

Australian Journal of
Educational Technology

2003, 19(1), 46-58

Design principles for authoring dynamic,
reusable learning objects

Tom Boyle
London Metropolitan University, UK

The aim of this paper is to delineate a coherent framework for the authoring
of re-purposable learning objects. The approach is orthogonal to the
considerable work into learning object metadata and packaging conducted
by bodies such as IMS, ADL and the IEEE. The 'learning objects' and
standardisation work has been driven largely by adding packaging and
metadata to pre-constructed learning artefacts. This work is very valuable.
The argument of this paper, however, is that these developments must be
supplemented by significant changes in the creation of learning objects. The
principal aim of this paper is to delineate authoring principles for reuse and
repurposing. The principles are based on a synthesis of ideas from
pedagogy and software engineering. These principles are outlined and
illustrated from a case study in the area of learning to program in Java.

Introduction

Good eLearning resources are expensive to produce. The effectiveness of
these resources, however, and the return on the investment made, has
traditionally been limited by a number of factors. Resources developed
within particular Virtual Learning Environments (VLE) or Managed
Learning Environments (MLE), for example, could not be transferred for
use in others. The challenge of making learning resources 'interoperable'
across different systems thus became a major goal. At a higher level, tutors
often wished to reuse and repurpose learning resources to meet the
perceived needs of particular contexts and students. However, learning
resources were often monolithic; the resources had to be taken on an all or
nothing basis. The challenges of interoperability, reuse and repurposing of
eLearning resources thus attracted considerable development effort
(Duval, 2001).

The primary response to these problems has been the international work
directed at developing learning object standards. The concept of learning
object is defined very broadly. The IEEE standardisation draft defined
learning objects as:

Boyle 47

a learning object is defined as any entity, digital or non-digital, that may be
used for learning, education or training. IEEE (March, 2002).

The standardisation work has involved a number of major organisations,
eg. IMS, ADL, and IEEE. The work proceeded in several parallel strands
tackling different facets of the standardisation work. The two most
significant strands pertinent to this paper are the work on metadata and
learning object packaging. Metadata refers to the controlled taxonomy and
related vocabulary used to describe learning objects. In June 2002 the IEEE
agreed a standard for learning object metadata (LOM). This standard was
based on a proposal developed by IMS (originally called 'Instructional
Management System) which is turn had consolidated work from a number
of other bodies.

IMS has also developed a proposed standard for learning object
packaging. The basic proposal is to take any learning object and provide a
'wrapper' around this object. This wrapper describes the component
structure of the object, and includes the descriptive metadata. The learning
object is thus 'packaged' in a standard container format. This packaged
object can be stored in digital repositories. The metadata permits fast
effective searches to retrieve learning objects suitable for a particular
purpose (e.g. Koppi & Hodgson, 2001). These learning packages should
then be interoperable across different LMS (learning Management
Systems) as the vendors bring their tools into compliance with the
standards. The SCORM reference model provides a higher level
framework which relates these major strands within the broader work on
standards development (SCORM, 2002; RHA Associates, 2002)

This work is very valuable. It is making a very significant impact on the
evolution of eLearning. Calverley (2002) provides a good guide to the
relevance of this work to creating re-usable learning materials. The central
argument of this paper, however, is that this approach is not enough. In
order to provide a non-contentious basis for standardisation, a learning
object is defined to be almost anything. The standards are declared to be
pedagogical neutral (IEEE, 2002). The approach thus does not make any
statement about the authoring of learning objects. However, there is a
marked limit to the productive reuse and repurposing of learning objects
that have not been designed for these purposes in the first place. There is,
in the end, a limit to what can be achieved by intervention after the event
(after the design and authoring process). We cannot, of course, change the
past. In the future, however, learning objects must be developed with
potential reuse, and especially repurposing in mind. The principal aim of
this paper is to explore and delineate principles underlying authoring for
reuse and repurposing.

