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Clinical reasoning is a central skill in diagnosing cases. However, diagnosing a clinical case 
poses several challenges that are inherent to solving multifaceted ill-structured problems. In 
particular, when solving such problems, the complexity stems from the existence of 
multiple paths to arriving at the correct solution (Lajoie, 2003). Moreover, the approach 
one employs in diagnosing a clinical case is in some measure dependent upon the 
complexity of the case. This leads us to the question: Are there differences in the manner in 
which novices solve cases with varying levels of complexity in a computer-based learning 
environment? More specifically, we are interested in understanding and elucidating if there 
are clinical reasoning differences in regards to accuracy, efficiency, and process across 
three virtual patient cases of varying difficulty levels. Examining such differences may 
have implications from both a learner modelling and system enhancement perspective. We 
close by discussing the implications for practice, limitations of the study and future 
research directions. 
 

Introduction 
 
Clinical reasoning involves the “application of knowledge and clinical experience towards a clinical 
presentation to derive a solution” (Noll, Key, & Jensen, 2001, p. 41) and consequently is a crucial skill 
for medical students and professionals (Delany & Golding, 2014; Norman, 2005) because of the tangible 
implications for patient outcomes and safety (Levett-Jones et al., 2010). Clinical reasoning is inextricably 
linked with healthcare quality and outcomes and thus is a focal point in medical education (Ryan & 
Higgs, 2008). Nendaz and Perrier (2012) note that diagnostic errors are associated with 8% of adverse 
events in medicine and up to 30% of malpractice claims. The challenge in teaching clinical reasoning is 
that the process is complex and tacit (Higgs & Jones, 2000), thus making it a difficult task to teach 
(Delany & Golding, 2014). The most commonly used instructional approach to teach these skills is 
through clinical rotations (Lee et al., 2010); however, Gigante (2013) argues that “relying on time and 
experience to develop these skills is insufficient” (p. 1). Moreover, Levett-Jones et al. (2010) note that 
current teaching and learning approaches are lacking in developing the necessary clinical reasoning skills. 
Technology can complement clinical internship and classroom teaching by providing additional 
opportunities for students to develop clinical reasoning skills in an asynchronous and supportive 
environment. 
 
Clinical reasoning is complex and ill-defined in that there is no singular problem-solving path for arriving 
at the correct diagnosis; there are multiple routes to diagnosing a problem (Lajoie, 2003). The ill-defined 
nature of clinical problems makes them more difficult to solve because there are no set procedures or 
algorithms that will lead to the correct diagnosis. Diagnosis correctness, while crucial, may be an 
inadequate measure of assessing learners’ development of expertise in clinical reasoning. For example, 
Eva (2005) cautions that “one should not assume that because a student has provided an accurate 
diagnosis and⁄or management plan, he or she fully understands the physiological mechanisms underlying 
the process” (p. 104). Despite such calls, much less attention has been paid to examining the problem-
solving path taken to diagnose a case. To illustrate, consider the actions (for instance, reading about 
diabetes in the library after ordering a lab test for fasting blood glucose level) taken by a learner in 
diagnosing a case (see Figure 1); a deeper look into such fine-grained information may reveal meaningful 
insights about how learners synthesise complex information and perform. 
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Research investigating clinical reasoning has illustrated the importance of case specificity in medical 
education (Fitzgerald et al., 1994; van der Vleuten & Swanson, 1990; Wimmers, Splinter, Hancock, & 
Schmidt, 2006); this phenomenon refers to the variability in performance from case to case in medical 
problem solving. The prior knowledge that is associated with different diseases and their underlying 
physiological processes, combined with the prevalence of certain diseases, opportunities to encounter 
them in practice and gather detailed information, means that cases may vary in their level of difficulty. 
However, little research has examined the differences in performance variables across differing cases and 
how this impacts learning and the need to adjust feedback provided to learners. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1. Example of a line of clinical reasoning 
 
Thus, a particularly relevant question is how learners’ performance differs in diagnosing different clinical 
cases; explication of such differences may have implications for understanding how novices diagnose 
different simulated cases and in turn develop expertise. The present study makes an initial step towards 
resolving this issue by comparing diagnostic performance and processes across different cases or 
diseases, but within a similar type of physiological system. Furthermore, this undertaking is linked to the 
question of how best to support and foster learning and practice of clinical reasoning skills in simulated 
learning environments. As such, the findings will inform efforts to tailor instruction within BioWorld, a 
computer-based learning environment (CBLE) for clinical reasoning, to the specific needs of different 
learners and to recommend challenging cases to learners that are not beyond their level of competency. 
 
