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Abstract 

This research proposes an artificial intelligence (AI) detection model using convolutional neural networks 

(CNN) to automatically detect gas leaks in a long-distance pipeline. The change of gap pressure is collected when 

leakage occurs in the pipeline, and thereby the feature of gas leakage is extracted for building the CNN model. The 

gas leak patterns in the long-distance pipeline are analyzed. A pipeline detection model based on AI technology for 

automatically monitoring the leaks is proposed by extracting the feature of gas leakage. This model is tested by 

collecting gas pressure data from an existing natural gas pipeline system starting from Mailiao to Taoyuan in Taiwan. 

The testing result shows that the reduced model of leak detection can be used to detect the leaks from the upstream 

and downstream pipelines, and the AI-based pipeline leak detection system can obtain a satisfactory result. 
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1. Introduction 

Pipeline transportation systems are generally used to transport oil, natural gas, domestic water, etc. The long-distance 

transportation system may encounter leak problems due to old pipelines. Also, thieves may destroy pipelines and steal the 

resources from the pipelines. Thus, leak detection is a critical issue for effective pipeline management. Leak detection 

techniques based on acoustics and infrared (IR) are the most widely used techniques for the detection of liquid and gas leaks, 

respectively. However, these two techniques do not work sometimes [1]. For instance, IR approaches cannot accurately detect 

leaks in wet weather, while acoustic sensors may not accurately detect gas leaks in the target area because of noise [1]. Due to 

the need to purchase and install new sensors, the additional cost of buying hardware equipment may be incurred. 

In recent years, many methods have been proposed based on artificial intelligence (AI) techniques for developing leak 

detection systems [2-3]. For example, Yang and Zhao [2] used an optimally pruned extreme learning machine (OPELM) to 

improve the accuracy of the pressure point analysis (PPA), and used bidirectional long-short term memory (BiLSTM) to 

construct a leak detection system [2]. Zhou et al. [3] used improved spline-local mean decomposition (ISLMD) to analyze the 

internal pressure value of pipelines. They converted the data into an image, employed AlexNet to build a model to determine 

the occurrence of leakage, and used a cross-correlation function to calculate the time difference between upstream and 

downstream sensor values to find the location of the leakage point [3].  

A growing number of AI techniques for developing leak detection systems are based on convolutional neural networks 

(CNNs) [3-5]. CNNs are based on neurons arranged in layers and can therefore learn hierarchical representations; moreover, 

weights and biases link neurons from one layer to the next [6]. The first layer acts as the input layer for receiving the 
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transformed vector from image-based data, e.g., remote leak data. The last layer is the output, e.g., predicting whether a 

pipeline leaks or not. The feature derived from the previous layer serves as an input for the following layer. The final layer 

predicts an outcome according to the detected features. Layers between the first and the last layer are hidden layers that 

transform the feature values from the input to the output. Traditionally, CNNs consist of at least one convolutional layer as a 

hidden layer for exploiting spatial patterns [6].  

Melo [4] used gradient-weighted class activation mapping algorithm (Grad-CAM) and CNN models to judge whether the 

images recorded by closed-circuit television (CCTV) have a leak response; the experimental results reached an accuracy of 

99.78%. Li et al. [5] proposed a method for small-scale natural gas pipeline leak detection. The model converts the value of the 

acoustic sensor into the frequency domain and then uses a one-dimensional CNN to train the model. The final trained model 

has higher accuracy than the leakage detection performance of the traditional two-dimensional CNN model [5]. Kang et al. [7] 

used Ensemble CNN-SVM for leak detection in a water distribution system, and used a graph-based algorithm to determine the 

leak location according to the time difference of sensor value changes. The experimental results can reach 99.3% of the leak 

detection accuracy rate and control the leakage point position error within 3 meters [7].  

As shown by the literature review above, employing AI techniques to develop leak detection has received growing 

attention. However, few studies have investigated AI-based leak detection systems based on CNN for automatically 

monitoring the leaks in a real context. To fill the gap, the present study aims to develop an AI-based model to detect the leaks 

of a long-distance pipeline and test the model’s accuracy in a real context.  

