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Abstract 

This study aims at experimentally and theoretically investigating the cracking moment (Mcrc) of hybrid Fiber 

Reinforced Polymer (FRP)/steel Reinforced Concrete (RC) beams. Six hybrid Glass FRP (GFRP)/steel and three 

GFRP RC beams with various GFRP and steel reinforcement ratios are tested in four-point bending scheme. 

Experimental results indicate that both GFRP and steel rebars affect Mcrc, but the effect of steel reinforcement is 

more significant. When the steel reinforcement ratio increases to 1.17%, Mcrc goes up to 15.9%, while the same value 

for GFRP is only 9.7%. An analytical method is proposed based on the plain section assumption and nonlinear 

behavior of materials for estimating Mcrc. The proposed model shows a good agreement with the experimental data 

conducted in this study and collected from the literature. The results of the parametric study give evidence of the 

positive effects of hybrid reinforcement ratios and elastic modulus of FRP on Mcrc of hybrid RC beams.  
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1. Introduction  

Due to some special characteristics, such as superior corrosion resistance, low strength/weight ratio, non-conductive, 

non-magnetic, Fiber Reinforced Polymer (FRP) rebars, are widely used as an alternative to steel rebar for concrete structures 

[1-2]. It is well known that there are four common types of FRP rebars used to reinforce concrete components: Aramid FRP 

(AFRP), Basalt FRP (BFRP), Carbon FRP (CFRP), and Glass FRP (GFRP).  

Only the elastic modulus of CFRP is equivalent or higher than that of steel bar. The elastic modulus of other FRP types is 

much lower than that of steel bar, which causes large deflection and crack width of FRP Reinforced Concrete (RC) bending 

elements [3-6]. To overcome this drawback of FRP RC beams, many researchers proposed combining traditional steel bars to 

FRP bars in the tension zone of the concrete beam. As a result, hybrid FRP/steel RC beams are formed [7-9]. In practice, the 

hybrid FRP/steel RC beams were also met in a type of RC beams strengthened with FRP sheets. Although the flexural behavior 

of FRP/steel RC beams has been extensively investigated, the data on cracking behavior is still limited. 

This study presents experimentally and theoretically the investigation on the cracking behavior of hybrid FRP/steel RC 

beams, and introduces an analytical method for predicting the cracking moment of FRP/steel RC beams. First, three groups of 

beams, which contain six hybrid GFRP/steel and three GFRP RC beams, are cast and tested in the four-point pending scheme 

to clarify the cracking behavior. Second, an analytical method based on the plane section assumption and strain compatibility is 
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proposed for estimating the cracking moment. This method considers the nonlinear behavior of concrete and the contribution 

of reinforcements. Finally, a parametric study on the effect of longitudinal reinforcement ratios and elastic modulus of FRP on 

the cracking moment is done by using the proposed analytical method. 

2. Literature Review 

Previous studies of FRP/steel RC beams mainly focused on the flexural behavior, evaluating the cracking moment, failure 

modes and load-bearing capacity, short-term and long-term deflections, crack width, crack spacing, stiffness, and ductility. 

The results of the previous studies revealed the positive effect of steel reinforcement in improving the flexural behavior of 

FRP/steel RC beams [4-16]. For the design purposes of hybrid FRP/steel RC beams, many researchers proposed analytical 

methods to estimate load-carrying capacity [10, 12-13, 17-19] and limits of reinforcement ratios [20], to determine failure 

modes [10-16], and to estimate crack width, crack spacing, and midspan deflection [21-22]. Some researchers tried to use the 

existing design codes with some modifications for the calculation of hybrid FRP/steel RC beams [4, 18, 23-24]. 

Regarding the cracking moment of FRP/steel RC beams, very few researchers focused on the cracking behavior and 

proposed the formulas to calculate the cracking moment of FRP/steel RC beams. By using the existing design codes with the 

modulus of rupture and transformed uncracked sections, Mohamed [25] compared the theoretical and experimental cracking 

moments of FRP/steel RC beams, and reported that the theoretical cracking loads were significantly smaller than the 

experimental values. Kartal and Kalkan [26] developed two cracking moment estimates of FRP/steel RC beams, one for the 

gross moment of inertia and the other for the uncracked transformed moment of inertia. In each method, three different tensile 

strengths of concrete, i.e., the experimental value calculated from the prismatic beam tests and the second and third values 

obtained from empirical flexural tensile strength of Eurocode 2 and ACI 318M, were applied. The results showed that the 

uncracked transformed moment of inertia method with a modulus of rupture expression according to the ACI 318 M gave the 

best agreement between theoretical and experimental results. Besides, the authors reported that ignoring the contribution of the 

longitudinal reinforcements in the calculation may lead to underestimation of the cracking moment.  

