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Abstract 

The traffic classification based on the network applications is one important issue for network management. In 

this paper, we propose an application-based online and offline traffic classification, based on deep learning 

mechanisms, over software-defined network (SDN) testbed. The designed deep learning model, resigned in the SDN 

controller, consists of multilayer perceptron (MLP), convolutional neural network (CNN), and Stacked 

Auto-Encoder (SAE), in the SDN testbed. We employ an open network traffic dataset with seven most popular 

applications as the deep learning training and testing datasets. By using the TCPreplay tool, the dataset traffic 

samples are re-produced and analyzed in our SDN testbed to emulate the online traffic service. The performance 

analyses, in terms of accuracy, precision, recall, and F1 indicators, are conducted and compared with three deep 

learning models. 
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1. Introduction 

Artificial Intelligence (AI) has been one of the hottest topics currently. Machine learning (ML), which is a subset of AI 

and adjusts itself in response to the data it is exposed to, will enable the machines to improve at the task with experience. 

Among different machine learning schemes, shallow neural networks, such as backpropagation neural network, Bayesian 

network, support vector machine (SVM), and C4.5 decision tree, are commonly used to build traffic classifiers for network 

services in many machine learning-based classification schemes. Due to the continuous expansion of network and considerable 

deployment of the Internet of Things (IoTs), great amount of data and information have been collected and consequently 

promoted the arrival of the big data era.  

Furthermore, with the significant promotion in processing speed of computing hardware such as Graphics Processing 

Unit (GPU) and Tensor Processing Unit (TPU), the deep learning (DL) using deep neural networks, which provide higher 

classification accuracy than the shallow neural networks, have been the major focus on ML. The promising ML techniques, 

such as deep neural networks provides a good opportunity and key to the data-driven machine learning algorithms in the 

network field. 

On the other hand, more and more application services have emerged over the Internet. The network management issues, 

including quality of service (QoS) setting, network policy, network security as well as intrusion detection, majorly depend on 

the accuracy of network traffic classification for applications. The emerged applications or services may not be identified by 
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the traditional schemes, such as simply checking source/destination IP addresses in the network layer or source/destination port 

numbers as well as protocols in the transport layer, because they might pass through different Network Address Translation 

(NAT) or Virtual Private Network (VPN), or they may not utilize the standard port numbers or fields. Therefore, to provide 

proper QoS for a specific application, it might need to manually verify or identify the network application packets. These 

processes will significantly reduce the efficiency of network traffic processing and consequently increase the overall delay and 

processing loading. 

Furthermore, the development of software defined network (SDN) has made network management more effective and 

efficient [1-2]. Unlike traditional networks, SDN separates the network layer into a data plane and a control plane which could 

be a logical control unit and programmable. The flexibility and programmability of the SDN architecture design make the 

network routing and management easier and more efficient, especially for the design and handling of network classification 

which enables the optimal network solutions, such as configuration and resource allocation. The centralized SDN controller is 

able to collect various real-time network data due to its global network view. The AI techniques can then be applied to the SDN 

networks by employing network optimization and data analysis based on the real-time and historical SDN network data. 

Therefore in this paper, we propose an application-based online and offline traffic classification with deep learning 

models on SDN networks. We design the deep learning models resigned in the SDN controller. The SDN controller establishes 

the match fields of the flow entry and sends them to the open virtual switch (OVS). It also extracts traffic statistics data from 

the OVS switch. The server IP addresses and transport port numbers of each flow plus the statistics data are designed to be the 

input features for the deep learning models. 

The remaining sections of this paper are organized as follows. We describe the protocols, standards, tools, and related 

research reviews in Section 2. Section 3 addresses the experimental settings and model design. In Section 4, we present the 

experimental result and performance analysis in this paper followed by the conclusion and future works in Section 5. 

2. Related Work 

We first review some protocols, standards as well as related tools used in this paper. We also survey some literature 

related to this research. The following subsections will address the brief discussion of each subject. 

