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Abstract 

With the development of artificial intelligence, public cloud service platforms have begun to provide common 

pretrained object recognition models for public use. In this study, a dynamic vehicle path-planning system is 

developed, which uses several general pretrained cloud models to detect obstacles and calculate the navigation area. 

The Euclidean distance and the inequality based on the detected marker box data are used for vehicle path planning. 

Experimental results show that the proposed method can effectively identify the driving area and plan a safe route. 

The proposed method integrates the bounding box information provided by multiple cloud object detection services 

to detect navigable areas and plan routes. The time required for cloud-based obstacle identification is 2 s per frame, 

and the time required for feasible area detection and action planning is 0.001 s per frame. In the experiments, the 

robot that uses the proposed navigation method can plan routes successfully. 
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1. Introduction 

Although humans can walk small distances, walking long distances is exhausting and time-consuming. Therefore, 

bicycles, motorcycles, and cars were invented over time, and their continued evolution has made movement convenient and 

safe. The focus of vehicle development has now shifted to the production of low-pollution electric vehicles, such as electric 

bicycles, balance bikes, and skateboards. Autonomous driving can decrease the burden on human drivers, reduce road 

congestion, and improve transportation safety [1]. Planning a safe pathway is the focus of autonomous driving. The 

information regarding the surrounding environment is collected to plan the next action. To prevent collisions, the environment 

and moving objects are monitored in real time for determining appropriate responses. However, the implementation of 

autonomous driving technologies is difficult. Current autonomous vehicles use multiple ultrasonic or optical radars for 

detecting surrounding objects to create high-quality three-dimensional (3D) models at night and during the day; however, these 

sensors are expensive. Furthermore, inclement weather severely affects the performance of the aforementioned sensors. 

Machine vision technology is used in daily life applications, such as the smart face unlock feature in smartphones, instant 

text translation, and automatic checkout in stores. The capabilities of hardware equipment, such as high-image-quality cameras, 

vision processors, and 5G networks, are continually improving. Commercially available visual models can accurately perform 

face, object, and text recognition. This study realizes the recognition of different objects in real-time images by using 

application programming interfaces (APIs), i.e., Google Cloud Vision, Amazon Rekognition, and Azure Computer Vision. 

The obtained object information is regarded as the current environmental conditions when determining the walking area. This 

study uses available resources and machine vision to develop a low-cost and fast method for dynamic path discrimination. 
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The remainder of this study is organized as follows. Section 2 describes the relevant literature. Section 3 describes the 

system architecture. Section 4 presents a description of the experiments and the experiment results, and section 5 provides the 

conclusions of this study. 

2. Literature Review and Methodology 

Object detection is a technique for classifying objects in an image, and object detection technology has evolved considerably. 

LeCun et al. [2] proposed the LeNet image recognition network, which was subsequently modified by Krizhevsky et al. [3] into 

AlexNet. The addition of the rectified linear unit and DropOut nonlinear activation functions to LeNet considerably improved its 

image recognition rate. Thus, machine vision has evolved rapidly. He et al. [4] proposed residual network architecture to solve the 

problem of overfitting. Huang et al. [5] and Wang et al. [6] made subtle changes and proposed DenseNet and CSPNet, 

respectively. Similar concepts of CSPNet were used to design novel architectures that effectively enhance network identification 

capabilities [5-6]. Howard et al. [7] proposed lightweight network architecture to increase the processor calculation speed and 

solve the problem of slow network operations in mobile devices and embedded learning. 

The aforementioned network architectures can be implemented to obtain a backbone network for the rapid learning of image 

features. Many object recognition networks use such backbone networks for image feature extraction. Various calculation 

methods are then incorporated into the network to learn the category and location of images [8]. Ren et al. [9] developed a 

two-stage object recognition, i.e., faster region based convolutional neural networks (Faster RCNN), with a high recognition rate 

by using visual geometry group (VGG) as the backbone network and the region proposal network. The aforementioned 

architecture was also used in an object recognition network [10]; however, in contrast to Faster RCNN, the single-shot detector 

(SSD) object recognition network performs one-stage identification in real time.  

Numerous sophisticated, fast, and automated object detection networks have been proposed. The initially proposed object 

detection networks such as “you only look once (YOLO)” do not use artificial anchor frames [11]. Law et al. [12]  proposed 

CornerNet, which is a novel anchorless frame network, for self-learning object detection. Duan et al. [13] and Tian et al. [14] 

subsequently improved CornerNet and achieved the same results as Law et al. [12] without relying on anchor frames. Tan et al. 

[15] developed EfficientDet and achieved up to 53.7 average precision (AP) with current one-stage object detectors. 