Maleki and Kheyroddin [18] used the recommendations of ACI440.1R-15 and CSA-S806-12 to estimate the first 

cracking moment of GFRP/steel RC beams. The results showed that these design codes underestimated the cracking moment 

of tested beams. Valivonis and Skuturna [27] experimentally investigated the cracking moment of RC beams strengthened by 

CFRP laminates. They reported that CFRP laminates significantly increased the critical tension strains of the concrete and 

cracking moment (from 56% to 106%), and that CFRP laminates also influence the expansion of cracks and restrict the 

development of the crack. These authors proposed an analytical equation for estimating the cracking moment by using 

curvilinear diagrams to describe the compressed concrete and the concrete in tension. However, the comparison results showed 

a large deviation between theoretical and experimental values. 

Gao et al. [28] carried out an experimental study on the flexural behavior of one-way slab strengthened by FRP sheets, and 

pointed out the influence of the amount of strengthening CFRP and GFRP sheets on cracking moment of RC one-way slab. In 

particular, the CFRP sheet with a high elastic modulus has a stronger effect on the cracking moment in comparison with a 

GFRP sheet. Due to the complication of a method for estimating the cracking moment based on the plane cross-section 

assumption and equilibrium condition, these authors proposed an equivalent-conversion method for determining the cracking 

moment of RC slabs strengthened with FRP, in which the formula of elastic materials is used with a plasticity coefficient. The 

proposed method revealed good agreement between experimental and theoretical values.  

A lot of experimental research on the flexural behavior of hybrid FRP/steel RC beams has been reported along with many 

proposals for prediction models of cracking moments. However, the majority of these proposals are based on the existing 

design codes (ACI and Eurocode), which neglected the contribution of reinforcements. This fact led to the underestimation of 

the cracking moment of FRP/steel RC beams.  
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3. Experimental Investigation 

Six hybrid GFRP/steel RC and three GFRP RC beams with dimensions of 150 × 250 × 2700 mm (width × height × long) 

and different GFRP and steel reinforcement ratios are cast and loaded in a four-point bending scheme. All nine testing beams 

are divided into three groups to evaluate the influence of GFRP/steel reinforcement on the cracking load. In each group, the 

GFRP reinforcement area (Af) is fixed, and the steel reinforcement area (As) varies (Fig. 1 and Table 1). Specifically, the group 

of beams #1 (beams B1, B2, and B3) is reinforced with 2G10 (two GFRP bars with a diameter of 10 mm, Af = 1.225 cm2), the 

group of beams #2 (beams B4, B5, and B6) is reinforced with 2G14 (Af = 2.65 cm2), and the group of beams #3 (beams B7, B8, 

and B9) is reinforced with 3G14 (Af = 3.97 cm2).  

In addition, during the analysis of the test results, the groups of beams with fixed longitudinal steel reinforcement and 

varied GFRP reinforcement are also created. The group of beams with fixed 2S10 (two steel bars with the diameter of 10 mm) 

contains beams B2, B5 and B8, and the group of beams with fixed 2S14 (two steel bars with the diameter of 14 mm) contains 

beams B3, B6, and B9. The loading span is 2400 mm, of which the length of the pure bending zone is 400 mm (Fig. 2(a)). As 

shown in Fig. 1, the GFRP and steel rebars are arranged in two layers, wherein the GFRP rebars are placed in the undermost 

layer with a concrete cover thickness (Cf) of 25 mm, while the steel rebars are arranged in the inner layer (second layer) with a 

concrete cover thickness (Cs) of 50 mm. All the actual dimensions of the testing beams are re-measured after casting, as shown 

in Table 1. The shear reinforcements from plain round steel bars with the diameter of 6 mm and the spacing of 100 mm are put 

in the shear spans to prevent shear failure. In the middle span, the spacing of stirrups is 200 mm to form a reinforcement cage 

and reduce the influence of stirrups on flexural behavior. Two 6 mm diameter steel rebars are used as compressive 

reinforcements. The beam specimens are designed with references to ACI 440.1R-15 [29] and recommendations by previous 

researchers [12, 20]. Accordingly, the GFRP reinforcement ratio (��) varies from 0.35% to 1.18%, and the steel reinforcement 

ratio (��) ranges from 0.52% to 1.13%. Details of geometries and reinforcements of specimens are presented in Table 1. 