2.1.   Deep learning review 

DL [3], rather than a task-specific algorithm in the ML series, is a broader representation of learning data. The DL aspect 

includes supervised, semi-supervised, or unsupervised learning. DL can be applied for classification, clustering, and regression. 

With classification, DL is able to learn the correlation between data and labels, which is known as supervised learning.  

For some applications, it is not required or unable to know the labels of the data in advance. Learning without labels is 

called unsupervised learning. With clustering, DL does not require labels to detect similarities among groups of data. With 

regression, the DL is exposed to enough of the right data. It is able to establish correlations between present events and future 

events. This predictive analytics is different from the classification which might be called a static prediction. Given a time 

series, DL can run regression by reading lots of data from the past and predict some data likely to occur in the future.  

DL architectures, including convolutional neural network (CNN), deep neural networks (DNNs) and recurrent neural 

network (RNN), multilayer perceptron (MLP), long short-term memory (LSTM), and stacked auto-encoder (SAE), have been 

applied to different fields such as computer vision, audio recognition and natural language processing, etc. Some of DL models 

or implementations have achieved comparable or even superior results as compared to human experts.  
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In this paper, we apply the TensorFlow [4] neural network modules as the DL platform for our application-based online 

traffic classification. The major programming language and development of TensorFlow is Python. TensorFlow supports 

application programming interfaces (APIs) such as Keras [5], with the advantage of easy operation, modular design, and 

flexible scalability, as the high-level development interface. Keras, working in conjunction with the back-end TensorFlow 

engine, provides functional APIs for building models, training models, evaluating models, as well as predicting results. 

2.2.   Openflow protocol 

OpenFlow [6] is one of the most dominated SDN communication protocols. By using the software programming, 

OpenFlow supports the control and communication of the rules signaling and flows forwarding from the centralized controller 

southbound to the SDN switch. The northbound APIs from the control plan to the management plan, on the other hand, is 

defined to be used for application service and operation management. 

Several consoles, such as Ryu [7], Floodlight, and OpenDayLight, have been developed to support OpenFlow. We apply 

the Ryu controller which supports OpenFlow up to versions 1.5 to define the framework of the SDN networks in this research. 

Ryu, being a component-based SDN framework, provides software components with well-defined API, which is easy for 

developers to create new control applications and network management. It also supports various communication protocols for 

network devices management, such as OpenFlow and OF-config. 

2.3.   Tcpreplay tools 

Tcpreplay [8], an open-source utility, is used to edit and replay captured network packets. It has been used primarily to 

replay malicious traffic patterns for network intrusion detection. We apply Tcpreplay to replay the network traffics of the 

real-world dataset and inject them into the SDN network environment in this research. 

2.4.   ISCX dataset 

The ISCX [9] dataset, collected by the Canadian Cyber Security Institute, is a network traffic dataset used by many 

universities, companies, and independent researchers around the world. In this paper, we apply the ISCX dataset as our training 

dataset and offline testing dataset. 

2.5.   Survey on AI applied to SDN and related review 

The flexibility and programmability of the SDN network make the traffic classification, routing optimization, QoS/QoE 

prediction, resource management, and security easier and more efficient. With the advantage of the SDN global network view, 

the centralized SDN controller is able to collect various real-time and historical network data from the SDN switches at per port 

and per-flow granularity levels and consequently, we can apply the AI techniques on the SDN networks by employing network 

optimization and data analysis. We will provide a brief survey of AI or ML techniques applied to the SDN network, including 

traffic classification, routing optimization, QoS/QoE prediction, and security [10]. 