The purpose of the present study was twofold: to examine performance differences (measured by 
accuracy and efficiency) in clinical reasoning across three different virtual patient cases in BioWorld and, 
to investigate and exemplify whether there are process differences across cases using a data mining 
approach called process mining. Our hope is that this initial exploration represents a useful step forward 
in our ongoing efforts to better understand clinical reasoning of simulated cases by novices; specifically, 
we hope the findings will yield insights into how performance and process differences vary across 
different cases, and serve as an instructional design roadmap for developing a recommender system to 
assign cases to novice physicians and for augmenting our current comprehension of various problem-
solving trajectories involved in clinical reasoning. As a potential system modification, this system could 
capture individual differences in prior knowledge and experience to assign cases at the right level of 
difficulty to better support learners’ needs. 
 
The remainder of this paper is organised as follows: The first section delineates the background for our 
work and discusses the related literature; the second section presents a brief overview of the learning 
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environment used in the study, namely, BioWorld; the third section outlines the methods; the fourth 
section presents the analysis and results of performance differences across the three clinical cases; the 
fifth section outlines the procedure and findings of using process mining for ascertaining the process 
differences across the three cases; and the final section highlights the results, some limitations, and future 
extensions of the current study. 
 
Related work 
 
In recent years, the field of education has seen a veritable explosion of the use of technology. 
Investigations of CBLEs have demonstrated that learning can be supported in a wide range of educational 
domains, from algebra to history (e.g., Anderson, Corbett, Koedinger, & Pelletier, 1995; Beal, Walles, 
Arroyo, & Woolf, 2007; Matsuda et al., 2013; Poitras, Lajoie, & Hong, 2011; Vanlehn et al., 2005). This 
body of work elucidates the salient role that technology plays in learning experiences and outcomes. 
CBLEs provide an effective means to practise skills in authentic contexts and gain expertise by providing 
opportunities for deliberate practice and feedback (Lajoie & Azevedo, 2006). Deliberate practice refers to 
engaging in effortful activities that are designed to enhance one’s competence (Ericsson, 2006). Expertise 
in clinical reasoning can be acquired through the deliberate practice of diagnosing virtual patient cases 
(Lajoie, 2009). BioWorld (Lajoie, 2009) provides such opportunities for deliberate practice of clinical 
reasoning by scaffolding novice physicians as they practise with realistic virtual cases. Expert 
performance models are provided as scaffolds for novices to compare their own performance against an 
ideal solution for each case. Fine-grained learner-system usage data can be tracked and captured in 
CBLEs (Baker & Yacef, 2009). Similarly, BioWorld logs learner actions as they practise and gain clinical 
reasoning skills. In a concerted effort to support learners, CBLEs have been increasingly viewed as a 
promising tool in training and fostering learning; BioWorld represents one of many such tools to afford 
rich learning and training opportunities. 
 
One way to provide medical students with opportunities for deliberate practice is virtually through either 
high- or low-fidelity simulations. Medical simulations have shown promising results for the transfer of 
processes and skills measured or identified in simulation environments to clinical practice. For example, 
one longitudinal study showed that medical student clinical problem-solving processes at the beginning of 
their training is very similar to that of doctors (Neufeld, Norman, Feightner, & Barrows, 1981). Simulated 
environments allow researchers to map the reasoning or problem-solving process employed by students 
and experts. These process maps are useful for understanding the similarities and differences in 
diagnostic processes for different medical cases and across levels of expertise. These process maps can be 
used to determine the steps taken to arrive at a diagnosis, how the process used for one case compares to 
the process used for another case and if a specific process is more or less likely to lead to diagnostic 
accuracy. 
 
Performance on one medical case does not necessarily predict performance on subsequent cases because 
case specificity leads to different performance outcomes (Fitzgerald et al., 1994; van der Vleuten & 
Swanson, 1990; Wimmers et al., 2006). In fact, the correlation between diagnostic performances across 
cases has been reported as low as 0.1 to 0.3 (Norman, Tugwell, Feighter, Muzzin, & Jacoby, 1985). One 
reason for this lack of performance transfer is that there is substantial variability between and within 
clinical cases. For example, among 100 patients with pheochromocytoma, a rare tumour on the adrenal 
gland, 83 patients had functional tumours producing dangerous hormones while 17 patients had silent 
tumours and produced no hormones. Of the functional tumours, 15% were misdiagnosed leading to tragic 
consequences (Melicow, 1977). Thus, experience with one case or one type of disease does not 
necessitate transfer of diagnostic accuracy to other cases. 
 