In this research, pressure sensors (the inherent hardware equipment of a pipeline) are used to read the gas pressure in the 

pipeline, and the collected gas pressure data are used for feature extraction and model training. Additionally, the present study 

employs the pipeline detection data from supervisory control and data acquisition (SCADA) as the training data for deep 

learning. By doing so, the smart detection of pipeline leaks can be realized, and the hardware cost of the sensor can be saved. 

Specifically, this research uses the pressure sensor data recorded in SCADA to analyze and extract suitable data features, and 

then labels the data features separately and conducts model training through CNN. The model trained in this study can realize 

a rapid and accurate function of leak detection. The developed system is beneficial for managers to detect leaks in the 

long-distance pipeline.  

2. System Structure 

This research obtains the dataset from the pressure sensors in the SCADA system provided by a petrochemical 

manufacturer in Taiwan. Fig. 1 depicts the schematic diagram of this study by showing the pipeline transportation system. PT 

is a pressure gauge. The pipeline transportation starts from Plant A to Plant C via Plant B. Plant C is the end of the entire 

pipeline transportation system. The distance between Plant A and Plant B is about 63 kilometers. The distance between Plant B 

and Plant C is about 136 kilometers. The pipeline in Plant B will be pressurized by pumps before sending resources to Plant C. 

In this study, the pressure sensor, PT-M621, in Plant B is used to collect data for subsequent data analysis and model training, 

and the pressure sensor, PT-M622, is used to test and validate the model. 

 

Fig. 1 Schematic diagram of this study  
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Fig. 2 System architecture 

 

 
Fig. 3 Data from the real pipeline leak test 

The research system architecture is shown in Fig. 2. First, the data received from the SCADA system is classified into the 

normal data group and the leak data group. Next, the characteristics of the two data groups are extracted through feature 

engineering. Therefore, the two groups’ data are merged and divided into the training data set and the test data set for model 

training. Finally, this study tests whether the model can distinguish the leak data. Overall, this study employs the CNN 

architecture to construct the model. If the model cannot accurately classify the two types of data, the feature engineering needs 

to be adjusted until the model can effectively classify the two kinds of data. 

Fig. 3 shows the full-day data on the day of the actual leak test. The time points of the three leak tests for data analysis and 

feature engineering are marked in Fig. 3. The X-axis presents the time point of measuring the pressure. The time interval 

between pieces is one second. 

2.1.   Data analysis and feature extraction 

Fig. 4 illustrates the data sampling for the leak test. For observing the data variance in detail, the data for analysis is 

captured after the start of the leak test. In Fig. 4, the positions pointed to by the red arrow are the data points during the leak test; 

through data visualization, there are obvious pressure fluctuations when leakage occurs. This study uses these three leakage 

points as reference points to find more suitable data for feature engineering. 

Although the leakage appears at these points, the data of the leak pattern for extracting the feature cannot be reflected by 

these points. Therefore, according to the rule of thumb for capturing the leak feature found in this study, 1000 pieces of data are 

taken before and after the leakage points to capture the graphical pattern of leak occurrence, as illustrated in Fig. 4. The time 

interval for the pressure data sampling between pieces is one second. In doing so, this study does observe and find the data 

suitable for presenting the characteristics of the leakage data. 

In practice, the operators test the functionality of the pressure sensor by opening and then closing the valve after 30 

seconds and four minutes to simulate the gas leaks. Fig. 5(a) and Fig. 6(a) show the data collected from the interval between 

opening the leak valve instantly and waiting for 30 seconds to close the leak valve instantly, respectively. The curves marked 
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with red squares in the two figures are the pressure fluctuations during the leak test. As shown in Fig. 5(a) and Fig. 6(a), the 

width of the red region is the period for the opening and closing of the valve and is enlarged in Fig. 5(b) and Fig. 6(b). The 

pressure variance of the first leak test and the second leak test are shown in Fig. 5(b) and Fig. 6(b), respectively. As depicted in 

Fig. 6(a), the internal pressure of the pipeline does not return to a stable state during the second leak test. Therefore, the level of 

pressure fluctuation in the second test is smaller than in the first test.  

