increased from -270 V to 0 V, and the optimal input voltage of pump 2 decreased from 182 V to 0 V. These control efforts 

effectively maintained liquid levels at approximately zero after 2 seconds. Therefore, the optimal solution to the four-tank 

problem was obtained satisfactorily when stationary conditions were satisfied, as shown in Fig. 5. 

  

(a) State trajectory �� – the liquid level in tank 1 (b) State trajectory �� – the liquid level in tank 2 

  

(c) State trajectory �� – the liquid level in tank 3 (d) State trajectory �� – the liquid level in tank 4 

Fig. 3 Final state trajectory and real state trajectory 

 

  

Fig. 4 Final control trajectories Fig. 5 Stationary conditions 

5. Concluding Remarks 

Optimizing and controlling the four-tank system with random disturbances through the SA approach were discussed in 

this study. Firstly, the discrete-time stochastic optimal control problem for the four-tank system was described by considering 

the presence of random disturbances. Subsequently, by applying the SA approach, the iterative algorithm, namely the SASC 

approach, was proposed to estimate the state dynamics and to design the optimal control law. Therefore, the state estimation 
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of the system was satisfactorily handled, and the optimal control law, which was thoroughly designed based on the SA updating 

rule, was applied to minimize the performance index of the system. For illustration, researchers studied the control problem of 

a four-tank system with given parameters. The simulation results showed that the system was stabilized and controlled in a 

stochastic environment after using the SASC algorithm proposed. These results were also compared with results from the EKF 

technique, and a discussion was given. In conclusion, the efficiency and accuracy of the SASC algorithm are demonstrated. 

For future research, it is recommended to apply recent variants of the SA approach, like the Adam algorithm, for solving the 

stochastic optimal control problem of the four-tank system so that more acceptable results can be determined. In this way, the 

water level at the steady state will be identified in fewer iteration numbers, where the algorithm provides an iterative solution 

that can converge faster. Hence, the practicality and usefulness of the algorithm will be recommended. 
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