There are few studies that have investigated problem-solving process in CBLEs or simulation 
environments. Exploring medical problem solving in a CBLE has several distinct advantages over 
traditional paper and pencil assessment situations. CBLEs are able to track the moment-to-moment 
decisions made in order to reach a final diagnosis. Technology can be used to accurately capture 
processes used in real time, across cases that range in complexity. The CBLE approach allows for a pure 
assessment of clinical reasoning that is independent of retrospective self-report or memory biases. Studies 
that have investigated the diagnostic process using CBLEs have been primary concerned with authentic 
methods for clinical assessment (Fitzgerald et al., 1994; Schuwirth & Van der Vleuten, 2003). It was 
found that case specificity hampered the reliability of student performance on the CBLE clinical problems 
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(Fitzgerald et al., 1994) and in simulated clinical reasoning environments (Schuwirth & Van der Vleuten, 
2003). This finding calls for a different approach to evaluating how medical trainees solve clinical cases 
when cases differ in complexity and medical domain knowledge. One alternative to merely evaluating 
final performance metrics of medical students is to map their problem-solving process in order to 
determine the clinical reasoning strategy they used and how this contributes to their performance. This 
two-pronged approach, presented in this paper, might clarify why some students perform well on some 
cases and poorly on other cases, despite having similar foundational clinical knowledge. 
 
BioWorld: An intelligent tutoring system for clinical reasoning 
 
BioWorld is a CBLE designed with cognitive tools to help medical students practise clinical reasoning 
skills in an authentic learning space while receive expert feedback (Lajoie, 2009) as they diagnose 
simulated patient cases. In practising clinical reasoning in BioWorld, a learner is tasked with diagnosing a 
simulated patient case. While the learner engages in the act of diagnosis, the system captures fine-grained 
learner actions. BioWorld consists of four learning spaces (Problem, Chart, Library, and Consult). The 
Problem space provides the patients’ case history, which contains information such as the patients’ profile 
(gender, age, etc.), history and symptoms. In the Chart space, learners can review patients’ vital signs and 
order lab tests to confirm or disconfirm specific diagnosis. The Library and Consult serve as help-seeking 
tools. In BioWorld, each diagnosis exercise begins with reviewing a patient’s case history, which 
describes the patient symptoms and other relevant details (which can be highlighted and sent to the 
evidence table). In solving the patient case, learners review the patient summary and formulate a 
differential diagnosis (with the help of the Hypothesis Manager tool), along with updating their level of 
confidence in relation to the most likely diagnosis (via the Belief Meter). The problem-solving trajectory 
involves identifying relevant symptoms, ordering lab tests to confirm or disconfirm specific diagnosis, 
seeking help (via the Library and Consult tools), and reasoning about the nature of the underlying disease. 
The final step involves submitting their final diagnosis, sorting and prioritising evidence and writing a 
final case summary. After the final diagnosis submission, learners can view and compare their solution to 
that of an expert, providing learners an opportunity to become cognisant of and reflect on differences, if 
any, of their solution path from the one of an expert. 
 
Method 
 
The data for this study was collected as part of a larger project that investigated the antecedent factors that 
led to attention allocation towards feedback in the BioWorld environment (Naismith, 2013). For 
examining accuracy and efficiency, we use the number of evidence matches of each student with the 
expert solution, total time taken to solve the case, and number of laboratory tests ordered for a more 
granular exploration of performance differences. More specifically, accuracy is operationalised as the 
number of evidence matches with the expert solution, while efficiency is defined by the total time taken 
to solve the case and the number of laboratory tests ordered. For examining process differences, we 
leverage the recorded learner-system usage data (i.e., the specific actions of learners) for generating 
process maps for the three cases. The cases used in the study are referred to by the patient names in the 
simulated cases. As a measure of case difficulty, we used the results from an earlier study to ascertain the 
difficulty levels of the various patient cases based on accuracy alone (Gauthier & Lajoie, 2014). The 
anticipated accuracies (represented as percent accuracies) for the three cases, ordered from easiest to the 
most difficult, were Amy (94%; easy), Susan Taylor (78%; moderate), and Cynthia (33%; difficult). 
These cases were developed by a content expert and were subsequently tested and validated by two other 
content experts (Gauthier & Lajoie, 2014). For the purpose of case development and validation, an expert 
was defined as someone with ‘‘prolonged or intense experience through practice and education in a 
particular field’’ (as cited in Ericsson, 2006b, p. 3). 
 
Participants 
 
Participants were recruited through advertisements (on classified websites) and newsletters (via email). 
Participants consisted of 30 volunteer undergraduate students and were compensated $20 for completing 
a 2-hour study session. The participants, 28 medical students and 2 dental students, were registered in the 
same classes at a large north-eastern Canadian University. The sample comprised 11 men (37%) and 19 
women (63%), with an average age of 23 (SD = 2.60). 
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Procedure 
 
Participants completed both a demographics questionnaire and the achievement goal questionnaire. This 
was followed by a training session to enable participants to learn and practise how to navigate and use the 
BioWorld system. Participants were also given instructions on how to think aloud while engaging in 
diagnostic reasoning in BioWorld. After the training session, participants were tasked with solving each 
of the three cases in BioWorld on an individual basis for a total duration of 2 hours. The three 
endocrinology cases used in this study were referred to by the patient names: Amy, Cynthia, and Susan 
Taylor. The correct diagnosis for each was diabetes mellitus (type 1), pheochromocytoma and 
hyperthyroidism respectively, and were classified as easy, medium and difficult cases. The order of the 
cases was counterbalanced to mitigate practice and fatigue effects. Upon completion of each case, 
participants completed a retrospective outcome achievement emotions questionnaire. 
 