Fig. 7(a) shows the data collected from the pressure sensor during the third leak test. In the third leak test, the data 

collection process begins when the leaking valve is opened at a slower speed and ends when the valve is fully opened. The time 

interval for the opening and closing of the valve is four minutes. After four minutes, the leakage valve is closed at a slow speed. 

The width of the red region in Fig. 7(a) is the period for the opening and closing of the valve and is enlarged in Fig. 7(b). Thus, 

the pressure variance of the third leak test can be clearly seen in Fig. 7(b). 

 
Fig. 4 Illustration of the pressure data for detecting real pipeline leaks 

 

 
(a) Result of the first leak test showing leak point 1 

 
(b) Close-up view of the red region in Fig. 5(a) (showing the test interval) 

Fig. 5 The first leak test 

 

 
(a) Result of the second leak test showing leak point 2 

Fig. 6 The second leak test 
 

172 



Advances in Technology Innovation, vol. 7, no. 3, 2022, pp. 169-180 

 

 
(b) Close-up view of the red region in Fig. 6(a) (showing the test interval)  

Fig. 6 The second leak test (continued) 

 

 
(a) Result of the third leak test showing leak point 3 

 
(b) Close-up view of the red region in Fig. 7(a) (showing the test interval) 

Fig. 7 The third leak test 

 

 
Fig. 8 FOD processing result for the data of real pipeline leaks 

After training the model many times, even if the number of the convolutional layers, the number of the filters, and the size of 

the convolution kernel are increased, the resisting noise interference does not reach the requirement. The result presents that a 

single feature is less effective in resisting noise interference. Thus, the data is processed by the first-order differential (FOD) 

processing and its characteristics are analyzed. As shown in Fig. 8, the red arrows point to the data points of the real leak test. When 

observing the curve of the data analysis after the FOD processing, it can be understood that relatively large pressure fluctuations 

will be generated in the interval of the leak test. Thus, these features are adopted as the second feature of model training. 

As shown in Fig. 9, Fig. 10, and Fig 11, 1000 points of data extracted from the interval of the first, second, and third leak 

tests are used to analyze the features. Fig. 9(a), Fig. 10(a), and Fig. 11(a) are the FOD data from the first leak test, the second 

leak test, and the third leak test, respectively. The width of the red region in Fig. 9(a), Fig. 10(a), and Fig 11(a) is the period for 
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the opening and closing of the valve and is enlarged in Fig. 9(b), Fig. 10(b), and Fig 11(b), respectively. Taken together, after 

the data is transformed by the FOD processing, the pressure fluctuation produced by the first leak test is more obvious than the 

other two. Therefore, the FOD data of the first leak test is selected as the second feature of the training model of this research. 

 
(a) FOD processing result of the first leak test showing leak point 1 

 
(b) Close-up view of the red region in Fig. 9(a) (showing the test interval) 

Fig. 9 First-order data differentiation for the first leak test 

 

 
(a) FOD processing result of the second leak test data showing leak point 2 

 
(b) Close-up view of the red region in Fig. 10(a) (showing the test interval) 

Fig. 10 First-order data differentiation for the second leak test 

 

 
(a) FOD processing result of the third leak test data showing leak point 3 

Fig. 11 First-order data differentiation for the third leak test 
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(b) Close-up view of the red region in Fig. 11(a) (showing the test interval) 

Fig. 11 First-order data differentiation for the third leak test (continued) 

2.2.   Model training data set and testing data set  

According to the analysis result, a suitable data interval for identifying the features of the model training is found. The 

normal data and the leak data are given corresponding labels. As presented in Figs. 12(a) and 13(a), the data obtained from the 

pressure sensors are normalized to make the value with the range from 0 to 1, so the data in the two figures are not marked with 

the X-axis unit. Because the feature amount of the leak data is less than the feature amount of the normal data, data expansion 

is needed to achieve better training performance.  