   

(a) GFRP RC beams (b) Hybrid GFRP/steel RC beams (c) Reinforcement cage 

Fig. 1 Beam’s reinforcement (unit: mm) 
 

Table 1 Details of beam specimens 

Group of beams Beam ID b, mm h, mm ��, mm ��, mm h0f, mm h0s, mm Af, cm
2
 As, cm

2
 ��, % ��, % Rm, MPa 

#1 

B1.2G10 150 253 21 - 232 - 1.23 - 0.35 - 37.2 

B2.2G10-2S10 152 254 30 54 224 200 1.23 1.57 0.36 0.52 41.6 

B3.2G10-2S14 151 252 27 72 225 180 1.23 3.08 0.36 1.13 39.5 

#2 

B4.2G14 148 252 31 - 221 - 2.65 - 0.81 - 42.6 

B5.2G14-2S10 151 251 31 52 220 199 2.65 1.57 0.80 0.52 41.0 

B6.2G14-2S14 152 254 33 62 221 192 2.65 3.08 0.79 1.06 40.5 

#3 

B7.3G14 148 255 26 - 229 - 3.97 - 1.17 - 45.5 

B8.3G14-2S10 153 254 33 59 221 195 3.97 1.57 1.18 0.53 42.8 

B9.3G14-2S14 155 255 23 58 232 197 3.97 3.08 1.11 1.01 42.9 

*Note: b, h, ��, ��, h0f, and h0s are the geometric dimensions of cross section as shown in Fig. 1. �� = As /(bh0s) and ��= Af 

/(bh0f) are the steel and GFRP reinforcement ratios, respectively. The beam ID is formed from 3 parts: the first part (e.g., B1) 

is the order number of the beams, the second part (2G10, 2G14, and 3G14) refers to the number and the diameter of GFRP 

bars, and the last part (2S10 and 2S14) indicates the number and the diameter of steel bars. B refers to beam, G refers to 

GFRP, and S refers to steel. 
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(a) Schematic diagram  (b) Test setup 

Fig. 2 Flexural test 

The concrete with the desired compressive strength of 40 MPa and the water-to-cement ratio of 0.55 is produced from 

ordinary Portland cement. The actual average compressive strength (Rm) is evaluated from compressive tests on 150 × 150 × 

150 mm cubic specimens after 28 days of curing, as shown in Table 2. The ribbed GFRP rebars with nominal diameters of 10 

mm and 14 mm are used in this study and are manufactured by Vietnam FRP Trading and Production Joint Stock Company. 

The GFRP bars are produced from continuous high-strength E-glass fiber and vinyl ester resin. The hot-rolled plain steel bar 

with a diameter of 6 mm is used for stirrups and compressive reinforcement, and the hot-rolled ribbed steel bars with diameters 

of 10 mm and 14 mm are used as longitudinal rebars. The mechanical properties of GFRP, round plain steel, and ribbed rebars 

according to tensile tests are shown in Table 2. 

Table 2 Mechanical properties of reinforcements 

Rebars Yield strength, MPa Tensile strength, MPa Young’s modulus, GPa 

GFRP - Rf = 997 Ef = 44.3 

The 6 mm plain round steel σsy = 309 Rs = 358 Es = 200 

The ribbed steel (diameter ≥ 10 mm) σsy = 412 Rs = 577 Es = 200 
 

The beams are loaded after a 28-day curing period in a four-point bending scheme until failure (Fig. 2). Three 100 mm 

strain gauges (S1, S2, and S5) are placed at the top, side, and bottom surfaces at the midspan of the test beams to record the 

compressive and tensile strains in concrete. Two 5 mm strain gauges (S3 and S4) are attached on the surface of tensile steel and 

GFRP rebars at midspan before casting and are protected by silicon to measure the strains in rebars during the test. A Linear 

Variable Differential Transformer (LVDT) is fixed at midspan to measure the deflection, and two digital indicators I1 and I2 

are placed at supports to eliminate the displacements of holders. During the test, the loads on the beam are applied in a 

step-by-step procedure, and the values of load from loadcell, the data from LVDT, and strain gauges are automatically 

collected by the datalogger STS-WIFI system. 

4. Experimental Results and Discussion 

The first cracking moment of tested beams is obtained from the load versus strain curve of the concrete and 

reinforcements. This value can also be determined from the load versus midspan deflection curve. Fig. 3 and Fig. 4 illustrate 

the load-strain and load-midspan deflection curves for a typical tested beam B2.2G10-2S10. It is worth to note that until the 

yield of steel (after the concrete cracks), the trends of the load versus strain curves of the concrete and reinforcements and the 

load versus midspan deflection curves of the remained tested beams are similar to those of the beam B2.2G10-2S10. As shown 

in Fig. 3, there are leaps on the load-strain curves as the first crack appears. The leap is also noticed on the load-midspan curve 

at the moment when the first crack appears (Fig. 4). The experimental cracking moments of tested beams (Mcrc,e) are presented 

in Table 3. The load-carrying capacities (Mu,e) and failure modes of tested beams are also recorded and presented in Table 3 to 

evaluate the ratio between cracking moment and load-carrying capacity. The relationship between the cracking moments and 
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the steel reinforcement ratios of the groups of beams with fixed GFRP reinforcement ratios are illustrated in Fig. 5. The 

relationship between the cracking moments and the GFRP reinforcement ratios of the groups of beams with fixed steel 

reinforcement ratios are also presented in Fig. 6. 