48 Australian Journal of Educational Technology, 2003, 19 (1)

Towards a synthesis of software engineering and
pedagogical principles

Software engineering is concerned with the design, development and
maintenance of large complex software systems. A major challenge in
software engineering has been the issue of developing 'maintainable'
systems. The use of the word 'maintenance' here underplays the nature
and scale of the problem. Software systems evolve over time to meet the
developing needs of the commercial context in which they are used. The
software thus has to be adapted to meet these new challenges. It is claimed
that over 70% of commercial software engineers’ time is spent on
'maintenance'. However, changing software is a difficult and error prone
process. The discipline of software engineering has thus developed
principles for the development of systems that are designed to be
'maintained'. A principal focus for several of these principles is
appropriate modularisation - breaking the whole into software units
designed to ease the maintenance problem. These principles have direct
relevance to the development of learning objects that are designed for re-
use and repurposing.

The first principle in that of cohesion - each unit should do one thing and
only one thing (Sommerville, 2000; Pressman & Ince, 2000). A direct link
can be made to the idea of learning objectives in pedagogical theory. This
mapping suggests that each learning object should be based on one
learning objective or clear learning goal. This may be illustrated by the
work on introductory programming in Java referred to later in the paper.
There are, for example, three types of loops (language constructs for
repeating blocks of code) in Java. Textbooks usually treat these together.
The principle of cohesion, however, indicates that there should be a
separate learning object for each type of loop. An immediate advantage is
that the tutor can select the order in which these learning objects are
combined. A tutor dealing with experienced student may wish to deal
with these in sequence; another tutor with a different group of students
may intersperse these learning objects with object dealing with other
features of the language.

In order to provide this freedom to order learning objects a further design
principle is important. This is the principle of 'de-coupling', or more
accurately minimised coupling. This principle states that the unit
(software module/learning object) should have minimal bindings to other
units. Thus the content of one learning object should not refer to and use
material in another learning object in such a way as to create necessary
dependencies. One object then cannot be used independently of the other
(Sommerville, 2000; Pressman & Ince, 2000).

Boyle 49

This principle is crucial in design for reuse. The learning object should, as
far as possible, be free standing. For example, a learning object on one type
of programming loop should not refer specifically to content covered in
another object. If we move the object it should still be fully understandable
and function to achieve its learning objective. The vision then is of a group
of cohesive and decoupled learning objects that can be selected and
ordered to provide different learning experiences. This provides one type
of adaptation based on inter-object selection and ordering.

The decoupling of learning objects is a considerable challenge. As
eLearning designers we tend to think of the overall impact on learning,
and strive to achieve rich, integrated learning experience. The challenge is
to maintain this richness in a system composed of reusable components.
There are a number of significant advantages, however, in taking on this
challenge. These advantages are explored in the example on learning
objects for introductory programming described later in this paper.

There is a final, crucial challenge that must be tackled to make these
learning objects rich and effective learning experiences. It would certainly
be possible to create a list of learning objects that are cohesive and
relatively decoupled, but are also pedagogically barren. We must face the
challenge of creating learning objects that are cohesive, decoupled and
pedagogically rich. This design challenge is associated with the issue of
'repurposability' as we might expect rich learning objects to provide
further options for adaptation by local tutors.

Rather than pursue the argument at a more abstract level, it is useful at
this stage to study the realisation of these principles in a concrete
implementation. This study concerns the developments of learning objects
for introductory programming in the Java language. It will be used to
illustrate how the challenges of cohesion, pedagogical richness and
decoupling are being tackled. This will then provide the basis for a further
clarification, in the later part of the paper, of the principles involved.