Measures 
 
Like many CBLEs, the BioWorld system also records user-system interactions in the log files. In the log 
files there are three types of performance metrics, namely, diagnostic efficacy (e.g., count of matches 
with experts), efficiency (e.g., number of tests ordered and time to solve the case) and affect (e.g., 
confidence). Information recorded in the log file included the attempt identifier (participant and case ID), 
a time stamp, the BioWorld space (e.g., chart), the specific action taken (e.g., add test: Fasting blood 
glucose level), and details in relation to the action (e.g., Result: Pre Test value: 9.0 mmol/L; Post Test 
value: 14.2mmol/L). The focus of this study is only on the logs that contain the user actions recorded by 
the system while the participants solved the three patient cases. Data mining techniques were used to 
reveal patterns in the log files that could be used to determine learner strategies. Although participants’ 
think-aloud data were collected, the data analysis of the think-alouds was used to answer different 
research questions and is not the focus of this paper. For the analyses conducted in this paper, the 
accuracy and performance variables along with learning behaviours were extracted from the log files. 
 
Performance differences: Accuracy and efficiency 
 
In diagnosing a virtual patient case in BioWorld, diagnostic reasoning is assessed during problem-solving 
using a novice-expert overlay system (Shute & Zapata-Rivera, 2012). The system log tracks a number of 
key learner activities such as the evidence items highlighted as relevant, the lab tests ordered and the total 
time taken to solve a case. The goal of the novice-overlay model in BioWorld is to provide a means to 
automatically compare learners’ solution to an expert solution to obtain an explicit representation of their 
diagnosis steps and to enable learners to become aware of how their own solution differed from an 
experts’ solution 
 
In order to answer the research question, “are there performance differences across cases?”, we extracted 
diagnostic accuracy and efficiency from the log file database. Accuracy is operationalized as the number 
of evidence matches with the expert solution (the overlay model does an automatic assessment of the 
learner-submitted evidences in comparison to an experts’ list of evidences). Efficiency is defined by the 
total time taken to solve the case and the number of laboratory tests ordered. These three performance 
indices were included as dependent variables (i.e., number of correct matches with the expert solution, 
number of lab tests ordered and time taken to solve the case) and the three different cases (i.e., Amy, 
Cynthia, Susan Taylor) were included as the independent variable. The descriptive statistics for the 
dependent variables are presented in Table 1. To test differences across the three cases, MANOVA 
analysis was performed. 
 
There was no missing data for any of the variables. A box plot analysis reveals that there were four 
outliers for the Amy case and two outliers for the Susan Taylor case for the number of correct matches 
with the expert solution, one outlier for the Susan Taylor case and one outlier for the Amy case for 
number of lab tests ordered, and one outlier for the Cynthia case and one outlier for the Susan Taylor case 
for time taken to solve the case. Down weighting outliers to the next most extreme value is considered to 
be a reasonable way to handle outliers (Chatfield, 2003; Lavrakas, 2008). Therefore, the extreme values 
were replaced using the next most extreme value within the corresponding case. The outlier adjustments, 
which are necessary to meet the assumptions of the statistical analyses, strengthened the correlations 
between the dependent variables but did not change the direction or significance of the omnibus result. 
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Table 1 
Descriptive statistics 

 Case name Mean Standard deviation N 
Number of correct matches 
with expert 

Amy 6.37 2.30 30 

 Cynthia 4.23 1.55 30 
 Susan 

Taylor 
7.07 1.70 30 

 Total 5.89 2.22 90 
Number of lab tests ordered Amy 9.20 6.02 30 
 Cynthia 13.27 5.93 30 
 Susan 

Taylor 
7.33 4.189 30 

 Total 9.93 5.93 90 
Time taken to solve the case Amy 1550.93 768.34 30 
 Cynthia 1945.10 1014.49 30 
 Susan 

Taylor 
1335.20 646.35 30 

 Total 1610.41 853.42 90 
 
The correlations between the dependent variables were checked; the correlations were low to moderate, 
which is considered appropriate (Tabachnick & Fidell, 2007) (Table 2). All assumptions for a MANOVA 
were tested. Bartlett’s test of sphericity was significant and therefore the DVs are sufficiently correlated. 
Box’s M (35.794) was significant, p = .001; thus the assumption of homogeneity of variance was 
violated. Consequently, Pillai’s trace test is reported as it is robust against this violation (Field, 2009). 
 