  

Fig. 3 Load versus strain curve of the concrete and  
reinforcements (beam B2.2G10-2S10) 

Fig. 4 Load versus midspan deflection curve  
(beam B2.2G10-2S10)   

 
Table 3 The cracking moment of tested hybrid GFRP/steel RC beams 

Beam 
ID 

Experimental Theoretical 

εs,e 

×104 
εf,e 

×104 

εbt,e 

×104 

σs,e, 
kN 

σf,e, 
kN 

σs,e /σf,e 
σs,e /σsy, 

% 
σf,e /ffu, 

% 
Mcrc,e, 
kNm 

Mu,e, 
kNm 

Mcrc,e / 
Mu,e 

Failure 
mode 

εs,t 

×104 

εf,t 

×104 

εbt,t 

×104 

Mcrc,t, 
kNm 

Mcrc,t / 
Mcrc,e 

B1.2G10 - 1.65 1.72 - 7.3 - - 0.73 5.35 24.1 0.22 RG - 1.23 1.67 5.73 1.07 

B2.2G10-2S10 0.86 1.29 1.73 17.2 5.7 3.02 4.17 0.57 6.20 34.4 0.18 SY-RG 0.82 1.12 1.70 6.60 1.06 

B3.2G10-2S14 0.83 1.12 1.40 16.6 5.0 3.32 4.03 0.5 6.20 38.1 0.16 SY-CC 0.57 1.15 1.74 6.30 1.02 

B4.2G14 - 1.31 1.47 - 5.8 - - 0.58 6.20 41.4 0.15 CC - 1.11 1.65 6.30 1.02 

B5.2G14-2S10 1.00 1.14 1.76 20 5.1 3.92 4.85 0.51 6.40 48.4 0.13 SY-CC 0.83 1.10 1.72 6.47 1.01 

B6.2G14-2S14 0.75 0.99 1.62 15 4.4 3.41 3.64 0.44 6.50 56.5 0.12 SY-CC 0.70 1.08 1.76 6.76 1.04 

B7.3G14 - 1.30 1.64 - 5.8 - - 0.58 6.65 52.4 0.13 CC - 1.18 1.65 6.85 1.03 

B8.3G14-2S10 0.73 1.03 1.51 14.6 4.6 3.17 3.54 0.46 6.40 50.0 0.13 SY-CC 0.75 1.08 1.72 6.94 1.08 

B9.3G14-2S14 0.93 1.39 1.86 18.6 6.2 3.00 4.51 0.62 6.80 56.7 0.12 SY-CC 0.76 1.21 1.77 7.40 1.09 

*Note: RG refers to the rupture of GFRP, SY refers to steel yielding, and CC refers to concrete crushing.  

 

 

Fig. 5 Cracking moment versus steel reinforcement ratio curves of  
the groups of beams with fixed GFRP reinforcement ratios  

 

 

Fig. 6 Cracking moment versus GFRP reinforcement ratio curves of  
the groups of beams with fixed steel reinforcement ratios  
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It is well known that the cracking moment depends on beam dimensions, properties of materials, and reinforcement ratios 

[28, 30]. It can be seen in Figs. 5-6 that the reinforcements significantly affect the cracking moment of hybrid GFRP/steel RC 

beams. As GFRP or steel reinforcement ratios increase, the cracking moment of tested beams linearly increases. As can be seen 

in Fig. 5, in the groups of hybrid beams with fixed GFRP reinforcement ratio, the effect of steel reinforcement on cracking 

moment decreases with the increase of the GFRP reinforcement ratio. In the group of beams #1 (�� = 0.36%), when the steel 

reinforcement ratio increases from 0 to 1.13%, the cracking moment of hybrid GFRP/steel beams increases to 15.9%, while in 

the group of beams #2 (�� = 0.8%) and #3 (�� = 1.17%) the corresponding values are 4.8% and 2.3% respectively. When the 

steel reinforcement ratios are fixed, the cracking moment of hybrid GFRP/steel RC beams also increases with the increase of 

the GFRP reinforcement ratio. However, the effect of GFRP reinforcement on the cracking moment of the hybrid beam is less 

than that of steel rebars. In the groups of beams with fixed steel reinforcement (groups 2S10 and 2S14 in Fig. 6), the cracking 

moments of hybrid beams increase to 8.8% and 9.7% respectively. For the tested beams, the experimental cracking moment to 

load-carrying capacity ratio (Mcrc,e /Mu,e) varies from 0.12 to 0.22 (Table 3), and this ratio decrease with the increase of the 

GFRP or steel reinforcement ratio. 