Learning objects for introductory programming in Java

Java has become a very popular candidate for the teaching of introductory
programming at university level. Java meets the constructivist criterion of
being an 'authentic' topic for study (Grabinger & Dunlop, 1995). It is a
powerful, real world language that can be used to create applets for the
Web or full software systems. Tutors also like the language because it
embodies the object oriented paradigm that is so influential in modern
computing. There are thus good reasons for teaching Java. Unfortunately,
many students find it difficult to learn. Even universities that can select

50 Australian Journal of Educational Technology, 2003, 19 (1)

from among the best students report difficulties in teaching Java. Thus
Jenkins and Davey (2001) state:

Anyone who has presented an introductory programming module will be
all too familiar with students who appear to be totally unable to grasp the
basic concepts. Others who come to supervise final year dissertations will
have been faced with students who insist that they want to avoid
programming at all costs.

To tackle this problem the School of Informatics and Multimedia
Technology at the University of North London instituted a project
beginning in Spring 2002 to substantially improve the learning experience
for first year students of programming. In August this became part of the
Department of Computing in the new merged institution, London
Metropolitan University. The study involves a large group of over 600
students. The project involves intervention in syllabus development, the
social organisation of learning and the introduction of new eLearning
materials. The eLearning resources are being based on the authoring of
rich, reusable learning objects. This development provides the focus for
the present discussion.

The university is a partner site in the UK LTSN National Subject Centre for
the Information and Computing Sciences. This Centre is funded by the
four UK national higher education funding councils to provide advice and
support in teaching and learning to all higher education departments in
the UK in Computing and Library and Information Science (LTSN-ICS
2002). The present project is acting as the preliminary step in exploring the
potential of setting up a national repository of learning objects for
introductory programming. The learning objects are being developed both
to meet immediate pedagogical needs and to serve this larger goal. This
produces extra pressure initially. However, it provides the potential to
divide the eventual task among a number of contributing partners,
exploiting considerable advantages of scale.

This project is dealing with a real and urgent problem. The initial set of
learning objects had to be developed and used within a tight time frame. It
was planned that refinements to the learning object structure could be
implemented on the basis of feedback from real evaluation data.

The main design requirements for learning objects may be summarised as
follows. Each learning object should be based on one clear learning goal.
From a software engineering perspective each learning object should be as
cohesive and de-coupled as possible. This greatly facilitates re-use and re-
purposing. From a pedagogical perspective, however, there is the need to
create an overall coherent learning experience. These design challenges

Boyle 51

may be in conflict. A key challenge for the project is to resolve the tensions
in a creative and productive way.

Compound objects

The software engineering principles imply that learning objects should be
as simple as possible. This greatly aids recombination and reuse. However,
such simple objects may well appear pedagogically unexciting. Swan
(1994), for example, argues that providing multiple perspectives aids
learning. The multimedia resources available for the Web certainly enable
the creation of rich, alternative ways of viewing and traversing a given
learning topic. How can the use of these powerful techniques be squared
with ‘simple’ learning objects?

One solution adopted is the creation of compound learning objects. In
language a compound sentence is a sentence that consists of several
independent clauses – ‘I went to New Zealand and I attended ASCILITE’.
Each clause can stand on its own as an independent entity. (These
sentences may be contrasted with complex sentences which contain bound
or dependent clauses - 'I went to New Zealand because …’).

A learning object may be thus simple, consisting of one independent
object, or it may be compound. A compound object consists of two or
more independent learning objects that are linked to create the compound.
There are two main advantages of compound objects:

1. They provide pedagogical richness not available through simple

objects.
2. They provide a significant basis for re-purposing.

A further important feature is that each simple component object can be
reused independently.

Compound objects support alternative views of the same learning issue,
eg. as a text based explanation or as a multimedia animation. They thus
provide a basis for pedagogical richness that fully exploits the
opportunities offered by the technology. It provides a basis for
repurposing through the addition or deletion of objects to amplify or
shape the pedagogical richness of the compound object. Local tutors may
be presented with a default compound, but they should be able to
reconfigure this to shape their own compound object.

This concept is being implemented in the Introductory Programming
project at London Metropolitan University. These learning objects are
being developed to meet an urgent practical need. The structure

52 Australian Journal of Educational Technology, 2003, 19 (1)

developed thus represents one presentation format for compound learning
objects. This presentation format treats the textual explanation, expressed
succinctly on a Web page, as the basic entry point into the compound.