In order to avoid the model from only learning the characteristics of a single data and causing identification failure, the 

data set is balanced. Finally, 70% of the normal data and the leak data are used as the training data. The rest of the data is used 

as the test data set. The result of experimental tests shows that if the data set is randomly arranged, it will reduce the accuracy 

of the overall model classification. Thus, this study orders the data according to the same characteristics and by the 

arrangement method.  

As shown in Fig. 12(a) and Fig. 12(b), the first half of the training data set is normal data, and the second half is leak data. 

Fig. 13(a) and Fig. 13(b) are the testing data sets, which are used to evaluate the effect of the training model during model 

training. 

 
(a) Original training data set 

 
(b) FOD training data set 

Fig. 12 Training data set 
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(a) Original testing data set 

 
(b) FOD testing data set 

Fig. 13 Testing data set 

2.3.   Model building  

This study uses Keras to construct a CNN model. The values collected from the pressure sensor are time series and belong 

to a one-dimensional data type. Therefore, a one-dimensional convolutional layer is used to build the model, and ReLU is 

selected as the activation function. To avoid the over-fitting of the model on the training data and reduce the generalization of 

the model, this study adds a dropout layer after the convolutional layer. Furthermore, through adding the pooling layer, the 

dimensions of the model features are reduced and output to the full connection layer. In the full connection layer, Softmax is 

used as the activation function. The loss function for the evaluation model is categorical cross-entropy, and the function for the 

optimizer is the Adam function. Fig. 14 depicts the flowchart of model building in this study. 

 

Fig. 14 Model building 

3. System Implementation 

After confirming that the training model can identify the leak data, the training model is used to perform a leak test in the 

data interval, thus verifying whether the model can correctly determine the occurrence of leaks and effectively resist noise 
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interference. As shown in Fig. 15, if the result of the model test is different from the expected result, then the hyperparameters 

of the model are re-adjusted to meet the condition where the time interval of the leak occurrence is consistent with the time 

interval of the real leak test. 

 

Fig. 15 System implementation  

3.1.   Model architecture  

Fig. 16 shows the model architecture, in which the three layers of the one-dimensional convolutional layer are stacked, 

and the dropout layer is added to prevent the model from overly relying on the training data set. After repeated testing is 

conducted, the classification effect of using the average pooling layer is found to be better than the effect of the max pooling 

layer. Thus, the average pooling layer is used here. 

 

Fig. 16 Model architecture 

3.2.   Result of leak point identification  

After completing the model training, the data of two different pressure sensors are employed to test whether the testing 

model can correctly distinguish and predict the point of pipeline leak where the leak actually occurs. The pressure sensor data 

shown in Fig. 16 is the data of the training model (PT-M621). In Fig. 16, if the model finds leakage, the leak point is one, and 

the normal data is zero. Moreover, in order to avoid the excessive dependence of the model on the training data set, the data 

from the differential pressure sensor (PT-M622) is used to verify the generalization of the model. 

The model architecture used in Figs. 17-18 is the same as the one shown in Fig. 16. In these figures, the red line represents 

the zero value of the pressure. In the pooling layer, this study chooses the max pooling instead of the average pooling as the 

mean to gain the results of the model training. Fig. 17 and Fig. 18 use PT-M621 and PT-M622 as the data sources of the model 

verification, respectively. Fig. 18 shows that Model 1 can accurately detect the occurrence of leakage, while Fig. 17 can only 

177 



Advances in Technology Innovation, vol. 7, no. 3, 2022, pp. 169-180 

 

detect the signal of the leakage generated during the first leak test. Fig. 19 and Fig. 20 use PT-M621 and PT-M622 as the data 

sources of the test model, respectively. The architecture of this test model uses the average pooling instead of the max pooling 

in designing the pooling layer, and the size of the convolution kernel is 3. As shown in Fig. 19, Model 2 only identifies the first 

and third leak occurrences but does not identify the second leak test. 

Fig. 20 shows that this model can accurately detect leakage in the interval where the leakage occurs. Fig. 21 and Fig. 22 

use PT-M621 and PT-M622 as the data sources of the test model, respectively. The structure of the test model is shown in Fig. 