Table 2 
Correlations between dependent variables 

Performance 1 2 3 
1. Number of correct matches with 

expert –   

2. Number of lab tests ordered -.167 (-.044) –  
3. How long to solve the case .015 (.017) .462* (.384*) – 

Note. *Correlation is significant at the 0.01 level (2-tailed). Values in brackets are values prior to outlier 
adjustment. 
 
The results from the MANOVA (Table 3) reveal that there is a significant difference in the pattern of 
means between cases across participant performance indices, F(6,172) = 8.056, p <.001. 
 
Table 3  
Multivariate tests 

 F Hypothesis df  Error df Sig. 
Pillai’s trace test 8.056 (5.623) 6.000 (6.000) 172.000 (172.000) .000 (.000) 

Note. Values in brackets are values prior to outlier adjustment. 
 
To further understand the nature of these differences, a series of ANOVA post-hoc comparisons were 
conducted. Levene’s test of equality of variance suggests that the assumption of homogeneity of variance 
was met for all the performance variables. The results of each ANOVA were analysed using the 
Bonferroni adjusted alpha of .017 (.05/3). ANOVA post-hoc comparisons indicate that there was a 
significant difference in number of matches with the expert solution between cases, F(2,87)=18.57, p 
<.001, η2=.30 and in how many lab tests were ordered, F(2,87) = 9.31, p <.001, η2 =.18. However, there 
were no significant differences in elapsed time across cases, F(2,87) = 4.23, p = .018, η2 = .09. These 
results suggest there were differences in performance accuracy and efficiency across cases. To understand 
how the cases differed, Tukey’s HSD post-hoc comparisons were conducted. The results suggest that 
participants had significantly more matches with the expert solution for the easier cases, (Amy and Susan 
Taylor) cases when compared to the most difficult case (Cynthia) (M = 6.37 SE = .34, M = 7.07 SE = .34 
and M = 4.23 SE = .34, respectively). The results also indicate that participants ordered significantly more 
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lab tests for the Cynthia case when compared to the Amy and Susan Taylor cases (M = 13.27 SE = .99, M 
= 9.2 SE = .99 and M = 7.33 SE = .99, respectively). 
 
Discussion: Performance differences 
 
The results suggest that there were distinct performance differences across the three cases participants 
solved in BioWorld, which supports the phenomenon of case specificity in clinical problem solving. To 
recapitulate, with regards to accuracy, findings suggest that participants had significantly more matches 
with the expert solution for the easier cases, Amy and Susan Taylor, when compared to the most difficult 
case, Cynthia. With regards to efficiency, the results indicate that participants ordered significantly more 
lab tests for the Cynthia case when compared to the Amy and Susan Taylor cases. Taken together, these 
two results provide evidence of performance differences across patient cases of varying difficulty levels. 
For the easier cases (Amy and Susan Taylor), participants had more matches with the expert solution and 
ordered fewer lab tests. For the most difficult case (Cynthia), participants had the least matches with the 
expert solution and ordered more lab tests. However, there were no significant differences in elapsed time 
across cases. From a theoretical perspective, the findings suggest the presence of a case-specificity effect 
in clinical diagnostic reasoning performance in accordance with prior research in this domain. 
 
Process differences: A process mining approach 
 
Learner modelling is often considered a formidable challenge. Previous studies on clinical reasoning have 
largely focused on diagnosis correctness. Much less is known, however, about the processes involved, 
such as the problem-solving paths that learners employ in diagnosing a case. The way learners solve a 
problem is important for the learning process. Given that the process of clinical reasoning is linked to 
clinical uncertainty and correctness, clearly, there is a need to better understand the way that learners 
arrive at a solution. Moving beyond diagnosis correctness, examinations of learner actions and behaviours 
will be beneficial to our understanding of clinical reasoning. 
 
In recent years, educational data mining has been gaining in popularity, as there has been burgeoning 
evidence showing the utility of various data mining techniques in addressing scores of educational 
questions (Baker & Yacef, 2009). Advances in data mining have produced new and powerful means for 
examining learning data. Access to effective data mining techniques have provided strong incentives and 
galvanised an interest in the educational community to address a wide spectrum of educational questions. 
Nevertheless, there are some data mining techniques that have not yet seen widespread use in educational 
contexts. Process mining, a data mining technique that uses “event data to extract process-related 
information” (Van der Aalst, 2011, p. 1), has been frequently used for investigating and understanding 
process data in business contexts and has been a staple of business process research. Little research exists, 
however, to guide efforts to mine clinical reasoning paths of novice learners. This initial examination 
leverages the value extracted by and success of process mining, as illustrated in the business process 
research literature, to make embryonic contributions in this regard. 
 