Example of a compound object

Computer languages can be decomposed into basic building blocks. Each
building block may be associated with solving a recurrent problem in
writing computer programs. The 'learning objects' are based on these basic
components. Each compound object consists of a web page consisting of
two main parts. The first part is a succinct textual explanation (Figure 1).
This can operate as an independent learning object. The second part is the
'link' column. This provides links to other objects (often multimedia
objects) that amplify the learning experience offered by the compound
object. Each of these linked objects is structured so that it can be used
independently of the text based object. This is laid out schematically in
Figure 1.

Figure 1: Schematic layout of format for learning object realisation

The structure of this layout is very simple but also very flexible. It
implements a basic design pattern for multimedia (Lyardet, Ross &
Scwabe, 1998). The purpose of this design pattern is to manage the
bindings between one object and others. If we are to have cohesive and
relatively decoupled learning objects then we must have a design
mechanism for managing these bindings. There are two main types of
binding: navigational bindings through URLs and non-URL based content
bindings. This design pattern deals with the issue of URL based bindings.

The primary design feature is that the URLs must not be mixed in with
content. They must be kept and managed on a distinct area of the screen.

Banner

Explanation and
text based
examples

Expansion
links to other
resources

Link column

Boyle 53

This produces minimal explicit bindings between the main content and the
URL links. The URLs can be added to, subtracted from, or modified
without affecting the core object structure.

This provides an important mechanism for 'repurposing'. A learning object
consists of a core and zero or more expansions. A default object is
presented with the core with certain expansions added. These expansions
aim to provide added pedagogical value to help in attaining the learning
objective. However, as the couplings are precise, locatable and minimised,
it provides a basis for changing the objects to meet specialist or evolving
needs. These objects can be repurposed through the addition, subtraction
or modification of extra resources. This approach provides a basis for the
development of rich, adaptable learning objects through the management
of the coupling relationship within a compound learning object.

Illustration of an adaptable, compound learning object

Appendix 1 provides an illustration of a learning object developed using
this format. The learning objective is to enable students to comprehend,
and use in simple programs, the Java code for instantiating objects from
classes (this is the basic technique for the reuse of software in Java). The
core of the object contains a succinct text description providing example
code and an explanation of the Java constructs. It aims to do this in
language appropriate to a learner, and thus introduces the technical terms
in a 'Jargon' section at the end.

This object has a number of expansions (Appendix 1). There is no
compulsion on a student to use these. A student who has experience of
other programming languages may find that this textual explanation
suffices. A novice student may prefer to work through all the expansions
available. One of the expansions provides a Java applet that provides
sample code in a full applet and executes the sample code. This is accessed
through the expansion point labeled 'run applet'. A further resource is
provided by a Flash based interactive movie that gives an animated
illustration of the instantiation of an object. This resource is accessed
through the slot 'run animated explanation' (Appendix 1). A screen dump
from this animation is given in Figure 2. The animation culminates in a
simple game where the student can select individual 'words' and construct
the appropriate Java code. The aim of this resource is to provide an
attractive resource that amplifies the pedagogical richness of the learning
object.

The animated resource, of course, is a learning object in its own right. It is
self contained. So although it is used to provide an enriched extension to
the text object here, it is not bound. It could be used on its own, in a

54 Australian Journal of Educational Technology, 2003, 19 (1)

lecture, for example to illustrate the underlying concepts. It is important
for reusability that the resources also act as independent reusable objects.
The fact that it is an independent object also has advantages at the
authoring stage. The development of the text object and ‘expansion’
objects can proceed in parallel.

