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ABSTRACT

This paper presents the results of a formal methods case study in which the Prototype Verification System (PVS) has
been used for requirements analysis of one module of a physical access control system. PVS is a tool for writing
formal specifications and constructing proofs. Previously, the same requirements have been analyzed by means of
testing supported by the IFAD Toolbox for VDM-SL. The capabilities of the two formal methods are compared.

INTRODUCTION

Formal Methods

Informal requirements are inappropriate to serve as a basis for software development. Still, most requirements
documents are expressed in natural language. "Formal methods are one of a number of techniques that when
applied correctly have been demonstrated to result in systems of the highest integrity" (Bowen and Hinchey,
1995). Formal methods exploit the power discrete mathematics. Their mathematical basis includes the
disciplines of set theory, abstract algebras, the LambdaCalculus, Petri Nets, etc.
The term 'formal methods' embraces formal specification and verified design. The two main approaches to
formal specification are called model-oriented, and property oriented. Model-oriented specification models the
behavior of the system by choosing specific data domains, and by defining functions and operations on the data
domains. Model-oriented specification languages include CCS, CSP, B, VDM-SL, and Z.
The basic idea of property oriented specification is to describe data structures by only giving names of data
structures and basic functions, and by defining characteristic properties among the functions. The main asset of
the property oriented specification style is to encourage underspecification - specifying less rather than more,
and doing so as abstractly as possible - thereby avoiding the tendency to focus on how a concept is realized
rather than what is required of it. Property oriented approaches include CLEAR, Larch, LOTOS, and OBJ.
A good introduction to formal methods is given by (Clarke and Wing, 1996). This paper includes an overview
of notable methods and industrial applications.

Requirements Analysis

CSS is a comprehensive security system which has been developed at the Austrian Research Center in
Seibersdorf (ARCS). CSS includes features like digital video recording and automatic door control. In a series
of case studies, the SSD module is used as a practical example for the investigation of the benefits of formal
methods (Droschl, 1999a; Droschl, 1999c). Prior to the present case study, SSD's requirements have been
analyzed using IFAD's VDMTools (Elmstrom et al., 1994). By animating the specification using the IFAD
Toolbox, a simple test case has been found, revealing the presence of inconsistencies. However, we failed to
establish a better understanding of the nature of the contractions. Second, several minor ambiguities had to be
resolved.
The results of the analysis using the IFAD Toolbox are summarized in Fig. 1. The Toolbox includes a wide
range of useful features: It can animate a subset of VDM-SL constructs by applying a test suite. In an interactive
mode, functions and operations may be invoked. Test coverage is a powerful feature which enables the user to
determine to which extent the specification is covered by the test suite. Due to an automatic C++ code generator,
the Toolbox can also be used in projects where code has to be delivered.
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Assets
Supports animation / testing

Statement / expression based test coverage
Automatic C++ code generation

Liabilities
No test case generator readily available

Exhaustive test difficult
Test ,,low level"

Figure 1: Experiences with IFAD's Toolbox for VDM-SL for Requirements Analysis.

In order to guarantee a systematic approach to testing the specification, a test suite has to be selected in a
thorough manner (Poston, 1996). However, the Toolbox does not have a test case generator. This and the huge
size of the state space of SSD makes an exhaustive test difficult. According to our experience, testing supported
by the IFAD Toolbox is a "low level" activity. It would be desirable to generate test cases based on general
properties. In order to overcome this problem, parts of the logic of SSD were used for the generation of test
cases (Droschl, 1999b).
Tool support is known to be one of the success factors in formal specification based analysis. Essentially, there
are rewriting based methods (including theorem proving) and state enumeration based methods (including the
application of test cases like in the IFAD Toolbox, and model checking (Holzmann, 1997)). For an overview to
formal specification based analysis see for example (Clarke and Wing, 1996; NASA, 1997). In enumeration
based techniques, the size of the state space is known to be the major limiting factor.
In the present case study, for the following reasons a theorem prover has been selected: first, SSD has a huge
state space. As mentioned above, this makes achieving complete test coverage a difficult task. Second, we were
interested in evaluating an approach which is opposed to the one employed in the first case study.
The list of theorem provers provided by Paulson17 includes Isabelle, PVS, HOL, Otter, COQ and Z/Eves.
Despite its potential bugs18, the Prototype Verification System (PVS) (Owre et al., 1992; Rushby and Stringer-
Calvert, 1995) is one of the most popular tools. Thus, it is very well supported.
PVS is a tool for writing specifications and constructing proofs. It comprises a specification language, a number
of predefined theories, a theorem prover, and various utilities. The specification language of PVS supports
property oriented specifications.
The Prototype Verification System combines an expressive logic with an interactive proof checker that supports
top-down proof exploration and construction. In addition to its proof checker, the PVS system includes a parser,
prettyprinter, and typechecker.
PVS has been applied to many applications including real-time (Kellomaki, 1997; van de Pol et al., 1998),
protocols (Rajan and Fujita, 1997), avionics (Dutertre and Stavridou, 1997), space applications (Lutz and Ampo,
1994), and digital circuits (Miner and Johnson, 1996; Shostak, 1983). PVS has been used for requirements
analysis before (Butler, 1996; Di Vito and Roberts, 1996; Dutertre and Stavridou, 1997; Easterbrook et al.,
1998; Heimdahl and Czerny, 1996). The issue of integrating VDM and PVS for SSD is discussed by (Agerholm,
1996) and (Droschl, 1999c).