First, traffic classification techniques in SDN networks include a port-based approach, Deep Packet Inspection (DPI), and 

AI or ML [11-12]. The port-based approach will not be effective when most applications recently utilize dynamic ports as TCP 

or UDP port numbers. The DPI approach results in high computational cost or difficult pattern update because all traffic flows 

need to be checked or updated for the exponential growth of applications. Currently, more and more encrypted packets of 

various applications make the DPI approach even impractical. AI or ML techniques are applied to extract knowledge from the 

traffic flows in SDN, thus AI or ML-based approaches are able to classify encrypted packets correctly with the lower 

computational cost. 
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Deep learning models have been applied to network traffic classification currently. The research in [13] introduced a 

SAE-based scheme to classify unencrypted data flows. However, their scheme was only applied to unencrypted traffic and 

could not be deployed to the encrypted data. Besides, the dataset used in their research was not open to the public. The research 

in [14] proposed a scheme to identify encrypted traffic based on SAE and CNN models. The research in [15] proposed three 

deep learning based models, including MLP, SAE, and CNN for traffic classification. They developed their models based on 

all encrypted streaming packets from the open source dataset. However, their research, including training and prediction 

models, could not be applied to the real network traffic or emulated online flows because they only conducted the offline 

dataset analysis. 

Secondly, the routing optimization issues in SDN networks typically employ the Shortest Path First (SPF) algorithm and 

heuristic algorithms [16]. The SPF algorithm is a best-effort routing scheme. It is unable to utilize the best network resources 

due to the simplicity of the algorithm. The high computational cost however would be the shortcoming of heuristic algorithms 

[17], such as ant colony optimization algorithm. The introduction of AI or ML to the route optimization in SDN can be 

considered as a decision-making policy which does not need a complex mathematical model once the model has been trained. 

The reinforcement learning could be an effective mechanism which may provide a near-optimal routing decision quickly. 

Thirdly, based on QoS/QoE prediction, the SDN network operators or service providers are able to provide suitable 

services to the customers according to their expectations which consequently increase customer satisfaction and service. The 

authors in [18] have proposed a traditional M/M/1 network model and neural network model to train the model with traffic load 

and overlay routing policy and then to estimate the network delay. The authors in [19] have focused on the QoE prediction for 

video streaming service in the SDN network by correlating the QoS parameters with the QoE values. They applied a supervised 

learning model to estimate the mean opinion score (MOS) value according to the SDN network parameters, such as delay, jitter, 

and bandwidth, to adjust video parameters, such as bitrate and resolution, in the SDN controller and consequently improve the 

QoE of users’ experience. 

Lastly, security is always an important issue in SDN network research and operation. Intrusion Detection System (IDS) is 

an important mechanism and system for network security which in general consists of signature-based IDS and anomaly-based 

IDS according to how they identify network attacks [20]. Because the signature-based IDS has some shortcomings, such as 

signature update difficulty and high time consumption for all signatures comparison, most researches focus on the 

anomaly-based IDS.  

The anomaly-based IDS is a flow-based traffic identification which in general inspects the packet header information 

based on flow-granularity information, while the signature-based IDS being a payload-based identification which needs to 

inspect the whole payload of packets. The supervised learning algorithms of AI or ML techniques are often applied in 

anomaly-based IDS by training a predefined model to identify intrusions and normal flows. Again, the global view and 

programmability of SDN networks will facilitate the AI or ML-based IDS because of its simplicity and flexibility of data 

collection and attack reaction, respectively.  

With proper feature selection and feature extraction, many studies have been conducted for AI or ML-based IDS in SDN 

networks. The authors in [21] employed the data preprocessing, decision-making subsystem, and response subsystem for their 

predictive data model as a threat-aware IDS in SDN. They used a forward feature selection strategy to select appropriate 

feature sets in the data preprocessing subsystem, applied the decision tree and random forest algorithms to detect malicious 

flows in the predictive data modeling subsystem, and then employed the reactive routing to install different flow rules and 

types based on the detection results in the decision making and response subsystems. The authors in [22] used five flow 

features, including source/destination IP, source/destination port, and packet length, to predict malicious flows for their 

proposed HMM-based network IDS. 
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In this paper, we will mainly focus on the deep learning models applied to the traffic classification, especially 

application-based traffics, in the realm of SDN. The SDN switches send the traffic statistics and Packet_In messages to the 

SDN controller for features extraction, which include server IP and port of each flow plus the statistics data. The SDN 

controller with deep learning models, including MLP, CNN, and SAE models, will conduct the application-based traffic 

classification for each flow by establishing the match fields of the flow. 