Figure 2: Screenshot from the animated explanation of instantiating objects

Learning objects and course structure

There is a further, and more obvious, dimension to decoupling. This
concerns the relationship between learning objects and the syllabus, course
or other higher organising structure in which they are delivered. Learning
objects should not be coupled/ bound into particular course structures. In
terms of Web based implementation, this means that the syllabus
navigation structure operates at a different layer of organisation for the
learning object resources (which can be reused in different syllabus
structures). The ‘syllabus’ navigation panel should be held as a separate
object (Figure 3). The syllabus can thus be re-purposed easily by the
addition, subtraction or re-ordering of links in the main

Boyle 55

syllabus/navigation ‘menu’. The only link from the syllabus to a particular
learning object should be one URL. The learning objects are thus as
decoupled from a particular syllabus as possible. The local tutor should
thus be able to repurpose the syllabus and/or the learning objects.

Many different syllabi may be created to meet different needs, eg.
university courses or short courses for industry. These syllabi objects
operate at a different layer from that of main content objects (Boyle 2001,
Boyle & Cook, 2001). The layers thus provide different levels of
organisation, and the links between objects at different layers should be as
clear and controlled as possible.

Figure 3: Schematic representation of a syllabus structure

The discussion of this topic has been considerably simplified as it is not
the primary focus of this paper. The key message is the need to establish
distinct layers of organisation in eLearning. The relationship between
entities at different layers should be managed in an explicit manner that
emphasises the principle of decoupling.

Ongoing development work and futures

The paper has set out a series of design principles for the design and
authoring of learning objects. The central challenge is to design for reuse
and repurposing. These principles have been illustrated with learning
objects developed for a project to improve the learning of Java. This project
is addressing a number of ongoing challenges in achieving maximised
decoupling of the learning objects.

These eLearning resources are being used with a cohort of over 600
studying Introductory Programming in the period September 2002-
Janaury 2003. It is not enough that these objects satisfy formal criteria of
cohesion and decoupling; they must also be effective pedagogically. A
Research Fellow has been appointed to carry out a detailed evaluation of

Syllabus Links to learning

objects

56 Australian Journal of Educational Technology, 2003, 19 (1)

the impact on learning and student acceptance. It is intended that this
evaluation should provide information directly on the pedagogic value of
individual learning objects. The preliminary results are positive and
encouraging.

A further stage of development is to use these quality assured objects as
the 'seedcorn' for a national repository of learning objects managed
through the UK LTSN National Subject Centre for Information and
Computer Sciences. This initiative would support the parallel
development and exchange of learning objects at different higher
education centres. The full advantages of cohesive, reusable learning
objects can only be achieved by creating communities that develop and
exchange learning objects.

Acknowledgements

The author would like to acknowledge the contribution of Richard Haynes
from the Teaching and Learning Technology Centre, London Metropolitan
University, who carried out the Flash authoring of the illustration
provided in Figure 2.

References

Boyle, T. (2001). Towards a theoretical base for educational multimedia design.

Journal of Interactive Media in Education. http://www-
jime.open.ac.uk/2001/boyle/boyle.html

Boyle, T. & Cook, J. (2001). Towards a pedagogically sound basis for learning

object portability and re-use. In G. Kennedy, M. Keppell, C. McNaught & T.
Petrovic (Eds.), Meeting at the Crossroads. Proceedings of the 18th Annual
Conference of the Australasian Society for Computers in Learning in Tertiary
Education. (pp. 101-109). Melbourne: Biomedical Multimedia Unit, The
University of Melbourne.
http://www.ascilite.org.au/conferences/melbourne01/pdf/papers/boylet.pdf

Calverley, G. (2002). Distributed Learning Project Guide: Creating Reusable

Materials. [viewed 1 Oct 2002, verified Word doc 29 Jan 2003]
http://www.cetis.ac.uk/groups/20010809144711/FR20020618103339

Duval, E. (2001). Standardized metadata for education: A status report. In

Montgomerie, C. and Jarmo, V. (Eds), Ed-Media 2001, World Conference on
Educational Multimedia and Hypermedia. AACE, pp. 458-463.

