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Abstract 

Engine start systems are key to providing a good customer experience for today’s drivers. Considerable effort 

goes into ensuring a smooth and quiet engine start, especially in vehicles equipped with start/stop systems. We 

present two novel mechatronic starters that are designed to improve start quality by enabling faster and quieter 

engine starts. In the first proposed concept, the traditional alternator is replaced with a motor/generator unit that is 

capable of exerting positive torque on the engine as needed, in addition to the conventional power generation 

function. The motor/generator is selectively connected to the crankshaft via a selectable geared or belted 

connection to enable different operating modes. This starter executes a 400 ms faster start for a typical engine 

when compared to a conventional 12V starter. We also present a second starter that uses an integrated two-speed 

gear train to crank the engine. The cranking gear ratio is changed from the initial high ratio to a lower ratio once 

the engine starts to spin. This ratio change allows the starter motor to continue to operate in a favorable torque-

speed zone and push the engine to a higher pre-ignition rpm than a conventional starter, resulting in a quieter, 

smoother start. 

We also present results from incorporating the belted/geared starter concept in vehicles with sailing/coasting 

mode as well as in mild hybrid propulsion systems. Sailing/coasting mode of operation is enabled by the quick 

engine re-start capability of this starter allowing seamless switching between fuelled and unfuelled engine 

operation. Such an operation could reduce fuel consumption by about 3-6% on the NEDC driving cycle, without 

regenerative braking. One may further hybridize the propulsion system by adding a battery for storing regenerative 

braking energy. Using such an architecture, a 6-8% fuel economy improvement on the WLTP certification driving 

cycle may be achieved, depending on voltage and power levels implemented, as well as energy storage systems 

included. 
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1. Introduction 

Transportation is the source of approximately 25% of Greenhouse Gas (GHG) emissions worldwide. With population 

growth and increased energy use and travel, transportation emissions are growing very fast [1]. These include both motor 

vehicles and air transport. These GHG challenges are being tackled by the introduction of low carbon fuels, electrification of 

the propulsion system, and increased renewable electricity generation from wind and solar. Some of these initiatives are yet 

to see widespread adoption due to associated system cost. In this framework, light or mild electrification (under 50V) of the 

propulsion system appears to have mass-market potential because of the favorable value proposition ratio it offers. Smooth, 

fast engine starts are critical elements of such mild hybrid systems. 
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A start/stop system switches off the engine when the vehicle comes to a stop, thereby eliminating the consumption of 

fuel and the release of emissions during engine idling. However, this creates the need for fast engine restart systems to 

achieve satisfactory tip-in response when the driver depresses the accelerator to drive away. Reference [2] performs an 

assessment of various start/stop systems and investigates the delay in tip-in response and launch performance when the 

driver depresses the accelerator when the engine is off. Reference [3] describes experiments to study the difference in 

particulate mass emissions for GDI engines with and without start/stop systems. They found that the additional starts with 

start/stop systems did not significantly increase the particulate mass emissions. Reference [4] presents a coupled magnetic-

thermal model to study the reason for the damage of the starter motor of a start/stop system of a city bus. 

Reference [5] describes the testing of idle-stop systems to see whether real-world fuel savings of such systems are in 

line with those predicted by the EPA fuel economy certification cycles. Their results suggest that in many cases the idle stop 

systems show minimal benefits on the EPA cycles but deliver considerable fuel savings during real-world operation. 

Reference [6] describes a novel start/stop system that injects compressed air into appropriate cylinders in the engine to get 

the engine spinning before it is fueled and sparked. They claim that such a system could potentially replace the conventional 

starter. Reference [7] studies the operation of engine starts and stops in electrified propulsion systems with a focus on the 

effects of engine temperature on engine cranking torques and start-up emissions. They suggest that it may be advisable to 

take into consideration engine temperature while crafting engine start/stop strategies. Reference [8] describes advancements 

in lead-acid battery technology, in particular, enhanced flooded batteries and absorbent glass mat batteries, driven primarily 

by the projected growth in start/stop system market volumes. 