Structure of this Paper

This paper is structured as follows: section 2 gives a general presentation of SSD, followed by some advanced
features. That section is concluded by a discussion of ..switches", which are the subject of this analysis. In Sec.3
a formal PVS specification for switches will be developed. In the second half of that section, the specification
will be used for proving requirements properties. Section 4 discusses the insights gained in the previous section,
as well as a comparison to previous work.

17Paulson's List of Theorem Provers http: / /www. el. cam. ac. uk/users / icp/
18PVS frequently asked questions and bug tracking database. SRI Computer Science Laboratory, Menlo Park,
CA, USA. http://pvs.csl.sri.com/bugs.html
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AN ACCESS CONTROL SYSTEM

In this section, some of SSD's features will be presented, including the notions of guard, round, station, target,
and in particular switches.

Basic Features

SSD is one module of an access control system called CSS. SSD provides an interface between the guards on
duty, devices like intrusion-circuits, and the operator. The basic principle is as follows: a number of guards
supervise a physical plant by night. By means of rounds, the plant is divided in areas. Each round consists of a
list of stations. The guards are required to visit (and "hit") stations one-by-one. This principle is illustrated by
Fig. 2.

Factory, Bank, ...: By Night

Figure 2: A site to be supervised by a guard. Stations are physical devices (terminals) which are spread over the
site. Stations are shown as terminals over triangles. The area to be supervised is defined by a series of stations,

called a round. Stations which shall be visited by the guard are marked in black.

The most obvious task of a guard is to visit stations. Typically, in one round, there is one guard. The system and
the entirety of guards are supervised by an operator. The operator interface includes features to select, interrupt,
and terminate rounds. He or she may also take stations out of order temporarily (deactivate them), or enable the
guard to continue the round at any station if the round has been interrupted.

Advanced Features

SSD supports more advanced features, including the following: a guard may be on his own, and two guards may
form a team. Rounds may run in parallel, and share stations. Under certain circumstances, a guard may hit a
station of another guard's round. The guard's identity has to be checked whenever a station has been hit.
However, there are stations which do not return the identity of the guard. If the guard is threatened by an
intruder, the guard can make use of a feature called "silent operator notification". There is a range of causes
which cause a round to be interrupted. Then, as part of a recovery procedure, the operator must clear the
interrupt. To catch up after a (possible) delay that has occurred after an interrupt, the operator may enable the
guard to skip any of the following stations. One of SSD's advanced features is the switching mechanism.
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Switches

CSS is a system which may be used for night-time supervision of physical plants. At night, doors are usually
locked, lights are off and intrusion circuits are activated. All of these items represent obstacles for the guards
who need to circulate. A switching mechanism is concerned with unblocking and blocking of these obstacles
whenever it is necessary.
Essentially, the guard's interface to the system is restricted to a location mechanism: when a guard has hit a
station, the system is aware of the position of the guard in the site. Unblocking (and blocking) must take place
automatically. Since such a switch triggers the submission of data to one (or many) obstacles, they are also
called switch targets or simply targets. Each target may be in one of two states: blocked or unblocked. When a
station gets hit by a guard, switches may cause the state of the target to change. The action of unblocking a
target is called an ENTRY-switch, and blocking the target is referred to as an EXIT-switch. This principle is
shown in Fig. 3.

/\ E N T R Y !