Achieving simultaneous localization and mapping is critical for developing automated machinery. Light detection and 

ranging technology can be used to sense the surrounding environment and dynamically avoid moving objects, such as crowds and 

vehicles on the road [16-17]. Furthermore, RGBD-based visual sensors were used to establish real-time environmental images 

and motion paths for augmented reality (AR), virtual reality (VR), and unmanned aerial vehicle (UAV) positioning [18]. A 

vision-based deep learning network can be used to detect the environment for conducting motion detection, walkable area 

detection, and motion planning [19]. Obstacle detection can also performed by object detection, and the technique algorithm will 

be used to mark walkable areas and relative coordinates [20-21]. 

Avoiding obstacles is a crucial ability for autonomous mobile robots, which must plan suitable movement routes. When 

moving from the current location to a target location, the most efficient movement route is the shortest path without any 

restrictions. Dijkstra’s algorithm and the A* algorithm are common methods for determining the shortest path. Dijkstra’s 

algorithm is similar to the breadth-first search method; it searches for the shortest distance node outward from the current 

coordinate point and continues the search until the target point is found. The A* algorithm combines the speed priority and 

Dijkstra methods. The costs from the starting point to the node and from the node to the target point are added and used as the 

node’s search cost, and the path with the lowest cost is searched for outward from the starting point. Using the method, the A* 

algorithm can plan the optimal path while avoiding obstacles. The obstacle avoidance problem is also called the velocity obstacle 

(VO) problem. If a robot collides with another robot when maintaining its current speed, the set of all collision events comprises 

the VO [22]. 
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3. System Structure 

This study proposes a real-time path-planning system based on neural networks for unmanned vehicles. The image 

obtained by an embedded camera is used as the input, and multiple public pretrained neural networks are used to increase the 

amount of information available on obstacle positions. The drivable area is determined from the blank areas between 

multiple objects, and safe paths are planned in drivable areas. Fig. 1 displays the architecture of the proposed system. Three 

steps are used in this study to plan the path of a self-propelled vehicle: object detection (Fig. 2), path planning (Fig. 3), and 

movement control. 

 

Fig. 1 Architecture of the proposed system 

 

 

Fig. 2 Framework of cloud object detection 

 

 

Fig. 3 Framework of path planning 

3.1.   Cloud object detection 

The purpose of object detection is to detect the locations of obstacles and avoid them. An object detector is composed 

of a backbone, neck, and head. The backbone is a network for obtaining image features, the neck fuses the feature maps from 

various layers, and the head is used for classification and localization. The model architecture of an object detector is 

displayed in Fig. 4. 
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Fig. 4 Model architecture of an object detector 

The pretrained networks provided by Google Cloud Platform (GCP), Microsoft Azure, and Amazon Web Service (AWS) 

are used to detect objects in real-time images and store the data from each platform in the following order: object class name, 

confidence score, bounding box top boundary value, bounding box bottom boundary value, bounding box left boundary value, 

and bounding box right boundary value. 

3.2.   Path planning for a vehicle 

3.2.1.   Deletion of the overlapped box 

First, the coordinates of the object bounding box are determined. Next, whether two object bounding boxes overlap is 

determined. If an overlap is discovered, the bounding box with the higher bottom boundary value is removed. The left and right 

boundary values of objects A and B are set as (AL, AR) and (BL, BR), respectively. If the bounding boxes of A and B do not 

overlap, they must satisfy the following Eqs. (1) and (2). 

L R L RB B A A< < <  (1) 

L R L RA A B B< < <  (2) 

3.2.2.   Drivable area detection 

After removing the overlapping bounding box, the blank area between any two nonoverlapping objects is considered the 

movement area. The distance between all objects can be calculated from their bounding box coordinates. According to an 

axiom in the Euclidean geometry system, the distance D between any two points P1(x1, y1) and P2(x2, y2) can be calculated 

using Eq. (3). The shortest distance between the bottom endpoints of two bounding boxes, that is, the bottom line of the 

drivable area, is calculated as follows: 

2 2

1 2 1 2
( ) ( )D x x y y= − + −  (3) 

3.2.3.   Set destination 

The drivable area should be clear and not blocked by intermediate objects. A and B are set as nonadjacent objects, and A is 

to the left of B. The four endpoint coordinates of the bottom boundaries of the two objects are denoted as AL(x1, y1), AR(x2, y2), 

BL(x1, y1), and BR(x2, y2). When N objects exist between A and B, the bottom boundary endpoint coordinates of any object can 

be denoted as OL(x1, y1) or OR(x2, y2). If the area is not blocked, Eqs. (4) and (5) are satisfied. When the denominator in Eqs. (4) 

and (5) is 0, the bounding boxes of the two objects overlap. This overlap is eliminated using Eq. (1) or (2). 

