
USING ARTIFICIAL NEURAL NETWORKS AND FUNCTION POINTS TO ESTIMATE
4GL SOFTWARE DEVELOPMENT EFFORT

G.E. Wittig and G.R Finnic
School of Information Technology

Bond University
Gold Coast, Queensland 4229

ABSTRACT

Hie value of neural network modelling techniques in performing complicated pattern recognition and non-
linear estimation tasks has been demonstrated across an impressive spectrum of applications. Software
development is a complex environment with many interrelated factors affecting development effort and
productivity. Accurate forecasting has proved difficult since many of these interrelationships are not fully
understood. An attempt to capture the significant attributes of the software development environment to enable
improved accuracy in forecasting of development effort is made using backpropagation artificial neural
networks. The data for this study was gathered from commercial 4GL software development projects, across a
large range of sizes. As is typical of software developments, the range in productivity and other development
factors in the data set is also large, accentuating the estimation problem. Despite these difficulties the neural
network model predictions were reasonably accurate in comparison with other published results, indicating the
potential of the use of this approach.

INTRODUCTION

Reliable prediction of size and effort in software development projects is a necessary prerequisite to
developing reliable cost and schedule estimates (de Marco, 1982). The size and development effort
measures, such as function points or lines of code developed per person-month, act as technical
productivity and performance indicators that facilitate the tracking and control of software
developments.
Unfortunately it is by no means easy to estimate development effort accurately and much effort has
been expended to develop metrics which attempt to measure size and complexity of programs and
systems (Conte et al, 1986). Many of the early metrics were developed in the procedural third
generation language (3GL) environment. The mainly non-procedural fourth generation language (4GL)
developments, with their high level query languages, screen writers, report generators, and application
generators are substantially different (Martin, 1982).
Function Point Analysis (FPA), which is technology independent (Dreger, 1989; Rudolph, 1986), has
been used for both 3GL and 4GL developments to estimate development effort. An analysis of some
commercial 4GL software developments from several organisations indicates the presence of large
variations in productivity which must be accommodated to accurately estimate development effort
(Ferens & Gurner, 1992; Wittig, 1991).
Interrelationships between the various factors affecting development effort are complex, not fully
understood and have made development cost estimation difficult and sometimes inaccurate (Kemerer,
1987). These factors affecting development effort should not be analysed individually in isolation
(Kitchenham, 1992), as it is necessary to ascertain their combined effect. Intuitively for example the
proportionate difference in total development hours between a system developed by an expert
programmer team and an average programmer team is significantly influenced by the complexity of
the system being developed. In an analysis of 65 cases (Banker et al, 1991) to identify factors
influencing maintenance productivity, the technique of Stochastic Data Envelopment Analysis was
used and the authors noted that linear models are not likely to make adequate representations of the
development process.
The value of neural network modelling techniques in performing complicated pattern recognition and
non-linear estimation tasks has been demonstrated across an impressive spectrum of applications
(White, 1988). A recent survey (Rumelhart et al, 1993) shows that the recent growth of neural network
applications has been quite remarkable. It was just four years ago that the only widely reported
commercial application outside the financial industry was the airport baggage explosive detection
system. Since that time scores of industrial and commercial applications have become known. A few

87 AJIS



of these applications include telecommunications, particle accelerator beam control, credit card fraud
detection, machine and hand-printed character recognition, cursive handwriting recognition, mass
spectra classification, quality control in manufacturing, petroleum exploration, war on drugs, medical
applications, financial forecasting and portfolio management, and loan approval. The details of many
are considered corporate property and shrouded in secrecy. This growth in neural network applications
is in part due to the availability of an increasingly wide array of dedicated neural network hardware, in
the form of accelerator cards for PC's and workstations. Complementing the hardware are scores of
commercial software packages (Rumelhart et al, 1993).
This study uses backpropagation artificial neural networks to examine whether they are capable of
adequately capturing software development complexities in their weight space, to enable them to make
accurate estimates.

