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Abstract 

This article investigates the robust stabilization of the rotational subsystem of a quadrotor against external 

inputs (disturbances, noises, and parametric uncertainties) by the LFT-based LPV technique. By establishing the 

LPV attitude model, the LPV robust controller is designed for the system. The weighting functions are computed by 

Cuckoo Search, a meta-heuristic optimization algorithm. Besides, the input saturations are also taken into account 

through the Anti-Windup compensation technique. Simulation results show the robustness of the closed-loop system 

against disturbances, measurement noises, and the parametric uncertainties. 
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1. Introduction 

Several researchers have focused on quadrotor aircraft because of its advantages such as vertical landing and stationary 

flight [1]. However, the quadrotor is a nonlinear complex vehicle and very sensible, which motivates the researchers to develop 

robust controllers. In this article, the development of a robust controller for the quadrotor attitude subsystem is investigated. 

Recently, researchers have been interested in Linear-Parameter-Varying (LPV) theory because of its advantage that 

allowing them to represent the nonlinear model as the quasi-LPV system. There are several approaches to develop the LPV 

system from its nonlinear original model. The common ones are the polytopic approach [2] and the 

Linear-Fractional-Transformation (LFT) [3]. In this article, the LFT is used because it can exact representative the nonlinear 

model. On the other hand, one of the efficient robust controllers is the H∞, which is created for the Linear-Time-Invariant 

systems (LTI). In the LPV case, there are no frequency norms. There is a just relative gain in the L2 sense (in the time-domain). 

In the LTI case, the L2 gain and the H∞ norm are equal. Hence, the LPV method via the L2 gain concept can be seen as the 

extension of H∞ synthesis [4]. 

One of the existed problems on H∞ controller design is weighting functions’ selection. There are many structures such as 

Loop-Shaping which is proposed by McFarlane and Glover [5]. Loop-Shaping is the simplest and the most commonly used 

method [6]. The other common structure is the mixed sensitivity structure [7]. It is very hard to give a general formula for 

weighting functions that work in every case [8]. This problem depends on experimental skills [9], but Zhou and Doyle 

proposed guidelines to adjust the weighting functions’ parameters for a SISO system [10]. In [11], the authors propose to 

consider each system as a combination of first and second-order sub-systems, which make it easier to find a good weighting 

function to be used in H∞ control methodology. Yet there is no general methodology to adjust the parameters especially when 

performance specification is difficult to define, plus it gets more complex for MIMO systems. 
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On the other side, the Cuckoo Search algorithm is a swarm-based optimization algorithm. It is inspired by a kind of bird 

(cuckoo) behavior in dumping its eggs into random nests. A cuckoo never builds its own nest but lets other species doing it. 

The algorithm’s essential operations are the global random walk and the local walk. The global walk is similar to Practical 

Swarm Optimization (PSO) and Simulated Annealing (SA) with Lévy flight transition probability. The local walk is a 

differential operation with such probability, so it is similar to the Differential Evolution algorithm (DE). Therefore, each 

algorithm (SA, PSO, and DE) could be considered as a special case of the CS algorithm. Conversely, CS is a good and efficient 

combination of SA, PSO, and DE in one algorithm [12]. 

Many researchers have used a nature-inspired optimization algorithm to determine weighting functions’ parameters for 

the LPV system [13-14]. This approach is much more required in the MIMO systems. In this article, the mixed sensitivity 

structure is applied, and then the Cuckoo Search (CS) algorithm is exploited to find optimal weighting functions’ parameters. 

The second point investigated in this article is the input saturation. It is a real constraint of the actuators. The actuators 

can’t provide additional effort although the outputs don’t reach the reference signal. Such a technique called Anti-Windup has 

been used in [15]. An Anti-Windup compensator has been designed with the same nature and structure of LFT-LPV plant to 

reject the input saturation effect [16]. 