3. Experimental Settings and Model Design 

3.1.   Experimental setting 

Fig. 1 illustrates the network topology for our proposed SDN network testbed. As shown in Fig. 1, we first apply the ISCX 

dataset [9] to emulate the offline and online network traffic by injecting them into Tcpreplay to reproduce the client/server 

communications in the SDN testbed. As mentioned earlier, the ISCX dataset, including VPN and non-VPN datasets, was 

collected by the Canadian Institute for Cybersecurity at the University of New Brunswick. Both VPN and non-VPN datasets 

consist of six application services, including Skype, Facebook, Hangouts, Youtube, and etc. 

Internet

Router OVA Ryu Controller

Tcpreplay host1 Tcpreplay host2
 

Fig. 1 Network topology of the SDN testbed 

In this research, we deploy TP-Link TL-WR1043ND as the open virtual switch (OVS) based on the OpenFlow protocol 

for the SDN data plan. The OVS is implemented and installed using OpenWRT [23]. The Ryu controller [7] is used in this 

paper to define the framework of the SDN networks. As defined by OpenFlow standard, whenever a new coming packet does 

not match any flow entry in the flow table of OVS, the OVS switch will trigger the Packet_in mechanism and send it to the Ryu 

controller as routing setting request. 

For all packets in the same flow, only one Packet_in message is sent to the controller for the same flow. In this research, 

besides the Packet_in message for each flow, we also collect the flow statistics data. For the OpenFlow statistics mechanism, 

the OVS sends the periodical statistics reports to the controller in response to the controller’s statistics request. The OVS 

statistics reported in 1sec interval, including flow statistics, table statistics, port statistics, queue statistics, group statistics, and 

meter statistics, could be used as the deep learning features for traffic flow behavior learning.  

The flow statistics data combined with the Packet_in message will be the learning features of the deep learning models 

designed in the Ryu controller for a specific flow. For each SDN flow, keeping the session connected, the OVS statistics report 

will be sent to the Ryu controller continuously in 1sec interval. This will avoid the stochastic learning results due to inconstant 

or random statistics reports.  

Because of the traffic flow characteristics of SDN networks, the processing data including Packet_in message and 

statistics data in 1sec interval for deep learning in this research is less than the traditional traffic classification which processes 

data from all packets. 
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3.2.   Data pre-processing 

In this paper, the dataset was collected in a precise and pre-defined amount and the experiments were conducted for three 

different deep learning models ten times. Most input data are the features with a one-hot input scheme except two features, i.e. 

byte counts and packet counts, which will be discussed in more detail shortly. Since deep learning is a mathematical operation 

of non-linear regression, it is necessary to limit the eigenvalues input to the classification model to a fixed range.  

Therefore, the keys and values are stored in mapping mode using Hash handles, and MinMaxScaler in scikit-learn [24] to 

normalize the values and scale them to the range of 0 to 1. The MinMaxScaler is shown in Eq. (1), where Xi represents the 

selected feature value, Xnom represents the normalized value of one specific feature, and Min(x) and Max(x) are the minimum and 

maximum values of the feature, respectively. 

( )

( ) ( )
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i x
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x x
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Max Min
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 
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Table 1 shows the ISCX dataset used in this experiment, which is injected into Tcpreplay to emulate the offline and online 

network for the client/server communications in the SDN testbed. There are six applications, including Facebook, Gmail, 

Hangouts, Netflix, Skype, and YouTube, for each VPN and non-VPN dataset in the ISCX dataset. For the Skype application, 

the dataset was further divided into two classes, SkypeAudio and SkypeVideo. 