Reference [9] quantifies the CO2 potential of start/stop systems by comparing two diesel-powered vehicles in urban 

driving conditions.  One of them has a conventional propulsion system and the other one has a start/stop system. CO2 

reductions of as much as 20% were obtained with the start/stop system. Reference [10] describes a 36V belted alternator 

starter system with a 7 kW MGU installed on a 1.9L four-cylinder engine. This enhanced start/stop system delivers 12-14% 

fuel economy improvement on the FTP city cycle and about 1% improvement on the FTP highway cycle. Reference [11] 

describes the creation of a nonlinear control algorithm to execute smooth stops and restarts on a diesel engine, wherein the 

cranking torques are much higher than for a gasoline engine due to the higher compression ratio. Reference [12] describes a 

12V belted alternator starter system that can execute engine start/stop functions as well as improve engine responsiveness by 

means of torque addition to the driveline during transient maneuvers. Reference [13] investigates various light electrification 

architectures ranging from 12V start/stop systems to 48V electrified transmissions, to assess their optimality when applied to 

a range of vehicle types and motor/generator locations. Reference [14] investigates engine start quality, NVH, and cranking 

speed, and presents experimental data showing that faster cranking is better. 

In the present work, we describe two new starter concepts that yield fast, smooth, the engine starts suitable for future 

products. We also show how these starters may be integrated into propulsion architectures to yield fuel economy 

improvements via sailing/coasting and mild hybridization. 

2. Mechatronic Starter for Geared/Belted Operation 

In this section, we describe a novel starter system with unique functional operating characteristics. It is created by 

replacing the traditional alternator with a Motor/Generator Unit (MGU) of approximately the same physical size. This MGU 

may be used to perform the engine starting functions. Since the alternator interacts with the crankshaft via the accessory belt, 

the MGU can also interact with the crankshaft via this same belt. We include a dual tensioner on this accessory belt as the 

MGU exerts a negative torque while generating electricity and a positive torque while executing engine starts or driveline 

torque boosting. The dual tensioner ensures proper belt operation under these different operating conditions. For situations 

wherein, belt-based engine starting is not advisable (e.g., in extremely cold weather when ice may form on the belt), we need 
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to retain the services of a geared conventional starter. However, with an innovative mechatronic arrangement, we may 

potentially eliminate this conventional starter by making the MGU play the role of a geared starter. Such an arrangement is 

shown in Fig. 1, with the mechatronic device of interested being indicated by the dashed rectangle. 

 
Fig. 1 Engine with a geared/belted mechatronic starter 

It is shown in considerably more detail in Fig. 2 and in a kinematic diagram format in Fig. 3. It is comprised of 2 

solenoids which act on yokes, causing a pair of pinion gears to move outwards. As indicated via the red and blue color 

coding, the solenoids cause their respective pinions to move outwards when actuated, assisted by the lever action of the 

yokes. When the solenoids are not energized the pinions return to their default positions via return springs. The pinions are 

mounted on a splined shaft, so they rotate with the shaft but can also translate axially relative to the shaft, as dictated by the 

solenoids. This translation is coupled with a slight rotation due to the spline angle. The shaft with the splines is mounted to 

ground (in this case the engine block) via bearings (a revolute joint). The purpose of this mechatronic device is to selectively 

connect the MGU to the crankshaft flywheel when needed. The pinion gear on the right (in Fig. 1) engages with a gear 

mounted on the MGU. The pinion gear on the left engages with the flywheel which is integral with the crankshaft. Thus, this 

arrangement creates a geared connection between the MGU and crankshaft and the MGU can now execute a geared start 

similar to the conventional starter. This arrangement thus eliminates the need to carry a conventional starter in addition to the 

MGU. 

 
Fig. 2  Mechatronic devices to connect the motor/generator to the flywheel 

To avoid an overconstrained system, an electric clutch is introduced between the MGU and accessory belt sprocket. 