We make a case for the utility of process mining, a promising method for mining process data, in 
examining usage data from CBLEs to explain latent mechanisms that mediate diagnostic performance and 
the case-specificity effect found in the initial phase of this study. CBLEs provide affordances that make it 
possible to capture and track learner behaviours (Baker & Yacef, 2009) that are difficult to do in other 
learning environments like traditional classrooms. One of the most common ways to track learners’ 
actions in CBLEs is via log files; data mining methods can then be used to analyse and investigate 
various questions about learning material and learner outcomes. In this study, we consider clinical 
reasoning from a process perspective; thus, drawing on this perspective we argue that the learner actions 
can essentially be viewed in terms of steps or actions in a process. Process mining can be useful towards 
modelling learners’ problem-solving paths. According to Rozinat (2015a), the “core functionality of 
process mining is the automated discovery of process maps by interpreting the sequences of activities” (p. 
3). We employ the Disco Miner (2015), based on the framework of Fuzzy Miner, to generate process 
maps from the BioWorld log files. 
 
In process mining, an event log serves as the starting point. Rozinat (2015b) notes that the minimum 
requirements for an event log include, but are not limited to, Case ID, Activity, and Timestamp. The 
BioWorld log data meets the minimum requirements for an event log. To mine the data, the necessary 
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pre-processing steps were conducted: check for missing values, separate the data for the three cases, and 
correctly map Case ID, Activity and Timestamp data. The BioWorld log file was imported into the Disco 
tool and a process model (as a process map) was generated for the data. For each of the three cases, we 
generated a separate map. Thus, the 30 records extracted from the log files for each case were employed 
for generating the process maps. The Disco tool generates a frequency-based process map, which enables 
inspection of the process flow between actions; the “process flows … are automatically reconstructed 
(“discovered”) based on the sequence and timing of the activities” (Rozinat, 2015b, p. 52) in the log data. 
Thus, the generated process map illustrates both the order in which the actions have been performed and 
the relations between the actions (in terms of directionality). In the process map, the triangle symbol and 
the stop symbol represent the start and end of the process respectively. Each specific action is housed in a 
box and an arrow marks the process flow between actions. The numbers marked juxtaposed on the arrows 
(thicker arrows associated with higher frequencies) and in the boxes (different colours associated with 
different frequencies) are the absolute frequencies for the transitions and the instances of the actions 
respectively. The Disco tool allows control of the level of detail presented in the generated maps via two 
slider controls: Activities and Path. The slider values can be set between 0% and 100%: setting the sliders 
at 0% shows only the most frequent actions and at 100% all the actions are revealed. Setting the two 
sliders to a low value results in the most frequent activities and paths. To allow both interpretability and 
focus, we decided to set low values for both the slider values, thus giving the most frequent activities and 
paths for meaningful interpretation. 
 
Being exploratory, the goal of this preliminary analysis was to present process mining as an approach in 
knowing and understanding learner behaviours; thus, the intention of the findings is to present a global 
discussion on the utility of process mining. This exercise in general has import for understanding learner 
behaviours in clinical reasoning. 
 
Findings 
 
Given the performance differences across the three clinical cases, it is of interest to ascertain whether 
there are also differences in the actions taken to arrive at a diagnosis. In this section, we present the major 
themes (highlighting points of convergence and divergence) that emerged from the process maps for the 
three cases. 
 
Amy 
The approach employed in this case (Figure 2) begins with adding evidence, followed by two distinct 
blocks of actions. The first block revolves around the formulation of hypotheses (hypotheses formulation 
block), which begins with adding hypothesis and ends with the final prioritisation and submission of 
summary. After adding hypothesis, the most likely actions include linking evidence and changing 
hypothesis conviction. The second block includes two sets of behaviours: ordering lab tests and seeking 
help (test and help block). Here the relationship between lab tests and help-seeking assumes a reciprocal 
relationship: ordering of lab tests is followed by help-seeking, and after seeking help, learners tend to 
order lab tests. For the tail end of the process, a similar pattern of actions was seen across all three cases 
(prioritisation, categorisation and so on); a plausible explanation for this occurrence could be due to the 
more structured nature of the BioWorld interface. 
 
Susan Taylor 
The approach employed in this case (Figure 3) is similar to the Amy case in that the solution begins with 
adding evidence, followed by two distinct blocks of actions. The first block revolves around the 
formulation of hypotheses (hypotheses formulation block), which begins with adding hypothesis and ends 
with the final prioritisation and submission of summary. Unlike the Amy case, here, after adding 
hypothesis, the follow-on action is changing hypothesis conviction. The second block includes two sets of 
behaviours: ordering lab tests and seeking help (test and help block). Here, similar to the Amy case, the 
same reciprocal relationship between lab tests and help-seeking can be seen. As pointed out earlier, for 
the tail end of the process, a similar pattern of actions was seen across all three cases (prioritisation, 
categorisation and so on). 
 