RESEARCH METHODOLOGY

Data collection

For this study development data from 15 commercial systems, developed by information systems
professionals, was recorded. The size of the systems was measured in unadjusted function points as it
appears to be a more consistent measure than source lines of code (Jeffery & Low 1990; Kemerer,
1987; Low & Jeffery, 1990).
Development effort was measured in development hours. All activities, starting from the specification
stage and through to that stage where the product is ready to be delivered to the end-user are included
in the development time. The time spent on documentation is therefore also included. Excluded is the
time required for the formal user acceptance tests, as well as end-user training. The definition of a
development hour is the actual time spent on the project, and also includes all time spent on attending
meetings directly related to the software development, but excludes times such as public holidays,
leave, illness, and development staff training.
The development attributes which were included in the study were selected after reviewing some
previously published research (Albrecht & Gaffney, 1983; Boehm, 1981; Conte et al, 1986; Jeffery,
1987; Jones, 1986; Vessey, 1986). The selection was refined by interviewing the information systems
managers of 10 commercial organisations to establish which factors they with their development
experience considered to have a significant impact on development productivity.
Precise descriptions of the various development attributes were developed, to attempt to ensure data
consistency across the data set (Wittig, 1991). No interrater reliability study was conducted (Kemerer,
1993), as some of the systems are very large and this would have been costly. In the determination of
the average size of the development team both analysts and programmers are included in the
calculation, as well as project managers and program librarians directly involved with the
development.

Research data

The systems ranged in size from a small 29 function point system to a system of 4669 function points.
If uncommented 4GL source lines of code (SLOC) is used as a size measure, the systems ranged in
size from 600 to 571 000 SLOC. The development effort required to develop these systems ranged
from 40 to 81 270 hours. A system of less than 300 function points would be considered a small
system, while a medium system would be between 300 and 800 function points, a large system
between 800 and 1000 function points, and a very large system would be greater than 1000 function
points (Dreger, 1989). A summary of these details is given in Table 1.
The size unit of unadjusted function points (UFP) is used. There has been some criticism regarding the
choice and weighting of the function point adjustment factors (Jones, 1991; Kitchenham, 1992;
Symons, 1991), and as it is easy to include these into the neural network model, the technical
complexity adjustment to generate adjusted function points was not made. For this study software
development productivity is defined in the economic sense (Jones, 1986) and is expressed as the
amount of output produced per unit of input, and the unit used is unadjusted function points per
development hour.

May 1994 88



GL System

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

Table 1

Dev
Hours
5027
1680

13300
98

588
450
40

81270
35000

240
100

4864
1200
2500
1400

Data Set

Lines
Code

88325
44204

170 557
1535
2019
1600
1400

298843
562500

600
3241

25000
30000

571000
-

SizeUFP

1842
905

4191
208
342
164
29

4113
3486

286
214

2758
1913
4669

850

Productivity
UFP/Hr

0.37
0.54
0.32
2.12
0.58
0.36
0.73
0.05
0.10
1.19
2.14
0.57
1.59
1.87
0.61

An examination of the productivity range indicates that this varies from 0.05 to 2.14 function points
per hour. Data with such a large size and productivity range, with significantly different development
attributes, and which inherently contains a lot of noise, further complicates effort estimation. To
convert the size of a system measured in function points to a development effort estimate, a
productivity factor has to be applied. Productivity varies not only by programmer, but also by project
size (Dreger 1989). This implies that the effect of project size on productivity has to be quantified to
enable an accurate estimate of development effort to be made (Finnie and Wittig 1993). With a limited
sample size multiple regression analysis proved difficult to derive accurate effort estimates, and
attempts have been made using the Analytic Hierarchy Process (Finnie et al 1993) to prioritise the
effect of the various development factors.

Neural network model

For this study, backpropagation artificial neural network models were used. Backpropagation networks
are the most generalised neural networks currently in use (Nelson & Illingworth, 1991) and this
approach was chosen in preference to Hopfield and Kohonen networks. Nelson and Illingworth (1991)
discuss some of the many networks which have been developed and give guidelines for possible
applications. As software development estimation is not a time series problem, approaches such as
finite impulse response (FIR) and recurrent networks were not considered
The backpropagation network requires data from which to learn. To learn the network calculates the
error, which is the difference between the desired response and the actual response, and a portion of it
is propagated backward through the network. At each neuron in the network the error is used to adjust
weights and threshold values of the neuron, so that at the next epoch the error in the network response
will be less for the same inputs. This corrective procedure is called backpropagation and is applied
continuously for each set of inputs or training data. The training data should consist of as much
relevant data as possible. In practice one does not usually have the luxury of a perfect training data set.
With limited data one has to consider the trade-off between having as large a training set as possible
and still leaving sufficient data points to test and validate the model.
For this project the data were divided into three sets. The training set comprised ten developments, the
test set three, and the validation set two. The data for each category were randomly chosen, except that
the data in the test and validation sets was not allowed to be larger or smaller than the largest and
smallest developments respectively in the training set. This was done so that predictions were not
made outside the data range on which the network had been trained.
The inputs were unadjusted function points, average development team size, systems analyst
capability, systems analyst experience, the level of requirements volatility, the level of processing