The article’s outline is as follows; in Section 2, the representation of the quadrotor attitude model as the LPV system and 

the synthesis controller are recalled [17]. Section 3 is about a description of the CS algorithm characteristics. Besides that, the 

optimization of the weighting functions problem for the nominal system (without considering the input saturation) is discussed 

in Section 3.2. In Section 4, the Anti-Windup compensator design is investigated. The simulation results will be shown in 

Section 5, and finally, the conclusion in Section 6. 

2. LFT-LPV Controller Design 

In this section, the control of the quadrotor’s attitude by the LPV technique is recalled [17]. 

2.1.   LFT-LPV representation of quadrotor attitude 

As noticed previously, this work focusses on the rotational subsystem of the quadrotor, the framework of three degrees of 

freedom system is presented on Fig. 1. The angles are the three degrees of freedom; roll (φ), the rotation around the x axis; pitch 

(θ), the rotation around the y axis; yaw (ψ), the rotation around the  z axis. 

 

Fig. 1 The geometric structure of the quadrotor 

These motions are achieved by four rotors, ( 1 4)i iM  . The nonlinear dynamic model of the rotational subsystem is 

shown on Eqs. (1)-(2). It has six states; roll, pitch, yaw; [ ]   and their derivatives; [ ]   . It has three inputs 

][U U U  . 
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Table 1 OS4 parameters 

Parameter Description Value Unit 

l Arm length 0.23 m 

b Thrust coefficient 3.13 10
-5

 N.s
2
 

d Drag coefficient 7.5 10
-7

 N.m.s
2
 

Ix, Iy Inertia on x and y axis 7.5 10
-3

 Kg.m
2
 

Iz Inertia on z axis 1.3 10
-2

 Kg.m
2
 

Jr Rotor inertia 6 10
-5

 Kg.m
2
 

ωi Rotor speed [0, 500] rad.s
-1

 

Table 1 shows the model’s parameters from the selected project, OS4 [18]. By considering the assumption that the 

selected system is symmetric ( ),x yI I  the yaw model can be linearized as: 

1

z

U
I

   (4) 

There are two subsystems i.e., the roll-pitch (φ, θ) subsystem and the linear one, yaw (ψ) subsystem. Fig. 2 show the 

sheme of the quadrotor attitude. After some mathematical operations (for more details see [17]), the LPV model of the 

nonlinear subsystem (roll-pitch) with LFT representation is presented as: 

1

1

1 1 11

D

p

p p pp p p

p

A B Bx x

z C D w

y C D D u

    
    

     
    

     

 (5) 

and 

p pw z  (6) 
 

 

Fig. 2 LFT-LPV scheme of the quadrotor attitude 
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where the elements of the matrices in Eq. (5) can be obtained by: 
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4 40 xppD   (12) 

1 4 20p xD   (13) 

1 2 40p xD   (14) 

11 2 20 xD   (15) 

where the state vector 
T

x        , the input vector 
T

u U U     , the outputs  Ty   , pz and pw  are 

the inputs and outputs of the parameters block, 1, 2, 1, 2( ).diag p p p p  Table 2 presents the parameter range of roll-pitch 

subsystem. The yaw subsystem is a simple double integrator system with 2 states  T  , and just one input ( ).U  

Table 2 Varying-parameters range 

Parameter Description Range 

1p    1[ 2, 2] .rad s  

2p  r  1[ 500, 500] .rad s  

2.2.  The Controller synthesis 

In the H∞ controller design, either the LPV subsystem (roll-pitch) or LTI subsystem (yaw) needs to interconnect the 

system with externl inputs (disturbances and noises) and the actuator dynamics.  
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The rotor’s dynamic in the selected project, [18] can be expressed as: 

0.936
( )

0.178 1

i

di

Act s
s




 


 (16) 

where 
i is the actual rotor speed, 

di  is the desired rotor speed. From Eq. (3), it is possible to extract the inputs’ dynamics. 