   
(a) Beams B1.2G10 (b) Beams B2.2G10-2S10 (c) Beams B3.2G10-2S14 

   
(d) Beams B4.2G14 (e) Beams B5.2G14-2S10 (f) Beams B6.2G14-2S14 

   
(g) Beams B7.3G14 (h) Beams B8.3G14-2S10 (i) Beams B9.3G14-2S14 

Fig. 7 Distribution of strains on the cross-section at the fist cracking moment 

Fig. 7 presents the distribution of strain on the cross-section of tested beams at the moment when the first crack appears. 

As can be seen, the plane cross-section assumption is satisfied for hybrid FRP/steel RC beams. To clarify the contribution of 

each type of longitudinal reinforcements to the cracking moment, the maximum experimental tensile strains and stresses of 

GFRP (��,� and ��,�) and steel rebars (��,� and ��,�) before the appearance of the first crack are reported in Table 3. The 
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maximum tensile strain in concrete (�	
,� ) at this moment is also presented in Table 3. Due to the elastic behavior of 

reinforcements in this stage, the values of the tensile stresses in GFRP and steel rebars are determined by multiplying the 

measured tensile strains by the corresponding Young’s moduli (44.3 GPa and 200 GPa, Table 2).  

As can be seen in Table 3, due to the high Young’s modulus of steel rebars, at the first cracking moment, the stress in steel 

bars is about 3.02 to 3.92 times higher than that in GFRP rebars, and is about 3.00% to 4.85% of the yield strength. That fact 

has proven that both GFRP and steel reinforcement affects the cracking moment of hybrid GFRP/steel RC beams, but the 

contribution of GFRP reinforcement in this stage is negligible as compared to steel, and the stress in GFRP is about 0.44% to 

0.73% of ultimate tensile strength. These results are consistent with the findings reported by most other researchers [27-28, 31] 

and are contrary to the results presented in [32]. In addition, experimental research results show that, as the first crack appears, 

the maximum tensile strain in the outermost concrete fiber (�	
,�) reaches the value of 1.47×10-4 to 1.86×10-4, which meets the 

recommended ultimate tensile strain of concrete �	
� = 1.5×10-4 in SP 63.13330:2018 [33]. In addition, the recorded maximum 

compressive strains in the outermost concrete fiber (�	,�) before the appearance of the first crack vary from 0.91×10-4 to 

1.67×10-4, which are much less than the ultimate compressive strain of concrete.  

5. An Analytical Method for Calculating the Cracking Moment of Hybrid FRP/Steel RC Beam 

As reported in the introduction and as indicated from the experimental results, the hybrid GFRP/steel reinforcement 

significantly affects the cracking moment. Therefore, using the recommendations of the existing design codes which neglect 

the contribution of reinforcements leads to the underestimation of the cracking moment. This section introduces an analytical 

method for calculating the cracking moment of FRP/steel RC beams based on the plane cross-section assumption and 

equations of equilibrium. 

The bilinear stress-strain relationship of concrete introduced in SP 63.13330:2018 [33] is used in the calculation (Fig. 8). 

At the first cracking moment, the maximum strain in the outermost tensile concrete fiber reaches the ultimate value �	
� = 

1.5×10-5 according to the stress-strain relationship in Fig. 8. Before the concrete cracks, assuming that the concrete in 

compression behaves elastically, the stress distributes in triangular form. In the tension zone, the stress distributes in trapezoid 

form with the maximum stress equal to the tensile strength Rbt according to the stress-strain relationship in Fig. 8. The 

distributions of strain and stress on the cross-section are presented in Fig. 9. 

 

Fig. 8 Bilinear stress-strain relationship of concrete [33] 
 

   

(a) Cross-section (b) Distribution of strains (c) Distribution of stress 

Fig. 9 Stress and strain distributions for calculating the cracking moment 
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The maximum strains in the outermost compressive concrete fiber �	, in the compressive steel rebars ��, in the tensile 

steel rebars ��, and in the tensile GFRP rebars �� are determined according to �	
� by using the plane cross-section assumption, 

i.e., according to the strain distribution shown in Fig. 9(b). The stress in concrete and reinforcements can be found by using the 

obtained strains in materials. 