Table 1 Dataset used in deep learning model 

Labels Applications 

Training 

data 

amount 

Validation 

data 

amount 

Testing 

data 

amount 

facebookChat facebook 

9981 1109 

 

 

 

11091 

gmailChat gmail 

hangoutChat hangout 

netflix netflix 

skypeAudio 
skype 

skypeVideo 

youtube youtube 

Table 2 Examples of selected features and labels 

Data # Top1 Top2 Top3 Top4 Top5 Top6 … Top305 Other Byte Count Packet Count labels 

1 0 0 0 0 0 0 … 0 0 0.08 0.08 skypeAudio 

2 1 0 0 0 0 0 … 0 0 5.87 0.16 skypeAudio 

3 0 0 0 0 0 0 … 0 0 0.12 0.12 skypeAudio 

4 1 0 0 0 0 0 … 0 0 7.57 0.14 skypeAudio 

5 1 0 0 0 0 0 … 0 0 8.12 0.15 skypeAudio 

6 0 0 0 0 0 0 … 0 0 0.06 0.06 netflix 

7 1 0 0 0 0 0 … 0 0 152.17 0.9 skypeVideo 

… … … … … … … … … … … … … 

8 0 0 0 0 0 0 … 0 0 0.09 0.09 hangoutChat 

9 0 0 0 0 0 0 … 0 0 0.21 0.1 hangoutChat 

10 0 0 0 0 0 0 … 0 0 10.89 0.06 netflix 

11 0 0 0 0 0 0 … 0 0 0.06 0.06 youtube 

12 0 0 0 0 0 0 … 0 0 0.08 0.08 skypeAudio 

13 0 0 0 0 0 0 … 0 0 1.53 6 gmailChat 

14 0 0 0 1 0 0 … 0 0 1.36 9 gmailChat 

15 0 0 0 0 0 0 … 0 0 0.06 1 netflix 

16 0 0 0 0 0 0 … 0 0 2.54 7 facebookChat 

17 0 1 0 0 0 0 … 0 0 0.5 1 gmailChat 

… … … … … … … … … … … … … 
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So, we will have seven Labels for all deep learning models. The total amount of training dataset is 11090, with which 90% 

of them is used for the deep learning training process and 10% of them is used for the deep learning validation process. The 

total amount of testing dataset is 11091, which is also injected into Tcpreplay and then replayed one by one to emulate the 

online traffic in the SDN network. 

Because we emulate the real traffic by using the ISCX open-source dataset, the dataset packets are handled as Tcpreplay 

pcap packets. The Packet_in messages due to the flow mismatch in OVS switch and the periodical statistics data responded 

from OVS switch to the controller are collected on the Ryu controller.  

The server IP addresses and transport port numbers in each flow and the byte counts and packet counts collected from 

statistics data are selected as the deep learning features in our designed models. The server IP addresses and transport port 

numbers are handled using the one-hot input scheme. Table 2 shows the examples of the selected features and labels in our 

designed application-based deep learning models. The top 305 most frequent server IP addresses and transport port numbers 

are selected as the one-hot input for deep learning models. The Other column in one-hot input is used for any other IP or port 

number, not in the top 305 most frequent lists. 

3.3.   Deep learning model design 

In this paper, we apply three deep learning models, including CNN, MLP, and SAE models, for our application-based 

offline and online traffic classification. 

3.3.1.   MLP model 

Input 

Layer

AE1

Hiden AE1

Output Output 

Layer

32 units

AE1

Input

...

...

...

...

 
Fig. 2 MLP deep learning in our model 

The first deep learning model we apply in this research is the multilayer perceptron (MLP) model. The designed MLP 

deep learning model, shown in Fig. 2, employs back-propagating supervised learning techniques in artificial neural networks. 