The actuators’ dynamic for each input ( , , )U U U   of pitch, roll, and yaw controls can be expressed as: 

2( )a dU Act s U  (17) 

where dU  is the desired control signal generated by the controller, and aU  is the actual control signal.  

 

Fig. 3 LFT-LPV representation of closed loop plant-controller 

As noticed before, both the plant and controller of the roll-pitch subsystem are LPV with LFT representation (Fig. 3). On 

the contrary, the yaw subsystem is a simple LTI. The augmented plant (P) includes actuators dynamics, external inputs, and 

weighting functions. The plant’s state space is presented in Eqs. (18)-(22), and the controller’s state space is expressed as: 

1 2p px Ax B w B w B u     (18) 

1 2p p pp p p pz C x D w D w D u     (19) 

1 1 11 12p pz C x D w D w D u     (20) 

2 2 21 22p py C x D w D w D u     (21) 

p pw z  (22) 

where x is the states vector; u is the input vector; w is the exogenous inputs; disturbances and noises; y is the measured outputs; z

is the controlled outputs; pz and pw are inputs and outputs of the block, 1 1 2 2( , ,..., ).r r k rkdiag p I p I p I   

1K K K K Kp Kpx A x B y B w    (23) 
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1Kp Kp K Kp Kpp Kpz C x D y D w    (25) 

Kp Kpw z  (26) 

where Kx is the controller states vector, y is the outputs from the plant, u is the controller outputs, Kpz , and Kpw are inputs 

and outputs of the block parameter. 
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After getting the LPV model of attitude in section 2.1, establishing an interconnection between the plant and the different 

inputs is needed. The inputs are reference signals, disturbances, and noises. The actuator dynamic is also added  by the block 

Act
2
 as shown in Eqs. (16)-(17). Furthermore, the weighting functions which represent the desired performance are ordered in 

mixed sensitivity structure by the errors ( , ,e   ) and the input signals ( , ,U   ). In this article, three types of external inputs 

are considered, i.e., reference signals ( , ,r   ), disturbances ( , ,d   ), and noises ( , ,n   ) as presented in Fig. 4. The 

controller of each subsystem, the LTI controller for the yaw subsystem and the LPV controller for the roll-pitch subsystem, 

will be designed with the same nature as the plant. 

 

Fig. 4 Closed-loop plant-controller of the quadrotor 

3. Optimal Weighting Functions 

3.1.   The cuckoo search algorithm 

The Cuckoo Search (CS) algorithm is a swarm-based intelligent algorithm. It was developed by Yang and Deb in 2009 

[19] and inspired by the cuckoo’s behavior in laying its eggs. A cuckoo doesn’t build its own nest but selects another species’ 

nest to let them brood young cuckoos. In this article, a simple way of application of CS is used; a nest corresponds to a cuckoo 

and also to an egg. The standard CS procedure strike a balance between a local and a global random walk. The global walk is 

presented by Lévy flight [19] where a cuckoo searches for a new nest. Furthermore, there is a probability pa of cases where the 

host birds discover that the eggs are not theirs, so they abandon the eggs. The cuckoo seeks for a new solution (nest) far from 

the actual solution; that’s the local random walk. 

Algorithm 1: Improved Cuckoo Search 
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Initialize solutions randomly; 

While max_Generation not meet do  

  Search by fraction (pc); 

  Get a cuckoo randomly by Lévy Flight; 

  Evaluate its fitness Fi; 

  Get a nest randomly (j) 

  if  Fi is better than Fj 

    Replace the worse nest(j) by the trial one; 

  end if 

  Fraction (pa) of worse nests are abandoned and build new ones; 

end while 
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 The Improved Cuckoo Search (Algorithm 1) was developed by Ouaarab et al. [20-21]. Its extension to the standard CS is to 

add a fraction pc of smart cuckoos which seek new solutions in other areas by Lévy flight operation, and can be expressed as: 