[Iden t i fy ! Swi t ch

\ /

A

Station n
Stat ion n+1

Figure 3: Part of an example round: the guard first visits some station n which causes an ENTRY switch to the
given target. The guard then proceeds to station n + 1, which will send an EXIT switch.

Unfortunately, the switches principle becomes (unnecessarily) more complicated. First, parts of the
requirements are given on an operational level: rather than stating the properties a solution satisfying the
requirements shall have, an explicit algorithm is proposed. Second, there are an important number of special
cases, which all need to be treated separately. Also, some of these cases may occur simultaneously.

Motivation for this Analysis

We will now show the test case that has indicated that there are contradictions in the requirements.
On the way through the round, the guard has to visit stations one after another. However, the operator may
temporarily deactivate single stations while leaving the round functioning. As pointed out above, for a certain
scenario the proposed requirements are known to fail: in a round with 5 stations, number 2 and 4 inactive, the
guard may be unable to finish the round, because a target is impassable. A detailed explanation of why this is so
goes beyond the scope of this paper. Clearly this given scenario should not require the operator to interfere.
Thus, it is unacceptable.

System Size

The present paper reports on one of a series of case studies. These case studies and the original development are
carried out in parallel. They are all based on a collection of 60 informal requirements rules, given on 10 A4
pages. The VDM specification consists of 60 A4 pages, and the PVS specification covering only the switches
aspect is about 1000 lines long.
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FORMAL SPECIFICATION AND ANALYSIS

The previous section has briefly introduced some of SSD's principles. In the present section, the discussion will
get a little more technical. First, a formal specification will be developed. It will then be used in the proof of
safety and liveness properties.

Formal Specification

We will begin by formalizing some of the concepts which are related to switches. The full PVS specification
consists of about 1000 lines, including empty lines and comments. For brevity, only a few examples can be
given.

Terminology

PVS supports identifiers composed of uppercase and lowercase letters as well as a wide range of special
characters. In order to make the specification more easily readable, we have introduced a few restrictions.
Names of types will be written in UPPERCASE_LETl bRS, functions and constants in lowercasejetters.
Boolean_valued_functions? have a question mark at the end of their name.
PVS functions are total. Thus, undefined values can be handled by means of supertypes and subtypes. In the
specification, there are plenty of type declaration pairs where one is a subtype of the other. In these cases, the
supertype has an additional question mark at the end, as, for example, in T_ST and T_ST?. Some more
information on super- and subtypes will be given below.

A Glimpse on the Specification

A target is a physical device which can be in one of the two states blocked and nonblocked. In state blocked, the
target is impassable for the guard. Examples for targets are light switches, doors, and intrusion circuits.

Target Identifier. T_ID? and T_ID are datatypes. They both contain all physically existing (,,valid") target id's.
In T_ID? there is an extra value called null_tid. Predicate t_id_notnull? holds for all valid targets. As pointed
out above, T_ID is a subtype of T_ID?. Note the "+" in the declaration of T_ID? which makes sure that the type
is non-empty.

T_ID? : TYPE+
nulUid : T_ID?
t_id_notnull? ( t id : T_ID? ) : bool = tid /= null.tid
T_ID : TYPE = (t_id_notnull?)

Target State. T_ST indicates the present state of the target: blocked or nonblocked. T_ST contains all values of
T_ST? but T_ST_NULL. Again, T_ST is a subtype of T_ST?.

T_ST? : TYPE = { NONBLOCKED, BLOCKED, T_ST_NULL }
t_st_notnull? ( t s t : T_ST? ): bool = 1st /= T.ST.NULL
T_ST : TYPE = (t_st_notnull?)

Round Identifier. Essentially, a round consists of a list of stations. Stations are devices which are visited and
hit by the guard on his or her way through the site. Examples for stations are card readers, terminals, or ordinary
push buttons. Similar to the target id, each round has a unique identifier of type R_ID.

R_ID? : TYPE+
null_rid : R_ID?
r_id_notnull? (rid : R_ID? ) : bool = rid /= null_rid
R_ID : TYPE = (r_id_notnull?)