Before the first crack appears, the stress in the outermost compressive fiber of concrete �		is determined by Eq. (1):  

2

1, 10

bt b b
b b bred

b red

x R Rx
E

h x h x

ε
σ ε

ε
= = =

− −
 (1) 

where Rb is the prismatic strength of concrete; x is the compression zone height; �	  is the maximum strain in the outermost 

compressive concrete fiber, which can be determined according to the Eq. (2) based on the plain cross section in Fig. 9(b); Ebred 

is the reduced modulus of concrete, which is determined by Eq. (3) according to SP 63.13330 : 2018 [33]. 

( )2 /
b bt

h xxε ε −=   (2) 

1,/
bred b b red

E R ε=  (3) 

The stress in compressive reinforcement rebars is as follows: 

( )2bt sc s

sc sc s

x a E
E

h x

ε
σ ε

−
= =

−
 (4) 

where Es is the modulus of elasticity of steel; �� is the strain in compressive steel rebars and is calculated according to Fig. 9(b) 

by the following equation. 

( ) ( )2 /
sc bt sc

x a h xε ε= − −  (5) 

The stress in tensile steel rebars is as follows: 

( )2bt s s

s s s

h x a E
E

h x

ε
σ ε

− −
= =

−
 (6) 

where �� is the strain in tensile steel reinforcement obtained from Fig. 9(b) as follows: 

( ) ( )2
/

s bt s
h x a h xε ε= − − −  (7) 

The stress in tensile FRP rebars is as follows: 

( )2bt f f

f f f

h x a E
E

h x

ε
σ ε

− −
= =

−
 (8) 

where �� is the strain in GFRP rebars and determined according to Fig. 9(b) as follows: 

( ) ( )2
/

f bt f
h x a h xε ε= − − −  (9) 

The resultant forces of the compression zone of concrete (Nb), of the compressive reinforcement (Nsc), of the tensile steel 

(Ns) and GFRP (Nf) rebars, and in the tension zone of concrete (Nbt) are calculated using the following equations: 
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bx bRx
N

h x

σ
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−
 (10) 
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E x a A
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ε
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 (11) 

( )2bt s s s

s s s

E h x a A
N A

h x

ε
σ

− −
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−
 (12) 

( )2bt f f f
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h x a E A
N A

h x

ε
σ

− −
= =

−
 (13) 

( ) ( )
1 2

7 4

15 15

bt bt
bt bt bt

h x R b h x R b
N N N

− −
= + = +  (14) 

The equation of horizontal force equilibrium is as follows: 

( ) ( ) ( ) ( )2

22 2
11

20 15

bt f f fbt s sc sc bt s s s btb
h x a E AE x a A h x a E A h x R bbRx

h x h x h x h x

εε ε − −− − − −
+ = + +

− − − −
 (15) 

By expanding Eq. (15) and setting the constants A (16), B (17), and C (18), Eq. (15) is re-written as Eq. (19): 

11

20 15

b bt
R b R b

A = −  (16) 

( )2

22

15

bt

bt s s s sc f f

R bh
B E A E A E Aε= + + +  (17) 

( )
2

2

11

15

bt
bt s s s s sc sc f f f s s f f

R bh
C E A a E A a E A a E A h E A hε= − + − − −  (18) 

2
0Ax Bx C+ + =  (19) 

By solving Eq. (19) and choosing the compatible root meeting the condition 0 < x < h, the equations for calculating the 

compression zone height is expressed as follows: 

2
4

2

B AC B
x

A

− −
=  (20) 

By using the compression zone height x (Eq. (20)) and defining the resultant forces in materials (Nb, Nsc, Ns, Nf, and Nbt) 

according to Eq. (10) to Eq. (14), the first cracking moment Mcrc can be determined by taking the moment about the axis 

passing through the neutral axis (Eq. (21)). The comparison results between the experimental cracking moments and the 

theoretical values (Mcrc,t) of the tested beams obtained by Eq. (21) in Table 3 show good agreement. The deviation between the 

experimental and theoretical cracking moment is less than 9%. In addition, the theoretical strains in the outermost compressive 

concrete fiber, in the steel tensile reinforcement, and in the tensile GFRP reinforcement obtained by Eq. (2), Eq. (7), and Eq. (9) 

respectively are also in good agreement with the experimental values (Table 3). 

( ) ( ) ( ) ( ) ( )1 223 162

3 30 45

bt btb
crc sc sc s s f f

N h x N h xxN
M N x a N h x a N h x a

− −
= + − + − − + − − + +

 

(21) 
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To verify the applicability of the proposed theory for determining the cracking moment of concrete beams reinforced with 

a combination of steel bars and different types of FRP bars, the experimental data of 24 tested hybrid FRP/steel RC beams in 

the literature are collected and compared as shown in Table 4. The comparison results prove the accuracy in estimating the 

cracking moment of concrete beams reinforced with hybrid FRP/steel rebars. The average value is 1.006, the standard 

deviation is 0.076, and the mean value is 0.995.  