It consists of an input layer, three hidden layers followed by a dropout layer, and an output layer. The input layer consists of 

305 one-hot inputs representing the most frequent server IP addresses and transport port numbers plus one Other column 

one-hot input representing the less frequent server IP addresses and port numbers from the Packet_in headers. Besides, two 

inputs are representing the byte counts and packet counts in every one-second periodical statistics data. Each of the three 

hidden layers is composed of 256 neurons. The dropout layer is used to prevent the overfitting issue. The output layer consists 

of seven neurons, and the Softmax function is applied as a classifier for the MLP deep learning model. 

3.3.2.   SAE model 

In this research, we also apply the stacked autoencoder (SAE) as one of the deep learning training models. The proposed 

SAE architecture, containing one single encoding and decoding, is illustrated in Fig. 3. The encoders of SAE deep learning 

model, used for dimension reduction or feature extraction, contains 32 neurons in this paper. 
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Input 
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Fig. 3 SAE deep learning in our model 

3.3.3.   CNN model 

The third deep learning model we apply in our deep learning training is the CNN model which is a typical deep learning 

model used for classification. The designed CNN model is specified in Fig. 4 which consists of three convolution layers, three 

max-pooling layers as well as one fully connected layer with Relu function acting as an activation function, followed by a 

dropout layer and an output layer. The convolution layer uses 64 filters to process input data. Again, the dropout layer is used 

to handle the overfitting issues. 
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Fig. 4 CNN deep learning in our model 

3.3.4.   Deep learning model training parameters 

The training dataset is divided in 9:1 ratio into training and verification processes for all three MLP, ASE and CNN 

models in our deep learning training processes. The training parameters, such as epochs, batch size, learning rate, as well as 

optimizers, of our deep learning models are tabulated in Table 3. 

Table 3 Deep learning model training parameters 

Models Epochs Batch Rate Optimizers 

MLP 

100 512 0.01 Adam SAE 

CNN 

4. Experimental Result and Analysis 

4.1.   Offline training result 

In this paper, we first apply three deep learning models, including MLP, SAE, and CNN models, for our application-based 

offline traffic classification. For the model training of offline deep learning processes, the training history for three different 

deep learning models is presented in Fig. 5. The experimental results of the training history include the accuracy and loss 
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function evolution for both training and validation processes. The accuracy and loss rate within ten epochs of validation 

process for CNN deep learning model is about 94.95% and 20.26%, respectively. The CNN deep learning model shows fairly 

steady convergence within ten epochs. However, the loss function of validation process keeps almost unchanged after ten 

epochs and even goes little bit higher than that of training process. This could be due to the overfitting issue. It might need 

further optimization of the CNN parameters to reduce the overfitting issue. 

  

  

  
Fig. 5 Offline training results for three different deep learning models 

The accuracy and loss rate within ten epochs of validation process for MLP deep learning model is about 94.95% and 

17.63%, respectively. There are some turbulences in training and validation processes after ten epochs. However, it achieves 

steady convergence after about 30 epochs. The accuracy and loss rate within ten epochs of the validation process for SAE deep 

learning model is about 94.86% and 19.638%, respectively. Unlike MLP model, the SAE deep learning model shows fairly 

good convergence within five to ten epochs. This could be due to the fine-tuning training mechanism of the SAE pre-training. 

However, more training epochs, less than 20 epochs, are enough for them to obtain similar error rates. 
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Table 4 Offline training result for different models 

 CNN-1D MLP SAE 

Training process accuracy 93.35% 93.21% 93.13% 

Training loss rate 16.77% 16.40% 15.97% 

Validation process accuracy 94.86% 94.59% 94.86% 

Validation loss rate 19.64% 15.69% 19.64% 

The offline training results for three different deep learning models, MLP, SAE, and CNN, are summarized in Table 4. 

More than 93% accuracy is achieved for all three different models. 