89 AJIS



complexity, whether reusable code was developed or not, the required processing reliability, and the
capability and the experience of the programmer team. All the inputs except for the average
development team size and the unadjusted function points reflecting the system size, were converted
to a binary notation. The target against which the network was trained was the development hours of
the systems in the training set. The accuracy of the development effort estimate was taken as the Root
Mean Square Error (RMSE), proportionate to the size range of the systems in the data set
To avoid over-training the network, the dangers of which are discussed later, and to be able to monitor
the generalisation capability of the network, the training error and the prediction error were recorded at
100 epoch intervals. As the initial randomly generated starting network weights affect network
performance these were saved, and the network was then re-run using the same starting weights, and
stopped it when it had reached its minimum prediction error.

ANALYSIS OF DATA

Network models were developed with various combinations of inputs selected from the attributes
mentioned above. The results were not particularly encouraging and the prediction errors were erratic
and not satisfactory. An examination of the results showed that the network appeared to consistently
overestimate the size of the very small systems, as well as to consistently underestimate the size of the
very large systems. For the remaining systems, the estimated development effort was more accurate.

Network parameters

To try and improve the network performance, the learning rate and momentum were varied, as was the
network architecture. Models with one through to six hidden layers were developed. Consistently the
models with just a single hidden layer performed better, while the models with multiple hidden layers
in many instances did not converge. Various activation functions were tried, and the popular sigmoid
function consistently gave the best results.
To solve the problem of the network not training and predicting well on such a large target range, the
natural logarithm of the development hours was used. This compressed the range and improved the
network performance.
There is no clearly defined theory which allows for the calculation of the ideal parameter settings and
as a rule even slight parameter changes can cause major variations in the behaviour of almost all
networks (Schoneburg, 1990). It is through a process of trial and error and experience that settings are
selected which will result in a reduced average prediction error. The settings of the learning rate and
momentum control the way in which the error is used to correct the weights in the neural network for
each training case. When the learning rate is set to high values (close to 1) there is the possibility of
unstable behaviour, as evidenced by widely varying average error values. When the learning rate is set
lower, the possibility of unstable behaviour is reduced, but training times are increased and there is a
greater probability of getting stuck in local error minima. The higher the momentum, the larger the
percentage of previous errors that is applied to the weight adjustment in each training case. For
example, when the momentum is set at 0.5, then SO percent of the weight adjustment will be due to the
current error and SO percent will be the weight adjustment applied in the previous case.
For this set of data a learning rate of 0.1 and a momentum of 0.7 gave good results. A neural network
architecture of a single hidden layer using a sigmoid activation function tended to result in the lowest
average prediction error. The best results were obtained with a 23-4-1 architecture, and Table 2 shows
the results up to 2000 epochs. The average training error is reduced steadily as the network trains, as is
the prediction error. For this network the lowest average prediction error was obtained at about 2000
iterations. With further training the training error is further reduced, but the network does not
generalise well, and from this point the average prediction error increases. The reason for this is that
the network tends to curve-fit the training data, giving a low average training error, but this then leads
to poor generalisation.

May 1994 90



Training
Iterations

100
200
300
400
500
600
700
800
900
1000
1100
1200
1300
1400
1500
1600
1700
1800
1900
2000

Results
Average Err

0.2748
0.2060
0.1504
0.1210
0.1063
0.0971
0.0892
0.0820
0.0757
0.0709
0.0673
0.0646
0.0626
0.0609
0.0598
0.0585
0.0576
0.0569
0.0562
0.0556

Prediction
Iterations

100
200
300
400
500
600
700
800
900
1000
1100
1200
1300
1400
1500
1600
1700
1800
1900
2000

Results
Average Err

0.1548
0.1429
0.1422
0.1413
0.1374
0.1307
0.1205
0.1091
0.0967
0.0865
0.0788
0.0692
0.0589
0.0486
0.0386
0.0315
0.0238
0.0168
0.0129
0.0126