Grabinger, R. S. & Dunlop, J. C. (1995). Rich environments for active learning: A

definition. ALT-J, 3(2), 5-34.

Boyle 57

Appendix 1: Example - Creating software objects
from class templates

Creating software objects from class templates

Problem

In Object Oriented programming we need to create objects
from class templates. How is this done in Java?

Example code

RectangleClass myRectangleObject; Run applet
myRectangleObject = new RectangleClass ();

Explanation

In Java creating a new object is achieved in two steps:

Step 1: give the object a name and indicate which class it
belongs to as follows:

RectangleClass myRectangleObject;
 h
 class name object name

This line first states the name of the class to be used -
RectangleClass. It then gives (in computing jargon - 'it declares')
the name of the new object - myRectangleObject.

Step 2: use the new statement to create a new
copy (instance) of the class Run animated
 explanation

myRectangleObject = new RectangleClass;
 h h
 object name command class

This can be read as create myRectangleObject as a new object of the class
RectangleClass. This command produces one instance (copy) of the class
in the computer's memory. We can now manipulate that software object
(e.g. change the size, colour or position of the object)

Jargon

When we give the name of object - we declare the name of the object.
When we create a new object from a class template - we instantiate the
class (i.e. create an instance of the class)

58 Australian Journal of Educational Technology, 2003, 19 (1)

Jenkins, T. & Davy, J. (2001). Diversity and motivation in introductory
programming. Italics, 1(1). [viewed 1 Oct 2002, verified 29 Jan 2003]
http://www.ics.ltsn.ac.uk/pub/italics/issue1/tjenkins/003.html

Koppi, T. & Hodgson, L. (2001). Universitas 21 learning resource catalogue using

IMS metadata and a new classification of learning objects. In Montgomerie, C.
and Jarmo, V. (Eds.) EdMedia 2001, World Conference on Educational Multimedia
and Hypermedia. AACE, pp.998-1001.

IEEE (2002). Draft Standard for Learning Object Metadata. [viewed 4 Mar 2002,

verified 29 Jan 2003] http://ltsc.ieee.org/doc/wg12/LOM_WD6_4.pdf

LTSN-ICS (2002). The LTSC-ICS Website. [viewed 1 Oct 2002, verified 29 Jan 2003]

http://www.ics.ltsn.ac.uk/

Lyardet, F., Ross, G. & Scwabe, D. (1998). Using design patterns in educational

multimedia applications. In T. Ottmann and I. Tomek (Eds), EdMedia and Ed
Telecom ‘98. Procs. of the 10th World Conference on Educational Multimedia and
Hypermedia. AACE.

Pressman, R. S. & Ince, D. (2000). Software engineering: A practitioner's approach.

5th ed. - European edition. McGraw-Hill.

RHA Associates (2002). SCORM overview. [viewed 1 Oct 2002, verified 29 Jan

2003] http://www.rhassociates.com/scorm.htm

SCORM (2002). ADL Website. [viewed 1 Oct 2002] http://www.adlnet.org/

Sommerville, I. (2000). Software engineering, 6th Ed. Addison-Wesley.

Swan, K. (1994). History, hypermedia and criss-crossed conceptual landscapes.

Journal of Educational Multimedia and Hypermedia, 3(2), 120-139.

This article was nominated for an Outstanding Paper Award at ASCILITE
2002, gaining the additional recognition of publication in AJET (with minor
revisions). The reference for the Conference version is:

Boyle, T. (2002). Design principles for authoring dynamic, reusable learning
objects. In A. Williamson, C. Gunn, A. Young and T. Clear (Eds), Winds of
Change in the Sea of Learning: Proceedings of the 19th Annual Conference of the
Australasian Society for Computers in Learning in Tertiary Education, pp57-64.
Auckland, New Zealand: UNITEC Institute of Technology.

Author: Tom Boyle
Learning Technology Research Institute (LTRI)
London Metropolitan University, United Kingdom
t.boyle@londonmet.ac.uk