The offline training time, directly measured from the system, for CNN, MLP and SAE models are 1,518, 111, 25 sec, 

respectively. The complexity of ML models, especially for the deep learning models, has been significantly increasing over 

recent years. This is mainly due to the increasing number of deep learning network layers and the volume of dataset which 

consequently increases the computational cost corresponding to the execution time required training a deep learning network. 

Fortunately, this computational cost is only effective during offline training phase. In this research with online traffic 

classification in SDN during testing phase, the execution time to identify an application for each flow is within few seconds 

which is relatively small. The trained models for online testing can reach a very high confidence on classification within 

several statistics data which was collected in every second. The detailed online testing results will be discussed in the next 

sub-section. 

4.2.   Online testing result 

As mentioned earlier, we have injected the ISCX dataset into Tcpreplay host and then replayed them one by one according 

to the same processing time and sequence to emulate the online traffic for the client/server communications in the SDN testbed. 

The server IP addresses and transport port numbers in each flow and the byte counts and packet counts collected from statistics 

data are stored and selected in Ryu controller for further data pre-processing so that the server IP addresses and transport port 

numbers can be handled using one-hot input scheme. 

For online testing, we use other dataset files with the same applications and pre-processing as the training model to match 

the input size of the training model. In order to response to the unknown applications, we add a server to mirror packet in 

message in controller. The mirror server will label the online applications or services for predicted result comparison. 

Furthermore, in the case of vast amount of packets or flows injected into the OVS switch, such as abnormal intrusion, the 

mirror server can play a role of OVS buffering through the dropping of the vast injected packets on OVS switch to avoid the 

bandwidth exhaustion. 

Because of the limitation of the processing speed of the Ryu controller and OVS switch hardware, we might encounter 

statistics packets drop or Tcpreplay packets drop when the testing dataset injected into the OVS switch according to the same 

processing time and sequence.  Therefore, the incomplete dataset due to the packets drop might cause the accuracy decline of 

the online prediction for different deep learning models as compared with the offline cases. 

In Fig. 6, we illustrate the predicted result, in terms of confusion matrix, of application-based online traffic classification 

with MLP deep learning model. The diagonal values in the matrix correspond to the true positives of the predicted result of 

FacebookChat, gmailChat, HandoutsChat, Netflix, SkypeAudio, SkypeVideo, and Youtube categories, respectively. From the 

illustration shown in Fig. 6, the number of false positives between SkypeAudio and SkypeVideo categories is relatively high. 

This is understandable because the flows from these two categories own the same server IP and transport port features. The 

only possible features which we can identify could be byte counts. However, the dynamic encoding schemes of the audio and 

video could dim the byte count feature.  
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The numbers of false positives between Netflix and SkypeAudio or between YouTube and SkypeAudio also show 

relatively higher ratio. Although the server IP addresses are different for these applications, the similar multimedia behavior in 

terms of byte counts and packet counts features for deep learning will lead the miss-identification of such streaming category to 

the SkypeAudio category. As a simple deep back-propagating learning technique, the MLP deep learning model may suffer 

from such miss-identification easily. Therefore, a relatively higher error rates were observed between SkypeAudio and 

Skypevideo or between Netflix and SkypeAudio applications. However, we still achieve about 87% accuracy on average for 

application-based online traffic classification with MLP deep learning model. Especially, we conduct the application services 

with very similar characteristics, such as multimedia, audio and video streaming, which could be very difficult for network 

traffic classification. 

  
Fig. 6 Confusion matrix of MLP online test result Fig. 7 Confusion matrix of SAE online test result 

The predicted result, in terms of confusion matrix, of application-based online traffic classification with SAE deep 

learning model is illustrated in Fig. 7. Similarly, the number of false positives between SkypeAudio and Skypevideo categories 

is relatively high again for the SAE deep learning model. The numbers of false positives between Netflix and SkypeAudio or 

between YouTube and SkypeAudio also shows relatively higher ratio. Because the SAE deep learning model uses encoder and 

decoder for learning, the selected features need to be further adjusted to distinguish the similar streaming behavior between 

SkypeAudio and SkypeVideo categories or among different multimedia streaming properties. 