1 ( )t t
i ix x L     (27) 

where L is the Lévy flight function [22],  is the scaling factor. After getting a new solution (trial one), it is compared with a 

random one (j). If the trial solution is better than j (the worse), it should be replaced by the new solution. In addition to the 

fraction pc, there are other eggs with probability pa witch are abandoned by the host birds. Therefore, the cuckoos search for 

new nests in the local area is: 

1
( )t t t

i p q at
i

t
i

x s x x if r p
x

x otherwise


   

 


 (28) 

where px and qx are random solutions different from ix , and s is a scaling factor. The parameters’ values are chosen on the 

base of the recommendation of optimal ranges from experts in the field [20], and are shown in Table 3. 

Table 3 Parameters setting of Improved CS 

Parameter Value 

max_Generation 20 

Population size 50 

pc 0.5 

α 0.1 

λ 1.5 

pa 0.25 

s 0.2 

3.2.   The optimal weighting functions 

The good choice of weighting functions significantly affects the system’s nominal performance. In [17], the selection of 

the weighting functions is implemented by trial-and-error. In this article, the implementation is done by an optimal algorithm 

(Cuckoo Search). The weighting functions are espressed as: 
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Because the pitch and the roll have the same dynamics, their functions are equal. The weighting function of error is 

considered as a first-order filter. The weighting function of the control is considered as a scalar gain, i.e., 

1

2

1

1
e e e

s
W W k

s
 






 


 (31) 

u u uW W k    (32) 

Concerning the yaw subsystem, the weighting function of the error is considered as a first-order filter. The weighting 

function of the control is considered as a simple gain and expressed as: 
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u uW k   (34) 

The parameters’ selection of the roll-pitch subsystem and yaw subsystem is achieved separately. In the optimization 

process, the solutions of roll-pitch problem and yaw problem can be obtained by: 

 1 2e uS k k    (35) 

 1 2e uS k k    (36) 

It should be noticed that the solutions are presented in real-coded. The optimization process of each problem is solved by 

the presented CS optimization algorithm in Section 2. The fitness functions are the Integral Square of Error (ISE) is used for the 

fitness function, that is, 

2 2

0 0

( ) ( )

t t

roll pitchf e d e d         (37) 

2

0

( )

t

yawf e d     (38) 

The fitness (ISE) evolutions of each criterion, Eqs. (37)-(38), are presented in Fig. 5 and Fig. 6. The efficiency of the CS 

algorithm is shown by the presented convergences where the fitness of the roll-pitch subsystem (Fig. 5) reaches its optimal 

(minimum) at 10
th

 generation, and the fitness of the yaw subsystem (Fig. 6) reaches its optimal (minimum) at the 8
th

 generation. 

The optimal weighting functions parameters are presented in Table 4. 

  

Fig. 5 Fitness evolution of the roll-pitch subsystem 

(ISEφ+ISEθ) 

Fig. 6 Fitness evolution of the yaw subsystem (ISEψ) 

Table 4 Optimal parameters of We and Wu 

roll-pitch 

Weφ, Weθ 
ke τ1 τ2 

12.66 3.112 65.359 

Wuφ, Wuθ ku=0.902 

yaw 

Weψ 
ke τ1 τ2 

2.5 0.3388 8.8968 

Wuψ ku=0.28 
 

Fig. 7 presents the inverse sensitivity functions of both subsystems. The presented weights are the error weighting 

functions eW  and ,eW when the weights in the control criteria ( uW   and uW  ) are just scalar gains. The inverse of 



Advances in Technology Innovation, vol. 5, no. 2, 2020, pp. 98-111 

 

106 

sensitivity function of the roll-pitch subsystem (1 / eW  ) is a high pass filter, the steady-state error to step input ( 0.078)  , 

the overshoot magnitude (peak sensitivity, 1.65sM  ), and limit closed-loop bandwidth /0.1937 rad s)( b  . The inverse of 

the sensitivity function of the yaw subsystem (1 / eW ) is a high pass filter also, the steady-state error to step input ( 0.4)  , 

the overshoot magnitude (peak sensitivity, 1.55sM  ), and limit closed-loop bandwidth /0.281 rad s)( b  . These results are 

in line with the recommended guidelines of [10]. 