When the MGU is “geared” to the flywheel, this clutch is opened and the MGU does not exert any torque on the accessory 

belt. After the geared engine start is executed, and the solenoids are de-energized, the MGU is no longer connected to the 

flywheel. At this time, the clutch may be engaged to connect the MGU to the belt to allow generation or torque boosting as 
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appropriate. Thus, the mechatronic arrangement of Figs. (2)-(3) enables a selectable geared/belted connection of the MGU to 

the crankshaft. When conditions are favorable (moderate temperatures and humidity), the engine start may be executed via 

the belt side connection of the MGU to the crankshaft, without having to resort to the geared operation. Since the MGU is 

several times more powerful than the traditional 12V starter motor, the engine starts resulting from this geared/belted 

arrangement are considerably faster, smoother, and quieter than conventional engine starts. Additional details of the 

operation of this motor/generator-based starter device may be found in Reference [14]. 

 
Fig. 3 Kinematic diagram of a mechatronic device 

3. Two-Speed Starter System 

Next, we describe a two-speed starter that succeeds in squeezing more cranking effort out of a conventional starter 

motor. Such motors are typically equipped with a single-speed ratio which is optimized to get the engine turning quickly. 

However, due to the shape of the motor’s torque-speed characteristics, the cranking torque drops rapidly as engine rpm 

increases. In the proposed invention, we insert a two-speed gearing between the starter motor and the crankshaft flywheel. 

Cranking begins with a high torque ratio to get the engine turning. We then switch to a lower torque ratio, so that the motor 

can continue to operate in its optimal torque-speed zone and continue to push the engine past its rated pre-ignition rpm. 

Typically ignition occurs when the engine has reached 300-400 rpm. The currently proposed system is able to spin the 

engine to 700-800 rpm and this results in a smoother start. There are various possible schemes to execute this two-speed 

gearset. In our study, we have focused on the use of a Ravigneaux gearset due to its potential compactness resulting from the 

shared pinion between adjacent planetary gearsets. Alternatively, layshaft gears and clutches could also be used to execute 

this speed ratio change. Fig. 4 shows the steps entailed in this two-speed engine start. The starter motor begins operation 

along the line labeled Gear Ratio 1. The speed ratio change is then executed as shown by the segment labeled Ratio Change. 

The starter continues to push the engine, its operation state indicated by the line labeled Gear Ratio 2. Note the engine rpm 

line with the yellow and red stars. With a conventional single-speed starter, engine ignition would occur at the yellow star, at 

which time the starter motor would have reached its peak rpm. By virtue of the proposed two-speed arrangement, the engine 

rpm can reach the red star before ignition, and starter motor rpm would still be within its feasible limits (indicated by the 

dashed red line at the top of the figure). 

The conventional starter motor generally reaches a maximum output speed of 18000 rpm.when the engine rpm reaches 

400 rpm. This translates to a 5:1 ratio for the starter motor gearing, given that the starter pinion to flywheel gear ratio is 

approximately 15:135. For our two-speed arrangement, we use the same 5:1 ratio for the first speed and then switch to a 

2.5:1 ratio for the second speed. This would allow the engine to reach approximately 800 rpm when the starter motor attains 

its maximum speed of 18000 rpm. For a generic 2-speed compound planetary Ravigneaux gear set, we used the following 
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gear teeth numbers: 𝑁𝑆𝑢𝑛1 = 50 , 𝑁𝑅𝑖𝑛𝑔1 = 200 , 𝑁𝑃𝑖𝑛𝑖𝑜𝑛1 = 75,   𝑁𝑆𝑢𝑛2 = 74,   𝑁𝑃𝑖𝑛𝑖𝑜𝑛2 = 30 . In our simulations, we 

executed the ratio change at 280 rpm engine speed, at approximately the mid-point of the start event. For the purposes of the 

simulation, one may note that the engine inertia is 0.1 kg-m2 and the starter rotor inertia is 0.000241 kg-m2.  The starter 

motor torque begins with a value of approximately 6 N-m at 0 rpm and drops linearly with speed, down to 0 N-m in the 

neighborhood of 18000 rpm. 