Table 4 The comparison between experimental and theoretical cracking moments of concrete beams  

reinforced with a combination of different types of FRP and steel bars 

Ref. Beam ID 
b, 

mm 
h, 

mm 
af, 

mm 
as, 

mm 

Af, 
mm

2
 

As, 
mm

2
 

Asc, 
mm

2
 

asc, 
mm 

Es, 
GPa 

Type of 
FRP 

Ef, 
GPa 

Rm, 
MPa 

Mcrc,e, 
kNm 

Mcrc,t, 
kNm 

Mcrc,t / 
 Mcrc,e 

[25] 

B10/8S 100 200 22 64 100.6 157 0 0 200 GFRP 39 30 2.5 2.39 0.96 

B10/6 100 200 21 64 56.6 157 0 0 200 GFRP 41 30 2.5 2.37 0.95 

B12/8 100 200 22 65 100.6 226 0 0 200 GFRP 39 30 2.7 2.42 0.90 

B12/6S 100 200 21 65 56.6 226 0 0 200 GFRP 41 30 2.3 2.4 1.04 

[23] 

GFRP-40S 150 250 42 98 253.4 142.6 142.6 210 200 GFRP 48 32.7 5.4 5.4 1.00 

CFRP-40S 150 250 40 95 142.6 142.6 142.6 210 200 CFRP 103 32.7 5.7 5.4 0.95 

GFRP-60S 150 250 42 98 253.4 142.6 142.6 210 200 GFRP 48 49.3 7.43 7.11 0.96 

CFRP-60S 150 250 40 95 142.6 142.6 142.6 210 200 CFRP 103 49.3 6.3 7.11 1.13 

 
[26] 

B2S3 200 300 30 30 118.3 339.3 1.57 270 200 BFRP 43 25 13.2 11.85 0.90 

B3S2 200 300 30 30 177.5 226.2 1.57 270 200 BFRP 43 25 11.6 11.5 0.99 

B4S1 200 300 30 30 236.7 113.1 1.57 270 200 BFRP 43 25 10.4 11.1 1.07 

G2S3 200 300 30 30 259.8 339.3 1.57 270 200 GFRP 35 25 11.5 11.9 1.03 

G3S2 200 300 30 30 389.7 226.2 1.57 270 200 GFRP 35 25 10.1 11.6 1.15 

G4S1 200 300 30 30 519.6 113.1 1.57 270 200 GFRP 35 25 10.5 11.2 1.07 

G1S5 200.8 301.9 30 30 117.5 565.5 0 0 200 GFRP 46 24.4 13.3 12.7 0.95 

G2S4 199.8 301.1 30 30 234.9 452.4 0 0 200 GFRP 46 24.4 12.7 12.3 0.97 

G3S3 200.6 304.4 30 30 352.4 339.3 0 0 200 GFRP 46 24.4 10.9 12.2 1.12 

G4S2 198.6 304.6 30 30 469.9 226.2 0 0 200 GFRP 46 24.4 11 11.8 1.07 

B1S2 199.8 308 30 30 59.2 226.2 0 0 200 BFRP 43 24.4 11.8 11.7 0.99 

B1S4 200 300 30 30 59.2 452.4 1.57 270 200 BFRP 43 25 14 12.2 0.87 

G1S4 200 300 30 30 129.9 452.4 1.57 270 200 GFRP 35 25 13.2 12.3 0.93 

B2S1 199.2 301.7 30 30 118.3 113.1 0 0 200 BFRP 43 24.4 10.8 10.9 1.01 

G1S2 198.6 304.9 30 30 117.5 226.2 0 0 200 GFRP 46 24.4 11.4 11.5 1.01 

G2S1 202 301.6 30 30 234.9 113.1 0 0 200 GFRP 46 24.4 9.9 11.1 1.12 

Average 
Standard deviation 

Mean 

1.006 
0.076 
0.995 

6. Parametric Study 

As mentioned above, besides the section geometry and mechanical properties of concrete, the longitudinal reinforcements 

also significantly affect the cracking moment of hybrid FRP/steel RC beams. In this section, a parametric study of the effects of 

the longitudinal FRP and steel reinforcement ratios and Young’s modulus of FRP rebars on the cracking moment of hybrid 

FRP/steel RC beams is carried out using the proposed formula (Eq. (21)).  