Target In the PVS specification, a target is modeled by its state and a reference to the round that has last
modified that state. Each of these fields may hold null values: first, if tjastmod? is undefined, then the model is
unaware of a previous state change. However, in such a case the target may be either blocked or nonblocked.
Second, a null value of the state is used to indicate that it is a non-existing target null_t.
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T? : TYPE= [#
t_state? : T_ST?,

Llastmod? : R_ID?
#]

t_notnull? (t: T?): bool = t_st_notnull?(t_state?(t))
T : TYPE = (Lnotnull?)

null_t: T? = (#
t_state?:=T_ST_NULL,
t_lastmod?:=null_rid
#)

t_st_mod_yet? (t: T) : bool = r_id_notnull?(t_lastmod?(t))

Target Database. The collection of known targets is modeled as a mapping from target id's to targets. T? is
used as the domain of this mapping. Since in PVS mappings (they are functions) are total, some id's may map to
a null target. It should now become clear why there has to be a null value for the target type T?.

T_DB : TYPE = [ T_ID -> T? ]

System State. According to the PVS model, the system state consists of the target database defined above, and a
round database which is specified elsewhere using the same principles.

SYS_ST: TYPE =[#
rdb:R_DB,
tdb:T_DB
#]

Event. An event of type EV is a subtype of uu_EV. Essentially, it models the transition from one system state to
another, triggered by some switch.

uu_EV : TYPE = [#
sys.before : SYS_ST,

trig : TR,
sys_after: SYS_ST
#]

Scenario. A scenario of type SCENARIO is a subtype of u_SCENARIO. A scenario is the set of all possible
sequences of events. According to the PVS model, these are defined by means of axioms. This is in contrast to
(Droschl, 1999b) and (Droschl, 1999c), where SSD's scenario is essentially defined as a relation between all
pairs of events.

U_SCENARIO : TYPE = list[EV]

Formal Proof of Requirements

In the first part of this section, parts of SSD's formal PVS specification have been shown. Now, this
specification will be used in a discussion of formal proof of requirements.
Which kind of properties can be proved in PVS ? In general, axioms and theorems. We defined a scenario as the
set of all possible sequences of events. Let P(scenario) be a certain predicate over some given scenario. The
following axiom formally states that property P should hold for all possible scenarios.

example_property:
AXIOM FORALL (scenario:SCENARIO): P(scenario)

Safety and Liveness

An example rule taken from the requirements is given in Fig. 4. The main problem of requirements validation is
to find something to validate the system against (Sommerville and Sawyer, 1997). This is particularly true for
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this present problem, simply because the switches' requirements lack a clear definition of which high-level
properties shall hold. Instead, most of the requirements are given on a low operational level.

Rule 17:

An EXIT switch may only be sent, if the target is in state nonblocked, set by the same round.

Figure 4: One rule from SSD's requirements. It is meant to serve as an example showing that many of the
requirements focus on a low operational level rather than stating which high-level properties should hold.

However, from re-reading the requirements and interviewing domain experts, the issues shown in Fig. 5 have
emerged. These will serve us as a starting point for further analysis.

A missing link in the requirements

In an attempt to formalize the safety requirement given in Fig. 5, it has turned out that there is a missing link
between a switch and the station that needs to be hit in order to trigger that switch. This is particularly
surprising, because the operator needs to be aware of such a concept in round setup.

Liveness:
Is it possible that a guard may not finish a round,

for example, because a door remains locked ?

Safety:
Is the state of the target after the guard hit equal to its initial state ?

Figure 5: Two liveness and safety properties.

A more restricted Property

There are two main consequences: first, an assumption19 has to be added to the requirements in order to avoid
possible misunderstandings between developers and users of the system. Second, even though such an
assumption could be made prior to further formal analysis, we need to find a more relaxed liveness property for
SSD. Otherwise, a conclusion meaningless for the existing implementation of SSD could possibly be drawn
from a too restrictive assumption.

The following axiom tst_do_not_change states that for all scenarios sc the initial target state is equal to the final
one.

tst_do_not_change:
AXIOM FORALL (sc:SCENARIO):
(
length(sc)?=l AND FORALL (ev:EV), (rid:R.ID):

member(ev,sc) AND rid=tr_rid(trig(ev))
) IMPLIES
tdb(sys_before(nth(sc,0))) =

19Please recall that there are ENTRY and EXIT switches. An ENTRY switch unblocks some target/obstacle,
whereas and EXIT switch blocks it. An assumption could be of the following form: if some target TI is assigned
to some station si in terms of an ENTRY switch, the guard passes that target on the way from station Si to
station si,i. If a target T2 is assigned to some station Sj in terms of an EXIT switch, the guard passes it
between station Sj.i and station s^ (It is assumed that stations si, s i4 l and Sj-i , Sj are not deactivated).
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tdb(sys_after(nth(sc,length(sc)-