 
Fig. 4 Engine speed (RPM) with two gear starters 

Fig. 5 shows a comparison between the two-speed starter and the conventional single ratio starter. The two-speed starter 

is able to crank the engine to approximately 800 rpm while the latter saturates at around 400 rpm. These are unfired 

simulations, hence the wavy behavior of the engine rpm after ignition speed is reached. The red, green, and blue traces for 

the novel starter result from different assumed actuation times for the speed ratio change (20, 30, and 40 ms respectively), 

and thus show the sensitivity to actuator capability. Additional details of the operation of this two-speed starter device may 

be found in Reference [15]. 

 
Fig. 5 Engine rpm for conventional vs. two-speed starter 

4. Application to Sailing/Coasting and Mild Hybridization 

Of the two proposed starter systems, the first one enables a considerably faster start, but with the added cost of the 

alternator being replaced by a motor/generator unit. Additionally, a bi-directional tensioner must be added to the front-end 

accessory drive belt, in order to allow driveline torque boosting operation as well as belted engine starts. In contrast, the 

second proposed starter enables smooth starts by cranking the engine to a higher rpm prior to ignition. In this case, the added 

cost is that of the two-speed gearset in place of the single ratio gearset of the conventional starter. The first proposed starter 

concept may be used for sailing/coasting operation as well as in a mild hybrid vehicle. 
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 The terms “sailing” and “coasting” are used interchangeably and refer to the mode of operation when the engine is shut 

off and disconnected to minimize engine drag losses during decelerations. This is popular in Europe and China with the high 

penetration of manual transmissions. When the engine is decoupled from the driveline during coasting, one possible 

operating strategy is to keep the engine running at idle for quick re-engagement to the driveline when the driver demands 

acceleration. This idle operation of the engine during coasting continues to use fuel. The proposed first concept in this paper 

gets around this problem, as it enables ultra-fast re-starts and thus potentially allows one to maximize the true “engine off” 

time periods during coasting, thus maximizing fuel economy. Having a quick re-start capability allows one to re-start and re-

connect the engine to the driveline with minimum delay and adequate acceleration response. Coasting may be thought of as a 

vehicle transient state between cruising and braking. The various sailing/coasting modes of operation are shown in Fig. 6. 

 
Fig. 6 Sailing/Coasting 

A typical driving maneuver is divided into 6 sections or modes. In mode 1, the vehicle is initially stopped (perhaps at a 

traffic light) with the engine in Auto Stop mode. In mode 2, the driver releases the brake pedal and depresses the accelerator 

pedal. The engine starts and provides torque to accelerate the vehicle as indicated by the linearly increasing speed. Once the 

vehicle reaches the desired cruising speed the driver reduces pressure on the accelerator allowing the vehicle to sail/coast in 

mode 3. The engine remains on but is disconnected from the driveline. In mode 4, the sailing/coasting operation is continued, 

but with the engine disconnected and shut off. In mode 5, the driver depresses the brake pedal to slow the vehicle down as 

needed. In mode 6, the vehicle continues to slow down, but with the motor/generator-based starter ready to make a quick 

engine re-start in case of a “change of mind” situation, wherein the driver decides to increase speed instead of slowing down 

(as when a traffic signal turns green). If this change of mind situation does not occur the vehicle comes to a complete stop at 

the end of mode 6. 

 

Fig. 7 Fuel consumption reduction by using sailing/coasting on a certification driving cycle 
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Fig. 7 shows how the sailing/coasting mode may be used to save fuel on a certification driving cycle. The black line 

indicates stipulated vehicle speed on the driving cycle. The blue line indicates how the sailing/coasting mode may be used to 

approximate the sharp decelerations on the stipulated driving cycle with more gradual coasting maneuvers. This allows one 

to save fuel as indicated by the differences between the red curve (fuel rate for stipulated vehicle speed) and the green curve 

(fuel rate for the sailing/coasting approximation). Note that the green fuel rate drops to zero during the sailing/coasting 

portions while the red curve remains non-zero on these portions. Conservative estimates suggest that this type of 

sailing/coasting on the NEDC driving cycle could save about 3-6% of the fuel consumed. This does not require a large 

additional battery, as we are not storing any regenerative braking energy for this mode of operation. 