Cynthia 
Similar to the Amy and Susan Taylor cases, the starting point for the Cynthia case (Figure 4) is also 
adding evidence. Furthermore, similarly, adding evidence is followed by two loops of actions. In contrast 
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to the Amy and Susan Taylor cases, however, the two loops assume different compositions compared to 
the Amy and Cynthia cases. The first loop revolves around the formulation of hypotheses (hypotheses 
formulation block), which begins with adding hypothesis and ends with the final prioritisation and 
submission of summary. However, the hypothesis submission, prioritisation and summary submission 
activities are not unique to this hypotheses formulation block. Here, the aforementioned activities overlap 
with the second block that includes, but is not limited to, ordering lab tests and seeking help. Moreover, 
the reciprocal relationship seen between lab tests and help-seeking in the Amy and Susan Taylor cases is 
absent in the Cynthia case. For the tail end of the process, a similar pattern of actions was seen across all 
three cases (prioritisation, categorisation and so on). 
 
Overall, the process maps generated for the three clinical cases yielded some interesting insights into 
process similarities and differences across the three cases. In all three cases, the starting point for the 
solution is adding evidence. From adding evidence, the two most likely actions are adding hypothesis and 
ordering lab tests. An interesting behaviour pattern is seen across the three cases: help-seeking is a 
common subsequent action to ordering lab tests. For the easier cases (Amy and Susan Taylor), there 
seems to be a reciprocal relationship between ordering lab tests and help-seeking. This is suggestive that 
either the learners tend to seek help to understand the consequences of the lab test result or they find 
information in the library that leads them to order new lab tests. However, this particular relationship did 
not occur in the more difficult Cynthia case; the reason for this is not known and this might be an 
interesting examination in future studies. 
 
The examination of the process model across different cases suggests important differences in steps taken 
to obtain a final solution. In the case of Cynthia, stating a hypothesis and ordering a lab test most often 
preceded library searches. However, in both the Amy and Susan Taylor cases, which are easiest to solve, 
learners searched the library only after ordering a lab test, but not following the selection of a hypothesis 
in the hypothesis management panel. Again, this finding is suggestive in terms of the design of feedback 
provided in the context of BioWorld. This may suggest that the feedback delivered in more complex 
cases should elaborate on the requisite declarative knowledge in relation to both the underlying 
physiological processes that characterise a disease and the relevant inferences derived from information 
gained from lab tests that may explain abnormalities in such processes. However, the cases with the 
lowest levels of difficulty require feedback that clarifies the meaning of the lab tests, without a detailed 
elaboration as to the physiological underpinnings as these are more commonly known to learners. As to 
the interpretation of the later stages of the process model, a similar pattern of activities was found across 
all three cases (prioritisation, categorisation and so on) due to the more structured nature of the BioWorld 
interface. 
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Figure 2. Process model – Amy 
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Figure 3. Process model – Susan Taylor 
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Figure 4. Process model – Cynthia 
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Discussion: Process differences 
 
The process models generated in this study suggest that the actions taken to solve each case were 
different. This finding further supports the notion of case specificity in clinical problem solving. The 
process model for the Cynthia case consisted of more connections to and more cycles between nodes 
when compared to the process model for the Amy and Susan Taylor cases. This observation illustrates 
that participants arrived at a final diagnosis through a more convoluted manner for the Cynthia case when 
compared to the Amy and Susan Taylor cases. The complexity of the process model for the Cynthia case 
may be a reflection of the difficulty level of the case. In addition, the process models reveals that 
participants consulted the library when adding hypotheses for only the Cynthia case suggesting that 
participants consulted the library in order to identify possible diagnoses. 
 
The process mining approach employed in this study represents a novel way of investigating learner 
behaviours and represents our ongoing efforts to examine and understand learner behaviours so as to 
provide a more coherent picture about clinical reasoning. The findings substantiate process mining as a 
useful approach for tracing and uncovering learner behaviours; in particular, the process mining approach 
identified different learner profiles based on case complexity. Furthermore, our research adds to the 
growing area of literature on leveraging data mining techniques for improving education by identifying 
individual differences in problem solving. 
 
Conclusion 
 
Our research supports earlier empirical findings that found case difficulty and case specificity influence 
clinical reasoning processes and performance (Fitzgerald et al., 1994; van der Vleuten & Swanson, 1990). 
In diagnosing the three endocrinology clinical cases in BioWorld, our findings suggest that participants 
had significantly more matches with the expert solution for the easier cases and ordered significantly 
more lab tests for the most difficult case. However, there were no significant differences in elapsed time 
across cases. From a theoretical perspective, the findings suggest the presence of a case- effect in clinical 
diagnostic reasoning performance in accordance with prior research in this domain. Taken together, the 
findings shed light on the differences across clinical cases and the performance elements involved in 
diagnosing a clinical case. 
 