First, the influence of hybrid FRP/steel reinforcement ratios on the cracking moment are performed with the following 

input data: b×h = 300×600 mm; Rb = 30 MPa; Rbt = 2.5 MPa; Eb = 32 GPa; Es = 200 GPa; σsy = 400 MPa; Ef = 50 GPa; Rf = 

1000 MPa. The distances from the centroid of the steel rebars and FRP rebars to the outermost tensile concrete fiber are chosen 

equally: af = as = 40 mm. By considering the recommendations in [20], the steel and FRP reinforcement ratios are selected to 

vary from 0% to a maximum 4% (i.e, the area of each type of reinforcements varies from 0 cm2 to 67.2 cm2). By conducting 

nonlinear regression analysis, the relationship between cracking moment calculated by Eq. (21) and hybrid steel/FRP 

reinforcement ratios is expressed by Eq. (22). It should be noticed that, the adjusted coefficient of multiple determination (R2) 

of regression model in Eq. (21) is higher than 0.9999.  
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2 2

, 3.597 15.077 5.49 0.1567crc crc b f s f sM M µ µ µ µ= + + + −  (22) 

where Mcrc,b is the cracking moment of plain concrete beam; µf and µs are in percent (%).  

The response surface which expresses the relationship among cracking moment, FRP, and steel reinforcement ratios 

according to Eq. (22) is shown in Fig. 10. The results of the parametric study on the current section and properties of beam 

show that the cracking moment increases to 93.7% when the steel reinforcement ratios increase from 0% to 4%. Meanwhile, 

the corresponding value for the case of the increasing FRP reinforcement is only 24.3%. This outcome affirms the above 

conclusion of the lower contribution of FRP reinforcement on the cracking moment of hybrid FRP/steel RC beam in 

comparison with the steel reinforcement. In addition, as reported in previous studies, the ratio Af /As significantly affects the 

flexural behavior of FRP/steel RC beams. As found from the parametric study, this ratio also significantly affects the cracking 

moment of FRP/steel RC beams. Namely, with a constant total area of hybrid FRP/steel reinforcement, the cracking moment 

decreases with an increase in the Af /As ratio. 

The effect of Young’s modulus of FRP on the cracking moment is also investigated on the above-mentioned cross section 

and properties of materials. The cross section is reinforced with three groups of steel and FRP reinforcement: the first group — 

As = 4 cm2 and Af = 4 cm2 (minimum hybrid FRP/steel reinforcement ratio [20]), the second group — As = 25 cm2 and Af = 25 

cm2 (compatible hybrid FRP/steel reinforcement ratio [20]), and the third group — As = 50 cm2 and Af = 50 cm2 (maximum 

hybrid FRP/steel reinforcement ratio [20]). The modulus of elasticity of FRP reinforcement varies from 50 GPa to 200 GPa. It 

can be seen in Fig. 11 that the cracking moment of hybrid FRP/steel RC beams is linearly proportional to Young’s modulus of 

FRP reinforcement. Besides, the effect of Young’s modulus of FRP reinforcement on cracking moment increases with the 

increase of the FRP reinforcement ratio.  

 

Fig. 10 The response surface among cracking moment, FRP, and steel reinforcement ratios  
 

 

Fig. 11 The relationship between Young’s modulus of FRP reinforcement and cracking moment 

7. Conclusions 

In this study, the cracking moment of hybrid FRP/steel RC beams was experimentally and theoretically investigated. 

Based on the study results, the following conclusions may be drawn: 
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(1)  The cracking moment of hybrid FRP/steel RC beams is linearly proportional with the steel and FRP reinforcement ratios. 

(2)  In the scope of the experimental study, the cracking moment to load-carrying capacity ratio of hybrid GFRP/steel RC 

beams varies from 12% to 22%, and this ratio reduces with increasing total hybrid reinforcement ratio. 

(3)  Both steel and FRP rebars affect the cracking moment of hybrid FRP/steel RC beams. However, due to higher modulus of 

elasticity of steel in comparison with the FRP reinforcement, the contribution of steel rebars on the cracking moment of 

hybrid FRP/steel RC beams are more significant in comparison with FRP reinforcement. 

(4)  The proposed analytical method, which is based on the nonlinear stress-strain relationship of concrete and considered the 

contribution of hybrid reinforcements, accurately estimates the cracking moment of hybrid FRP/steel RC beams. 

(5)  The modulus of elasticity of FRP reinforcement also affects the cracking moment of FRP/steel RC beams, the cracking 

moment increases with the increase of Young’s modulus of FRP reinforcement.  

It should be stressed that the above conclusions are based on the study results of concrete beams made from normal 

strength concrete reinforced with optimal hybrid FRP/steel reinforcement ratio. The applicability of these conclusions to other 

types of concrete and very high hybrid reinforcement ratios is unknown. Further studies are necessary. 
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