We had mentioned earlier the ability of the motor/generator-based starter concept in belted mode to execute super-fast 

restarts and thus maximize fuel savings while ensuring adequate acceleration response. Experimental data backing up this 

claim are shown in Fig. 8, where we see engine rpm plots for a fired engine start using the motor/generator (blue) and the 

conventional starter (red). The engine rpm ramp rate achieved with the motor/generator unit far exceeds that of the 

conventional starter, resulting in a 400 ms faster spin up to 550 rpm. 

Moving on from sailing/coasting, we can go one step further in mild hybridization by making the additional investment 

in a battery for storing regenerative braking energy. This leads to additional fuel economy gains.  When the motor/generator 

unit of the starter is coupled to a 120 Wh Li-ion battery, such a system, with optimal supervisory powertrain control, can 

yield 6-8% of fuel economy improvement on the WLTP driving cycle [12]. Fig. 9 shows simulation plots of cumulative 

battery regeneration energy (i.e., a summation of energy flow into the battery) during the WLTP driving cycle, for a 1350 kg. 

passenger vehicle equipped with this system. The red curve shows the results of a 12V implementation of such a system and 

the blue curve shows a 48V implementation. The grey curve is the vehicle speed trace during the WLTP cycle. Overall, 

approximately 1000 to 1200 kJ of regenerative braking energy is captured in the battery during the driving cycle. This 

energy, when utilized in the propulsion system to offset 12V electrical loads as well as for driveline torque boosting (i.e., 

exerting electrical torque on the crankshaft via the motor, in place of mechanical torque from the engine), results in the 

above-mentioned fuel savings. We have been able to confirm this experimentally on instrumented test vehicles. 

  

Fig. 8 Motor/generator vs. a conventional starter 
Fig. 9 Cumulative regenerative braking energy  

into the battery for WLTP 

5. Conclusion 

We have described two novel starter concepts. The first one can switch between geared and belted operation. This 

integrated starter enables a very fast and smooth start in belt mode compared to a conventional 12V starter. The second 

concept uses a two-speed starting device to crank the engine to a higher rpm prior to ignition. It is comprised of an integrated 

arrangement of gears and clutches that changes the over-all cranking gear ratio during the course of the start event. The two 
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designs are very comparable and equally applicable to various types of automobiles. The first starter uses two solenoid 

actuators and sliding surfaces to move the pinions outwards to execute the belt-to-gear mode changes. The second starter 

uses an additional plane of gears and brakes/clutches to execute the speed ratio change during the start. Both require 

additional packaging space compared to conventional starters. The first starter is capable of faster starts as the alternator is 

replaced by a motor/generator unit with more power capability than a traditional starter motor. Our experiments have shown 

that this motor/generator-based starter is about 400 ms faster than a conventional starter. 

We have investigated the use of this fast start capability for sailing/coasting operation wherein the engine is 

disconnected and shut off during vehicle deceleration. The fast starter allows quick engine re-start and re-connection to the 

driveline in response to driver power demand. The use of this sailing/coasting mode of operation could save about 3-6% fuel 

on the NEDC driving cycle. Beyond sailing/coasting, one may further increase the level of mild hybridization by adding a 

battery for regenerative braking energy storage. In such an architecture, the motor/generator-based starter, in belted mode,  

enables hybrid functions such as torque boosting and regenerative braking to achieve a 6-8% improvement in fuel economy 

on the WLTP driving cycle. 
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Table of Notations 

APU Auxiliary Power Unit 

ECU Engine Control Unit 

ECM 

EPA 
Engine Control Module 

Environment Protection Agency 
EV Electric Vehicle 

GHG 

GDI 

Greenhouse Gas 

Gasoline Direct Injection 

HWFET Highway Fuel Economy Driving Schedule 

MGU Motor Generator Unit 

NEDC New European Driving Cycle 

NVH Noise, Vibration, Harshness 

NYCC New York City Cycle 

SOC State of Charge 

UDDS Urban Dynamometer Driving Schedule 

WLTP World-Harmonized Light Vehicle Test Procedure 
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