 

Fig. 7 Desired closed-loop performance 

Let KLPV denote the controller of the roll-pitch subsystem, and KLTI denote the controller of the yaw subsystem, they can be 

expressed as: 

1 1

1 11 1

1

K K Kp

LPV K K K p

Kp Kp Kpp

A B B

K C D D

C D D



 
 
 
 
 

 (39) 

2 2

2 2

K K
LTI

K K

A B
K

C D

 
 
 

 (40) 

The augmented controller K (Fig. 4) is obtained by combining the two controllers, and that is: 
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 (44) 

In this stage, the problem of the optimal weighting functions’ parameters is solved, but the problem of the input saturation 

has not been considered yet. The advantage of this method is that the controller design and the anti-windup compensator 

synthesis can be carried out independently. The next section is to discuss the anti-windup compensator’s design step. 
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4. Anti-Windup Compensator 

The system is a mini-drone which has actuators, rotors, with low energy consumption. If the input saturation is imposed, 

the controller design considering the input saturation is needed to stabilize the system. The saturation function is presented in 

Eq. (45): 

( )

m m

m m

m m

u if u u

sat u u if u u u

u if u u

  


   
 

 (45) 

In general nonlinear systems, hyperbolic tangent ( ( ) tanh( ))sat u u is used the approximate function of the saturation e.g., 

the missile control [23] and ship control [24]. Many researchers have focused their attention on the Anti-Windup problem, 

hence, a modern anti-windup compensator design is developed for the LTI systems called coprime factor [25].  

4.1.   Theoretical background 

The main advantage of this approach is that the controller and the Anti-Windup are designed independently. The 

Anti-Windup compensator has the same nature and the same representation of the plant and the controller (LFT-LPV). 

 

Fig. 8 General scheme of the coprime factor anti-windup 

The Anti-Windup compensator is shown in the block diagram (Fig. 8). The windup’s effect is rejected by adding yd, and 

the plant can be created as multiplier factors. To design the factors, firstly a matrix ( )F  is created according to some LMI 

conditions. By putting ( ) ( ) ,M F I    it could be possible to generate the other factor ( )N  ; ( ) ( ) ( ).N G M    So, 

the plant ( )G  could be presented as multiplier factors;
1

( ) ( ) ( ).G N M  


  Therefore, the design of the Anti-Windup 

compensator is based on determination ( )N  and ( )M  of ( ).G   The key is to find ( )F  that minimize the 2L  gain. For 

more details about computing ( ),F   see [16]. 

Previously, the LPV controller for the nominal system was designed without considering the saturation. As mentioned, 

the compensator’s design is independent of the controller’s design. What’s next is the proof: 

By assuming ( ) ( ) ( )N G M    in Fig. 8 it yields, 

( )

m

mom

u u u

u M u

 

 
 (46) 

( ) ( )

( ) ( )( ( ) )

( )

nom d

m

m

nom

y y y

N u G u

N u G u M u

G u

 

  



 

 

  



 (47) 

where nomu is the nominal input generated by the controller, mu is the actuator input. nomy  is the nominal output. y is the 

actual output, du and dy are the outputs of the Anti-Windup compensator. 
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The Anti-Windup state-space is presented as: 

( )

( )

( ) ( )

( )

u u

u u

M

d y yu y yu

A FB B w B u

z C FD D w D u

AW y M u F u

y C FD D w D u

w z

 

     

 

 

 



  



    


   


   
    

  


 (48) 

4.2.   The compensator design 

 