2 1 2 1

2 1 2 1

Ax Bx Ax Ox

Ay By Ay Oy

− −
<

− −
 (4) 

2 1 2 2

2 1 2 2

Ax Bx Ax Ox

Ay By Ay Oy

− −
<

− −
 (5) 
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The center point of a robotic car is set as the midpoint of the bottom boundary of the image. The center point of each 

drivable area can be calculated from the endpoint coordinates of the bottom line of the drivable area. Assuming that the two 

endpoints at the bottom of the drivable area are P1(x1, y1) and P2(x2, y2), the midpoint coordinates of the drivable area, namely 

Pm(xm, ym), can be calculated using Eq. (6). Eq. (3) is used to calculate the distance between the midpoint of all drivable areas 

and the center point of the robotic car. The midpoint with the shortest distance to the center point is set as the waypoint, and the 

straight line from the center point to the waypoint represents the planned route. 

1 2 1 2
( , ) ( , )

2 2
m m m

x x y y
P x y

− −
=  (6) 

3.3.   Movement control 

The coordinates of the center point of the robotic car and the waypoint can be used to calculate the offset angle between 

the travel direction of the robotic car and the waypoint. First, Eq. (3) is used to calculate the distance between the car and 

waypoint. Then, the cosine value of the angle between the planned path and the vertical line is calculated. The angle converted 

by the cosine value is the offset angle. If the offset angle does not exceed the preset threshold, a forward command is issued to 

allow the car to move forward. However, if the offset angle exceeds the preset threshold, a turn-left or turn-right command is 

issued for appropriately controlling the direction of car movement. 

4. Experimental Results 

Table 1 lists the experimental equipment used in this study. The Raspberry Pi is a single-chip computer developed by the 

Raspberry Pi foundation for improving students’ understanding of computing science. The experiment uses Docker to 

construct an image file with the official Raspberry Pi operating system and the Python 3 language for research. 

Table 1 Experimental equipment used in this study 

Components Specification 

Operating system Raspbian 

Central processing unit ARM Cortex-A72 

Random access memory 4 GB (LPDDR4) 

Camera Logitech C310 
 

Fig. 5 displays a self-propelled vehicle equipped with a Raspberry Pi 4 computer and complementary metal oxide 

semiconductor (CMOS) lens assembly for capturing environmental images. The Raspberry Pi 4 has a 40-pin universal input 

and output that can be used for external screens and sensors. The Raspberry Pi 4 is connected to a power source motor for 

controlling the movement of a robotic car. A Logitech C310 fixed-focus lens is used to obtain a 5-million-pixel image with a 

size of 1280 × 960. This lens is connected to the Raspberry Pi 4 through a universal serial bus (USB) interface. Raspberry Pi 4 

has a rated power of 5 V/3 A. A mobile power bank is used as a power source through USB-C to provide a maximum output of 

5 V/2.1 A to the Raspberry Pi 4. 

  

(a) Front view of the vehicle (b) Top view of the vehicle 

Fig. 5 The robotic car equipped with Raspberry Pi 4 and CMOS camera  
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4.1.   Drivable area detection 

The Raspberry Pi 4 and a streaming service are started. The streaming service is based on real time streaming protocol 

(RTSP). Streaming images are sent to the cloud through cloud platforms, and APIs are used for object identification. The 

object detection services used in this study are provided by Google Cloud Vision, Amazon Rekognition, and Azure Computer 

Vision cloud platforms to obtain the position coordinates, category names, and confidence scores for the objects in an image. 

Obstacles are identified by using multiple clouds to increase the amount of information because insufficient information would 

have negatively affected the suitability of the planned path. Moreover, accurate object class names and confidence scores are 

not required because the aim is to obtain information on surrounding obstacles. Fig. 6 displays the results of object marking 

when using multiple cloud platforms, and the marked boxes of the same color represent the detection results obtained from the 

same platform. Here, the GCP vision is presented by red color and the Azure vision is presented by blue color. 

The program for drivable area detection is written in the Python 3 language. First, the overlapping object bounding boxes 

are removed. Then, the drivable area is detected and the waypoint is set. Fig. 7 displays the result obtained after subjecting Fig. 

6 to drivable area detection. The green lines represent the bottom lines of multiple drivable areas. 