From an instructional technology perspective, the results have implications for the design of features and 
functionalities in CBLEs to support clinical reasoning and medical education in general. Nendaz and 
Perrier (2012) note, “the majority of cognitive errors are not related to knowledge deficiency but to flaws 
in data collection, data integration, and data verification that may lead to premature diagnostic closure” 
(p. 1). Understanding the problem-solving paths of learners can be crucial in getting learners to be 
cognisant of their errors or prevent such errors entirely. Our research helps identify the steps learners take 
to arrive at a diagnosis. Viewing and examining diagnostic reasoning as a process through mining the 
learner-system usage data from a process perceptive can lead to meaningful insights. Furthermore, such 
an approach may also lead to intriguing possibilities for system improvements. According to Shute and 
Zapata-Rivera (2012), the particular steps encompassed by our mining exercise include the first two steps 
of effective learner modelling, namely, capturing information about the learner and analysing learner 
interactions. We determined that the ideal sequence of cases that should be delivered in BioWorld should 
consider case complexity. In this way, learners would benefit more by beginning to solve the easiest cases 
and making the transition to the most complex case upon showing mastery of the prerequisite skills. 
These patterns can be detected through the use of algorithms embedded within the system, thereby 
showing the benefits of process mining as a means to adaptively sequence content in intelligent tutoring 
systems in the medical domain. The process mining exercise conducted sets the stage for new ways of 
uncovering and understanding what is arguably a crucial aspect of learning, learner behaviours in CBLEs. 
Moreover, our work in this direction contributes to a growing literature shedding light on the use of data 
mining and learning analytics in educational research. 
 
Taken together, the findings from the performance differences analysis and process modelling lend 
support to the phenomenon of case specificity in clinical reasoning and extend previous research. The 
results also provide some support for the view that learners select different clinical reasoning strategies 
based on case complexity and that problem-solving strategies might influence performance. These results 
have implications for the design of features and functionalities in CBLEs to support clinical reasoning 
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and problem solving in general. For example, since solving difficult cases is associated with a more 
circuitous approach to solving the problem and less effective reasoning strategies, students might require 
more scaffolding to guide them towards effective strategies when solving difficult problems. One 
challenge is that case specificity can cause certain cases to be more difficult for some learners and easier 
for others. Thus, a generalised approach based on problem characteristics alone is not appropriate. To 
individualise the support provided to each learner, process modelling could be used to evaluate if the 
actions taken by the learner converge with pre-defined user profiles classified according to strategy 
effectiveness where effective problem-solving strategies are associated with good performance. Using 
these templates, the CBLE could respond promptly when users begin to engage in ineffective problem-
solving strategies. Thus, an important future direction is to use process modelling techniques to identify 
common user profiles and categorise them according to effectiveness. 
 
We acknowledge that the work reported here has limitations and scope for improvements. First, like most 
empirical studies, increasing the sample size can strengthen the study; with an increased sample size, 
more detailed empirical analyses can be performed. Second, this study was conducted with a single 
cohort of medical students; further work is needed to examine whether these results generalise across 
cohorts and levels of education. Third, our analyses were limited to three endocrinology cases; but there 
is room to expand the study to include a wider array of cases to mitigate issues of generalisability and 
context specificity. Finally, we limited our analyses to a small number of accuracy and efficiency 
variables to ease the analysis and interpretation of the results. We plan to conduct an expanded analysis to 
establish a holistic picture of performance differences across cases in clinical reasoning. Furthermore, we 
took an exploratory approach in our use of process mining to examine learner behaviours; as a first pass, 
we only considered the instances of actions and links between actions. Along with the instances, process 
mining also affords a way to consider the time factor in transitions between actions. For future analyses, 
we plan to consider the time factor as well. 
 
Several extensions of the present effort deserve to be addressed in future research. Individuals differ in 
their prior knowledge and their use of such knowledge to solve cases. Those with more prior knowledge 
have a richer schema to guide their pattern recognition during case resolution and the processes that they 
use to solve such cases may be more strategic. These individual differences will be most noticeable on the 
more difficult cases. For starters, it would be interesting to explore how students’ perception of case 
complexity differs based on diagnostic strategy. Another line of extension of the present study could 
consider and address how novices differ from experts in terms of the ways that the two groups diagnose 
clinical cases. 
 
These findings shed light on and enrich our understanding of clinical reasoning in simulated cases. The 
findings from this study will inform our ongoing efforts to improve learner modelling (Doleck, Basnet, 
Poitras, & Lajoie, 2015) and system design through the design of cognitive and metacognitive tools 
(Poitras, Lajoie, Doleck, & Jarrell, 2016; Lajoie et al., 2013). Furthermore, the examples and findings 
offered in this paper represent a template for other researchers and practitioners who are working towards 
improving learner modelling and the design and modification of learning systems. 
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