Table 2 Training and Prediction Errors

Network performance

A larger data set would have been preferable, but this type of information is difficult to gather. Other
studies such as Kemerer (1987) (15 cases) and (1993) (27 cases) are also limited by data availability.
A result of a small data set was that the network performance was significantly influenced by the
initialisation weights which are randomly generated. Some sets of initialisation weights resulted in
better convergence and a reduced average prediction error. As there is currently no known theory on
the allocation of starting weights to optimise the network performance, and these are generated and
allocated randomly, it meant that from repeated trials the weight set which resulted in the lowest
average prediction error was selected.
The results of the network which gave the lowest average prediction error are shown in Table 3. The
output has been normalised by converting it back from the natural logarithm and then rounding it
Both tile actual system size and that predicted by the artificial neural network are shown. The first ten
data sets comprise the training set The next three comprise the test set, and the final two the
validation set
The error in the training set is not important As mentioned above, by training the network further, this
error could be further reduced, but this would have degraded the model's generalisation ability,
resulting in an increased prediction error.
Examining the results in Table 3 reveals that neither the very smallest, nor the largest systems were
included in the testing and validation set, as this would have meant that they would have been
excluded from the training set, and would have resulted in having to predict outside this range.
Training was stopped when the prediction error was at its lowest The prediction capability of a
network is judged by the test and validation sets. The three systems in the test set took 100, 1200 and
4864 person-hours to develop. The model predicted 89, 1184 and 4429 for the three systems
respectively, resulting in error predictions of 11.1%, 1.3% and 9.0%A

91 AJIS



4GL
System

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

Table 3

Actual
Development Hours

5027
1680

13300
98

588
450
40

81270
35000

240
100

4864
1200
2500
1400

Prediction Results

Estimated Development
Hours
5015
1652

13085
269
377
262
62

62236
34832

240
89

4429
1 184
2144
1396

Percentage
Error
-0.24%
-1.68%
-1.62%

174.41%
-35.89%
-41.69%
55.42%

-23.42%
-0.48%
0.11%

-11.08%
-8.95%
-1.30%

-14.24%
-0.27%

Category

Training
Training
Training
Training
Training
Training
Training
Training
Training
Training

Test
Test
Test

Validation
Validation

The two systems in the validation set required 1400 and 2500 person hours to develop. The prediction
for the smaller system was 1396 person-hours, which is within 1% of the actual development time. For
the other system the error was 14.2%.

DISCUSSION

Within the limited data set, backpropagation artificial neural networks appear to indicate the potential
to be developed into good software size estimation models. In examining the model's performance the
following factors need to be considered:

1. These systems were developed in an uncontrolled and natural (not artificial) environment
Only the data was gathered and there was no control over the development environment.
2. The software development environment is complex, with many and often interrelated
factors affecting development effort. Currently available size estimation models have on
occasions not performed well when applied to systems which were developed outside of a
strictly controlled environment (Ferens & Guraer, 1992; Kemerer, 1987; Mukhopadhyay et
al, 1992).
3. The range of the system sizes is large, as is the variation in productivity. Despite these
difficulties the models performed well in terms of current level of prediction accuracy (Ferens
& Gumer, 1992; Kemerer, 1987; Mukhopadhyay et al, 1992)
4. The research experience with the small data set highlighted the importance of the initial
weights allocated to the network weight space. This makes the model development more
difficult. Additional data, which is difficult to obtain in large sets, should reduce the influence
of the starting weights and make training networks more stable (Lendaris, 1993).
5. The model is not difficult to develop and has the flexibility of being able to incorporate
additional attributes as input if special circumstances warrant their inclusion.

FURTHER RESEARCH

The model has produced good results, as noted above, in being able to predict on average within 10
percent of the actual software development effort in the data set to which it was applied. Neural
networks have the ability to capture knowledge of the complex interrelationships in their weight matrix
to enable them to make predictions. It would be a distinct advantage if the model was also able to
provide explanation to clarify the results of the reasoning process. Even if the weight matrix is
accessible, it is difficult to interpret, since the user has no way to 'decompile' the weights.
Neural networks have no explicit, declarative knowledge structure which allows the representation of
explanation structures, such as reasoning paths, and explanation of expectation failures. With a small
training set as was used in this study it is not possible to have full confidence in training. It would

May 1994 92



require a large set of training examples (of a few thousand instances for example) to allow the network
to learn a 'complete' domain theory (Diederich, 1992).
Several proposals have been made for explanation components in plain neural networks as well as
structured connectionist systems (Diederich, 1992). Further research will be conducted to study
causality and explanation in neural network models. In this regard Connectionist Semantic Networks
(Diederich, 1992) and Cascade Correlation Networks (Hoehfeld & Fahlman, 1991) are of interest

ACKNOWLEDGEMENT

The authors would like to thank the anonymous reviewers for their considered comments and helpful
suggestions.

REFERENCES

Albrecht, AJ. & Gaffhey, J.E. (1983) "Software Function, Source Lines of Code, and Development
Effort Prediction: A Software Science Validation", IEEE Transactions on Software
Engineering, Vol 9, No 6, pp 639-648.