  

Fig. 6 Results of the comprehensive mark bounding  

box of cloud object detection 

Fig. 7 Schematic of drivable area detection 

 

4.2.   Results and analysis 

Fig. 8 depicts the two areas used in the experiment. Fig. 8(a) displays a narrow walking passage in a laboratory. This 

image indicates that the exit of the aisle is on the left; therefore, the robotic car should turn to the left at the end of this aisle to 

avoid collision with the stacked boxes. Fig. 8(b) displays a wide laboratory area with two exits. Fig. 9 displays the legend for 

the different bounding box colors in Figs. 10 and 11, which depict the continuous images obtained when the robot car moves 

according to the system instructions in the narrow and wide laboratory areas, respectively. In these images, different colors are 

used to represent the obstacles identified using different platforms. The yellow lines in Figs. 10 and 11 indicate the real-time 

planned path for each image. The images in the aforementioned figures prove that visual recognition could be used to obtain a 

bounding box for path planning. Thus, cloud computing facilitates real-time dynamic path planning. 

  

(a) Narrow area (b) Wide area 

Fig. 8 Panoramic images of the experimental areas 
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Fig. 9 Legend of the bounding box colors 

 

    
The third perspective The third perspective The third perspective The third perspective 

    
The vehicle view The vehicle view The vehicle view The vehicle view 

(a) At 5 s (b) At 15 s (c) At 25 s (d) At 35 s 

Fig. 10 Real-time images of the path planning and movement of the robotic car in the narrow laboratory area 

 

    
The third perspective The third perspective The third perspective The third perspective 

    
The vehicle view The vehicle view The vehicle view The vehicle view 

(a) At 5 s (b) At 15 s (c) At 25 s (d) At 35 s 

Fig. 11 Real-time images of the path planning and movement of the robotic car in the wide laboratory area 

All the obstacles on the ground are marked with white bounding boxes because the correct labeling of the object category 

is not crucial. Moreover, the threshold to limit the object discrimination rate is obtained. Multiple travel zones are detected by 

using a self-developed algorithm, and path planning is completed rapidly by using the obtained obstacle information. Detailed 

experimental data are listed in Tables 2 and 3. 

Legend

Google

Amazon

Microsoft

Obstacles
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Table 2 Detailed experimental results for cloud object detection  

Figure 

Path 

planning 

time (s) 

Cloud 

platform 
Class name 

Detection 

confidence 

score 

Left 

boundary 

value 

Right 

boundary 

value 

Top 

boundary 

value 

Bottom 

boundary 

value 

10(a) 0.001 

GCP Packaged goods 0.76 60 259 0 109 

AWS Box 0.95 66 345 139 444 

GCP Packaged goods 0.69 67 261 64 171 

GCP Shipping box 0.61 79 340 150 432 

Azure Wall 0.35 656 878 0 391 

10(b) 0.02 
GCP Shipping box 0.76 0 230 85 511 

AWS Box 0.56 0 232 103 500 

10(c) 0.001 

Azure Box 0.68 0 238 0 549 

GCP Shipping box 0.71 2 221 0 489 

Azure Wall 0.56 896 1280 10 503 

10(d) 0.001 
GCP Shoe 0.62 765 1004 285 344 

Azure Cabinet 0.36 1118 1272 0 468 

11(a) 0.001 
GCP Furniture 0.59 3 538 0 386 

Azure Chair 0.38 628 1073 0 249 

11(b) 0.001 

GCP Person 0.73 2 243 2 427 

AWS High heel 0.55 5 240 133 418 

GCP Person 0.71 10 254 1 434 

Azure Chair 0.51 829 1253 74 292 

Azure Wall 0.36 862 1216 20 216 

11(c) 0.001 
Azure Chair 0.45 2 94 274 481 

Azure Chair 0.44 916 1280 78 267 

11(d) 0.001 

Azure Chair 0.38 124 323 0 387 

AWS Airplane 0.82 497 1248 0 288 

GCP Person 0.69 787 1105 0 264 

GCP Home appliance 0.54 791 1121 0 266 

 

Table 3 Average time required for cloud service object identification 

Google Cloud Vision API 0.356 (s) 

Microsoft Azure Computer Vision API 1.042 (s) 

Amazon Web Services Rekognition API 2.098 (s) 

5. Conclusions 

This study developed a method in which the bounding box information returned by multiple cloud object detection 

services is integrated to detect the drivable area and plan a movement route. The experimental results reveal that robotic cars 

can perform appropriate path planning by using the developed method. The obtained images indicate that the planned route 

using the developed method is safe. The goals of this research were to reduce the cost of developing a collision-avoidance 

system, the cost of computing, and the dependence on an object sensor. Cloud vision models are used to reduce the amount of 

computing in the designed system. The designed system is simple, has low cost, and contains only one lens. Routes are planned 

through simple mathematical operations that do not burden the developed real-time path-planning system. Latency is a critical 

real-time problem that should be considered when using cloud computing local area network signals because it affects system 

operation. The delay problem can be solved using next-generation high-speed networks that provide high transmission speeds 

with novel visual recognition models. 
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