 
Fig. 8 Confusion matrix of CNN online test result 

Besides, the predicted result, in terms of confusion matrix, of application-based online traffic classification with CNN 

deep learning model is illustrated in Fig. 8. Similarly, the numbers of false positives between SkypeAudio and Skypevideo 

categories are relatively high for the CNN deep learning model. The numbers of false positives between Netflix and 
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SkypeAudio or between YouTube and SkypeAudio also show relatively higher ratio which is believed due to the similar 

multimedia behavior in terms of byte counts and packet counts features for deep learning. The average accuracy for 

application-based online traffic classification with CNN deep learning model is about 87.3%. 

In this paper, we reduce the problem of multiclass classification to multiple binary classification problems by using one vs 

rest transformation technique [25]. The one vs rest transformation technique will treat a single classifier per class with the 

predicted labels of that class as positive samples and all other predicted labels as negatives. Thus, four indicators, Accuracy, 

Precision, Recall, and F1, were calculated using the confusion matrix to evaluate the performance of application-based online 

traffic classification with different deep learning models. The online testing result with four indicators in our SDN testbed is 

shown in Table 5.  

Table 5 Online testing result for different models 

 Accuracy Precision Recall F1-score 

CNN 87.208% 85.142% 84.428% 84.857% 

MLP 87.167% 84.428% 87.714% 84.714% 

SAE 87.079% 85.142% 84.285% 84.714% 

Based on the experimental results, the average accuracies for different deep learning models are about the same, 87%, 

which is smaller than our offline training result, above 93%. Due to the hardware limitation, we might encounter possible 

statistics packets drop or Tcpreplay packets drop when the testing dataset injected into the OVS switch according to the same 

processing time and sequence. Consequently, the incomplete dataset due to the packets drop might cause the accuracy decline 

of the online prediction for different deep learning models as compared with the offline cases. On the other hand, the increasing 

number and variation of application services might increase the difficulty on application-based online traffic classification on 

SDN Networks with Deep Learning Models. 

Although the numbers of false positives between SkypeAudio and Skypevideo categories are relatively high and the 

numbers of false positives between Netflix and SkypeAudio or between YouTube and SkypeAudio also show relatively higher 

ratio for all deep learning models, the values of precision, recall and F1-score are all above 84% and quite close to the accuracy 

value. As we commented, the application services conducted in this paper with very similar characteristics, such as multimedia, 

audio and video streaming, could be very difficult for network traffic classification. However, with the help of deep learning 

models, including CNN, MLP and SAE, the average online testing accuracies for all models are all above 87% with quite close 

precision, recall and F1-score values. 

5. Conclusions 

Deep learning techniques have become one of the most interesting and practical topics being applied on all kinds of fields, 

such as computer vision, audio recognition and natural language processing. In this paper, we have proposed an 

application-based online and offline traffic classification, based on deep learning mechanisms, over SDN testbed. The 

designed deep learning architecture and scheme consists of three deep learning models, MLP, SAE, and CNN, in the SDN 

testbed. We have applied an open network traffic dataset with seven most popular applications as the deep learning training and 

testing datasets. By using the Tcpreplay tool, the dataset traffic samples are re-produced and analyzed in our SDN testbed to 

emulate the online traffic service. 

We have conducted performance analysis, in terms of accuracy, precision, recall, and F1 indicators, and compared the 

results with three deep learning models. The offline training results have achieved more than 93% accuracy on identifying 

seven popular applications for all three different models. Furthermore, we have achieved 87% accuracy for the 

application-based online testing prediction. 
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In the future, we will correlate the deep learning parameters, models and accuracy to improve the overall learning 

performance. The real online packets measurement and analysis in SDN network will be conducted in the next step. The 

network slicing in SDN network with QoS mechanism followed by successful traffic classification could be the further 

research. 
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