Fig. 9 Implemented Anti-Windup compensator 

In the case of the stabilization of the quadrotor attitude, the rejecting of the input saturation’s effect is done by the form of 

Internal Model Control (IMC) [26]. That means ( ) 0F   ; so, ( )M I  and ( )( ) GN   . The only output of the 

Anti-Windup compensator is dy  (Fig. 9). And where the augmented plant, ( )G  , contains the plant ( )P   which is the 

LFT-LPV representation of the quadrotor attitude and the actuators function (Act
2
). From Table 2, the rotor’s saturation is 

10 500 .i rad s   . By combing it with Eq. (3), the saturation values are presented as: 

(.) (7.825, 7.825, 0.375)sat diag  (49) 

5. Simulation Results 

To show the efficiency of the designed controller, the controller is applied to the nonlinear model itself (Eq. (1)). The 

selected initial angles are
0 0 0 ] ]

3 3 3
[ [ T  
      rad, where the objective is to stabilize the quadrotor at its origin 

0, 0, 0)( . In the next simulation, the nominal performance is taken without considering the disturbances. The application of 

the controller is done for three modes: the nominal one where no saturation is introduced; the second mode where the input 

saturation is introduced, and the third mode where the input saturation is introduced by adding the Anti-Windup compensator. 

Fig. 10 presents the angles’ dynamics of the three modes. Fig. 11 and Fig. 12 present the inputs and its zoom with the three 

modes. The benefit of Anti-Windup compensation is clearly shown. The solid line presents the nominal responses (without 

saturation). It’s possible to observe a swift response and short settling time with impossible input (reaches 100 N). However, 

when the saturation is introduced without Anti-Windup (dotted line), it’s possible to observe a longer settling time and bigger 

overshoot than the nominal one. By adding the Anti-Windup compensator (dashed line), the responses are better than the 

obtained by the saturation without Anti-Windup compensator, and the responses are almost identical to those in the nominal 

responses. In fact, this is the objective of the Anit-Windup compensator. 

The efficiency of the robustness H∞ controller is shown against the external inputs and the parametric uncertainties with 

taking the Anti-Windup compensator. Permanent measurement noises of 2 ( 0.034 rad)   are applied on all of the the angles. 
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The input disturbances are introduced as impulses with 0.1 d N

 in 6, 6.07][  s, 0.1 d N


 in 10, 10.07][  s, and 

0.02 .d N m  in  14, 14.1][ s. The simulation results are presented in Fig. 13. It is observed that the stability is kept despite the 

presence of disturbances and noises. 

 
Fig. 10 The angles responses 

  
Fig. 11 The plant control inputs Fig. 12 The plant control inputs (zoom) 

By adding 50% of the nominal values of the inertia , , , )( x y z rI I I J  after 5 seconds as uncertainties, its simulation is 

shown in Fig. 14. Compared with the nominal system, it is clearly noticed that there are no big changes in the responses. In 

addition to disturbances and noises, the system is robust and also against the parametric uncertainties. 



Advances in Technology Innovation, vol. 5, no. 2, 2020, pp. 98-111 

 

110 

 
Fig. 13 The angles responses with presence of input disturbances and measurement noises 

 
Fig. 14 The angles responses with presence of the uncertainties 

6. Conclusions 

In this article, the robust control of a quadrotor attitude has been carried out by using an LFT-LPV H∞ controller. Two 

issues are discussed. First, the weighting functions selection where an optimization meta-heuristic algorithm is exploited, CS, 

to provide the parameters of these functions to get optimal performances. Second, the problem of the input saturation which is 

imposed by the actuators. This problem has been solved by using an Anti-Windup compensator. The advantage of this 

approach is that the LPV controller and the Anti-Windup compensator could be designed separately without any conflict in the 

system stability’s analysis. The simulation results showed that the system is robust and against the external inputs as well as the 

uncertainties. 
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