length(sc)?=l restricts the consideration to those scenarios consisting of one event or more. member(ev,sc)
makes sure that event ev is indeed part of scenario sc. Round id rid is bound to the round related to the trigger
by rid=tr_rid(trig(ev)). tdb(sys_before(nth(sc,i))) extracts the states of the targets before the ith event.
According to our understanding, this property should be provable. However, we did not succeed. Is it impossible
to show, based on the given specification ? For several reasons, this is a difficult question to answer: first, PVS
has a great variety of prover commands with plenty of options. Which ones are suitable ? Second, the very
structure of the specification is known to have a major impact on the success of a proof. Third, it is not
straightforward to track down the relationship between the description of PVS logic in the manuals and its actual
behavior. Finally, PVS is known to have possible sources of errors.
The following two axioms can be shown to hold: tst_may_change states that there exists a scenario where the
equality does not hold. In fact, it is the inverse of the previous axiom. tst_do_not_change_restrict can also be
proved. It states that for all scenarios, where there is no interrupt, the initial target state is equal to the final one.

tst_may_change:
AXIOM EXISTS (sc:SCENARIO) :
(
length(sc)?=l AND FORALL (ev:EV), (rid:R.ID) :

member(ev,sc) AND rid=tr_rid(trig(ev))
) IMPLIES

tdb(sys_before(nth(sc,0))) /=
tdb(sys_after(nth(sc,length(sc)- 1 )))

tst_do_not_change_restricted :
AXIOM FORALL (sc:SCENARIO) :
( FORALL (ev:EV), (rid:R.ID) :

length(sc)?=l AND r_state(rdb(sys_before(ev))(rid)) /= INTERRUPTED AND
member(ev,sc) AND rid=tr_rid(trig(ev))
) IMPLIES

tdb(sys_before(nth(sc,0))) =
tdb(sys_after(nth(sc,length(sc)- 1 )))

DISCUSSION

This case study had two main objectives: first, to analyze SSD's requirements. The results will be given in Sec.
4. 1 . Second, to investigate the benefits of formal proof on an industrial application. Prior to this case study, the
requirements have been analyzed by means of testing supported by the IF AD Toolbox. A comparison between
these alternative approaches will be given in Sec. 4.2.

Application Specific Result

Formal Properties. In this case study, a more thorough understanding of the requirements has been achieved,
including a few properties which have been expressed formally by means of axioms. In a sense that their level
of generality can be chosen by the developer, axioms have shown to be more flexible than single test cases.

Complementary Models. In the first case study, all of SSD's requirements have been formally specified. The
IFAD Toolbox for VDM-SL has been selected, because it supports both analysis and code development. SSD's
VDM specification may be used with little modifications to automatically generate C++ code. The PVS
specification developed in the present case study is targeted at analysis only. Thus, the two models are
complementary. They not only cover different parts of the requirements (the PVS specification is only
concerned with the switches part), they are also given in a different manner: in the VDM specification, events
are modeled by means of executable functions. The PVS specification makes use of axioms. Those interested in
the details of the VDM specification are asked to refer to (Droschl, 1999d; Droschl, 1999b). The (non-)duality
of the VDM and PVS specifications is investigated more closely in (Droschl, 1999c).

Missing Link in Requirements. This work has revealed that the requirements lack a ,,link" between switches
and stations. There is no statement like the following one: when the guard has previously visited station i, and an
ENTRY switch is required such that the guard may reach station i + 1, then that switch shall be assigned to
station i. Vice versa for EXIT switches.

153



Clearly, using such an assumption in this analysis could have lead to a conclusion meaningless in practice. In
consequence, a more relaxed property has been used.