16. The size of the convolution kernel is adjusted to 5, and the test results are shown in Fig. 21 and Fig. 22. As shown in Fig. 21 

and Fig. 22, this model architecture can accurately detect leaks in the time interval of the leak test on two different data sets, 

which confirms that the model is with good generalization and can be applied to different data sets. Table 1 lists the result of 

testing leak data after adjusting the hyperparameters of the above models. 

Finally, the model developed by this study is employed to test the data set from different sensors. The result indicates that 

this model can still play a role in leak detection when a real leak occurs, thus confirming that this model can well function, 

receive the accurate leak detection function, and achieve the level of generalization. 

The model developed by this study is implemented with simple architecture. The time interval for the pressure sensor to 

record data is one second. Thus, the data volume is also equal to the sampling time of the data volume. If the real-time leak 

detection function is to be achieved, the time for calculating the data of the model must be controlled within one second. The 

calculating time on different data volumes in the model is shown in Table 2. The experimental results show that if the data 

recorded every hour, 3600 cases, is used for leak detection, the calculating time for the model to predict the leakage can be 

below one second, thus being able to satisfy the requirement of real-time leak detection. 

Table 1 Results of testing the pipeline leakage with different hyperparameters 

Model Parameters PT-M621 PT-M622 

Model 1 
Max pooling 

Kernel size = 3 
Fail Success 

Model 2 
Average pooling 

Kernel size = 3 
Fail Success  

Model 3 
Average pooling 

Kernel size = 5 
Success Success 

 

Table 2 Calculating time of the model for different data volume 

Data volume (cases) Calculating time (second) 

86400 3.339572191238403 

43940 1.904508652279663 

3600 0.636376142501831 

600 0.476074934005737 

 

  
Fig. 17 Results of leak identification for Model 1  

(using the PT-M621 pressure sensor) 

Fig. 18 Results of leak identification for Model 1  

(using the PT-M622 pressure sensor) 
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Fig. 19 Results of leak identification for Model 2  

(using the PT-M621 pressure sensor) 

Fig. 20 Results of leak identification for Model 2  

(using the PT-M622 pressure sensor) 

 

  
Fig. 21 Results of leak identification for Model 3  

(using the PT-M621 pressure sensor) 

Fig. 22 Results of leak identification for Model 3  

(using the PT-M622 pressure sensor) 
 
 

The result can be summarized as follows. First, based on the physical features of the pipeline, the AI model of pipeline 

transportation is derived. Second, based on the AI model, the pipeline leak patterns are analyzed. It is found that the reduced 

model of detecting the pipeline leakage can be used to detect the leakage from the upstream and downstream pipelines. Finally, 

the model is tested in an existing natural gas pipeline system starting from Mailiao to Taoyuan in Taiwan. The results show that 

in the proposed AI-based leak detection system, the correctness concerning the detection function is not affected by various 

operational conditions of the pipelines. 

4. Conclusions and Directions for Future Research 

The present study contributes to the research and practice of pipeline leak detection in the following ways:  

(1)  The model developed by this study can effectively detect the leakage in the real long-distance transmission pipeline system. 

It can achieve the same performance as the traditional leak detection system. 

(2)  The training data used in this study is collected from the sensor of the original pipeline system. Thus, no additional 

hardware equipment is required, which can save the cost of hardware equipment. 

(3)  It can run smoothly without adding the extra graphics card. 

The operator can easily load the trained model when performing leak detection. Nevertheless, some limitations remain 

and need to be resolved in further research:  

(1)  This study uses the pressure sensor data collected from a single site to train the model. However, the data recorded by the 

pressure sensor at different sites may be different. It will be better to collect the training data from different sites in the 

pipeline system in future research. 
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(2)  The present study only uses the basic CNN architecture for model training and collects the data from one site in the 

pipeline. Future research can collect sensor values from other sites and employ RNN or LSTM algorithms for processing 

the time-series data. 

(3)  Only a few pressure data for pipeline leakage can be collected due to the expensive testing cost of the existing detection 

system. Thus, the issue of overfitting and false negatives may occur in the proposed model. More pressure data should be 

collected in further research. 
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