Banker, R.D. Datar, S.M. & Kemerer, C.F. (1991) "A Model to Evaluate Variables Impacting the
Productivity of Software Maintenance Projects", Management Science, Vol 37, No 1, pp 1-
18.

Boehm, B.W. (1981) Software Engineering Economics, Englewood Cliffs, NJ: Prentice Hall.
Conte, S.D. Dunsmore, H.E. & Shen, V.Y. (1986) Software Engineering Metrics and Models,

Menlo Park: Benjamin/Cummings.
de Marco, T. (1982) Controlling Software Projects: management, measurement and estimation,

New York, NY: Yourdon Press.
Diederich, J. (1992) "Explanation and Artificial Neural Networks", International Journal Man-

Machine Studies, Vol 37, pp 335-355.
Dreger, J.B. (1989) Function Point Analysis, Englewood Cliffs, NJ: Prentice Hall.
Ferens, D.V. & Gurner R.B. (1992) "An Evaluation of Three Function Point Models for the

Estimation of Software Effort", IEEE National Aerospace and Electronics Conference-
NAECON 1992, Vol 2, pp 625-642.

Finnic, G.R. & Wittig, G.E. (1993) "Effect of System and Team Size on 4GL Software Development
Productivity", South African Computer Journal, to be published 1994.

Finnic, G.R. Wittig, G.E. & Petkov, D.I. (1993) "Prioritising Software Development Productivity
Factors Using the Analytic Hierarchy Process", Journal of Systems Software, Vol 22, No 2, pp

129-139.
Hoehfeld, M. & Fahlman, S.E. (1991), "Learning with Limited Numerical Precision Using the

Cascade-Correlation Algorithm", Carnegie Mellon University Report, CMU-CS-91-130.
Jeffery, D.R. (1987) "A Software Development Productivity Model for MIS Environments", Journal

of Systems Software, Vol 7, pp 115-125.
Jeffery, D.R. & G.C. Low, (1990) "Calibrating Estimation Tools for Software Development, July,

Software Engineering Journal, pp 215-221.
Jones, C. (1986) Programming Productivity, New York: NY: McGraw-Hill.
Jones, C. (1991) Applied Software Measurement New York: NY, McGraw-Hill.
Kemerer, C.F. (1987) "An Empirical Validation of Software Cost Estimation Models",

Communications of the ACM, Vol 30, No 5, pp 416-429.
Kemerer, C.F. (1993) "Reliability of Function Points Measurement", Communications of the ACM,

Vol 36, No 2, pp 85-97.
Lendaris G.G. (1993) Professor of System Science and Electrical Engineering, Portland State

University, personal communication 2 December 1993.
Low G.C. & Jeffery, D.R. (1990) "Function Points in the Estimation and Evaluation of the Software

Process", IEEE Transactions on Software Engineering, Vol 1, No 1, pp 64-71.
Kitchenham, B.A. (1992) "Empirical Studies of Assumptions that Underlie Software Cost-Estimation

Models", Information and Software Technology, Vol 34, No 4, pp 211-218.
Martin, J. (1982) Application Development Without Programmers, Englewood Cliffs, NJ: Prentice

Hall.

93 AJIS



Mukhopadhyay, T. Vicinanza, S.S. & Prietula, M.J. (1992) "Examining the Feasibility of a Case-
Based Reasoning Model for Software Effort Estimation", MIS Quarterly, Vol 16, No 2, pp
155-171.

Nelson, M.M. & Illingworth, W.T. (1991) A Practical Guide to Neural Nets, Reading, Addison-
Wesley.

Rudolph, EJE. (1986) "Productivity in Computer Application Development", Auckland University
Research Report, Auckland University, Auckland, 1986.

Rumelhart, D.E. Widrow, B & Lehr, M. (1993) "Applications of Neural Networks in Industry,
Business and Science", Stanford University, unpublished.

Schoneburg, E. (1990) "Stock Prediction Using Neural Networks: A Project Report",
Neurocomputing, Vol 2, No 1, pp 17-27.

Vessey, I. (1986) "On Program Development Effort and Productivity", Information and
Management, Vol 10, pp 255-266.

White, H. (1988) "Economic Prediction Using Neural Networks: The case of IBM Daily Stock
Returns", IEEE Conference on Neural Networks, Vol 2.

Wittig, G.E. (1991) "An Analysis of 4GL Software Development Productivity", Masters Thesis,
University of Natal.

May 1994 94