Proof vs. Testing

The IF AD Toolbox can help to analyze specifications by means of animation and testing. One possible scenario
of using testing for requirements analysis is the following: first, identify the properties to be checked. Then,
select a suitable collection of test cases for which that property should be checked. Run the test cases and
evaluate the properties.
In these two case studies, testing has turned out to be much easier to handle than formal proof. However, this
has been the first project where the author of this paper was involved in testing and formal proof of an
application of this size. What seems to make testing a challenge is the need to cover all relevant test cases. In
theory, even if just a single test case is left unconsidered, the entire result may turn out to be false (Droschl,
1999b).
As already pointed out in the first part of this section, the VDM and the PVS models are complementary: for
example, in the VDM specification events are modeled by means of executable functions. In PVS, the emphasis
has been on analysis aspects. Thus, non-executable concepts could be used. Initially, even the VDM
specification has made use of non-executable concepts: some of the functions have been defined by means of
pre- and post conditions. However, these implicit functions have subsequently been complemented by their
explicit counterparts. In general, it is easier to develop an executable model from a collection of implicit
function definitions, than from a specification with lots of axioms.
In a situation, where a major body of knowledge exists in VDM (the pure VDM specification without comments
is about 30 A4 pages long), there are two main arguments for performing an analysis in the IFAD framework:
first, there is no need for developing a new specification in an alternative environment. This could result in a
major effort, partly due to differences in the logics. Even though there are efforts to extending the IFAD
Toolbox with a prover (see for example (Agerholm and Frost, 1997)), at present, there is no such feature.
Second, a developer is believed to be able to get started testing a specification in a reasonable time. Even though
the application of single test cases may be straightforward and insightful, their choice remains the critical step.
In the first case study, a test case has been identified indicating the presence of contradictions in the
requirements. In order to achieve a more thorough understanding of these contradictions, an alternative analysis
approach had to be found. Parts of the requirements have been re-formalized in the PVS environment. Even
though it has been shown how a VDM-SL specification can be turned into its PVS counterpart (Agerholm,
1996), the original requirements have been used as the basis for formalization: first, only parts of the
requirements had to be formalized in PVS. Second, the structure of the VDM specification is targeted at making
the specification executable. This was in contrast to the aims of the PVS specification. Third, the construction of
a "fresh" specification out of the original requirements was believed to lead to good structure.
There are a variety of formal methods tools. Most of them have their own specification languages, incompatible
with other languages. At best, there are syntactic differences only. However, this is rarely the case. Current
attempts of integrating formalisms (Ambriola et al., 1997; Kramer et al., 1996) indicate that the transition from
one formalism to another is a key element to the efficient application of formal methods. This has also been
observed as part of our work (Droschl, 1999c).
In principle, using PVS for requirements analysis seems to be a promising approach. Theorems can be used to
express arbitrarily general/abstract properties. In contrast, single test cases cover some very restricted aspect
only. However, the (potential) user of PVS may face substantial obstacles. For example, PVS has shown to
require a significantly longer start up time than testing. Also, proof attempts can get quite challenging from a
technical perspective. On the one hand, PVS supports a variety of different types of proofs. On the other, this
results in a many prover commands and a confusing user interface. The need for a practical user interface in
formal methods has been recognized before (Heitmeyer, 1998).
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Figure 1 summarized the main findings of the VDM analysis. In Fig. 6 the results of this analysis using PVS are
given.

Assets
Formal Proof has shown to lead to a better

understanding of the requirements than testing.
Proof is flexible - level of generality of axioms can

be chosen by the user.
The act of thinking about and of writing down

properties may yield important insights.

Liabilities
Proof is more difficult than testing.

Concrete form of specification may have a major
impact on the success of proof.

The PVS user interface suffers from a large variety
of commands.

Re-formalization may result in a significant effort.

Figure 6: Experiences with PVS for Requirements Analysis.

Further Work

Model checking can become feasible once a suitable abstraction is found. This approach has not been pursued
yet, because it was unclear which aspects to abstract away from. However, it would be interesting to see if our
understanding of SSD's requirements could further benefit from model checking, and how these techniques
relate to previous research.
An important issue is the construction and maintenance of formal specifications. Due the results of requirements
analysis, the informal requirements may now be changed. Obviously, this will result in modifications of the
VDM and the PVS specifications. Even though the informal requirements were thoroughly formalized, the
modifications may result in a major effort. One approach to overcome this problem is given in (Droschl, 1999e).
However, only model oriented specifications have been considered.

CONCLUSION

In this paper, we have presented the experiences gained in a formal methods case study in which the Prototype
Verification System has been used for requirements analysis. The experiences with this formal method have
been compared with previous work where the IF AD Toolbox has been used for a similar purpose.
The conclusion is that both approaches have their weeknesses and strengths - the IF AD Toolbox can be used as
part of larger projects where C++ code has to be developed. However, it lacks a test case generator which can
make testing a painstaking task, depending on the application.
The kind of analysis that is supported by PVS frees the user mostly from having to bother with low level details.
However, a certain amount of technical knowledge is required for using this tool it effectively. Also, the variety
of commands at the interface may be considered difficult to overlook. Finally, the concrete form of specification
may have a major impact on the success of proof.
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