
CYCLOMATIC COMPLEXITY: THEME AND VARIATIONS

Brian Henderson-Sellers,
Yagna Raj Pant,
June M. Vemer

School of Information Systems,
University of New South Wales

Kensington, Australia

ABSTRACT

Focussing on the "McCabe family" of measures for the decision/logic structure of a program, leads to an
evaluation of extensions to modularization, nesting and, potentially, to object-oriented program structures. A
comparison of rated, operating and essential complexities of programs suggests two new metrics: 'inessential
complexity" as a measure of unstructuredness and "product complexity" as a potential objective measure of
structural complexity. Finally, nesting and abstraction levels are considered, especially as to how metrics from
the "McCabe family" might be applied in an object-oriented systems development environment.

INTRODUCTION

Though software complexity research began around the 1970s, a significant number of problems
related to mastering complexity and significantly boosting programming productivity remain to be
solved. Indeed, failure to master complexity is the cause of many of present problems in software
development. These problems are manifested by a high demand for human resources (a precious
commodity), product deficiencies, late delivery, etc.
Traditional complexity measures like those of McCabe (1976), whilst not incorporating the human
side of software development and maintenance, do provide some measure of the logical structure of a
program. Such logic structure measures, together with measures of data structures (e.g. number of
variables), size measures (e.g. lines of code, total number of tokens), style measures and internal
cohesion measures offer the capability of describing the intra-module or procedural complexity as one
type of product metric. (For present purposes, the words measure and metric are used interchangeably.
For more precise definitions, see Melton et al. 1990). A second type of module metric is semantic
cohesion which is strongly influenced by human cognition and knowledge descriptors. System-level
measures are a third type of structural complexity measure which describe inter-module coupling
(Figure 1).
In this paper, we focus on the "McCabe family" of measures for the decision/logic structure of a
program, which are those encapsulating the cyclomatic complexity (e.g. Myers, 1977; Piwowarski,
1982; Sagri, 1989) including extensions to describe modularization (Henderson-Sellers and Tegarden,
1993), nesting (Piwowarski, 1982) and object-oriented program structures - although we focus here on
the simplest case of single-entry, single-exit modules. (Extensions to multi-entry/multi-exit modules
are described in Henderson-Sellers and Tegarden, 1993). In the following section we review two
definitions of software complexity. Rated, operating and essential complexities of programs as defined
by McCabe (1976) and Sagri (1989) are discussed together with the introduction of two new metrics:
inessential complexity and product complexity. In the final section we consider the application of
these measures to modularization and nesting and some of these ideas are then discussed from an
object-oriented viewpoint.

COMPLEXITY

There have been many attempts to define software complexity (e.g. Curtis, 1979; Basili, 1980). Such
definitions generally identify three important elements: descriptions of tasks/problem space, resources
and interacting systems. The description of complexity depends on the nature of the interacting
systems which in turn is related to the resources that have to be expended in this process. The
interacting systems, for example, can either be computers or programmers, or other software. When
the interacting system is a computer, parameters like CPU time, the number of decisions that are to be
evaluated, the number of disk accesses for performing a given task and the memory required to
perform the computation all become important. These are the accidental difficulties of software that
today attend its production but are not inherent in the software itself (Brooks, 1987). They may be

24 AJIS



termed "computational complexity" (e.g. Zuse, 1991 and Figure 1). On the other hand, when a
programmer is interacting with software, the ease of performing tasks such as coding, debugging,
testing, or modifying the software are of prime consideration. These tasks aim to address some aspects
of the complexities of software - a construct of interlocking concepts and many competing and often
contradictory requirements (Brooks, 1987) including both people and artefacts (programs). This is the
area of "psychological complexity" (e.g. Zuse, 1991) (Figure 1). Except for problems related to
temporal logic, management of psychological complexity (understandability, readability,
maintainability, etc.) can be extremely difficult, encompassing, as it does, problem characteristics,
programmer characteristics and logical and syntactic structure within and between modules (Figure
1).

Complexity

Computational

Complexity

Psychological

Complexity

-L

Problem (functional)

Complexity

Programmer

Characteristic
A/D/C

JLmay be
v_^influenced by

Module Metrics

D/C

Product/Document
Compl !-lexity

jral
mplexity D/C

= Structural
Co: '

Intermodule

Metrics (system

Design) E

Module Metrics

procedural

Module Metrics

semantic

Semantic cohesion

D

uenced by

Coupling Metrics

D

A Analysis

D Design

C Code

—__ is-a-kind-of relationship

• is-composed-of relationship

Figure 1

With the enormous gains in performance : price ratio in hardware technology in the last thirty years,
execution efficiency is not normally a major issue over the entire life cycle when compared with the
difficulties posed by specification, design and testing while developing and maintaining software
(Brooks, 1987). Melton et al. (1990) caution against equating structural complexity with the difficulty

September 1993 25



of understanding a piece of software. One may informally relate structural complexity with "synthesis':
the creation of design and code; whilst psychological complexity relates to v analysis': dissection of
existing code in order to comprehend as a prelude to maintenance. Whilst psychological complexity
describes the difficult area of human-software interaction, one of its components is more easily
discussed objectively: the inherent complexity of the software product (or "structural complexity" —
Figure 1). Here we concentrate solely on some of the available product metrics and suggest some
extensions; focussing primarily on procedural complexity mainly at the intramodule level.

PROCEDURAL COMPLEXITY MEASURES

McCabe (1976) deduced from graph theory that, for a directed acyclic graph (DAG) extracted from
the code, the cyclomatic complexity, V(G), could provide a measure of the decision structure and
hence assist in evaluating the testing/validation effort required. Despite the unjustified extrapolation
by some authors of V(G) to a prognostic tool for reliability and effort (cf. Shepperd, 1988), the
McCabe cyclomatic complexity measure remains useful as a quantification of the complexity of
testing paths and may provide some insights into cognitive complexity — although such a link has not
yet been satisfactorily established, most propositions being purely speculative, not scientific (Baker et
al., 1990).

V(G) is defined for a single DAG by

V(G) = e - n + 2 (1)

where e is the number of edges in the graph and n is the number of nodes. For p disjoint graphs,
McCabe suggests

V(G) = e - n + 2p (2)

whilst Henderson-Sellers (1992c) and Henderson-Sellers and Tegarden (1993) recommend

VLI(G) = e-n + p + l (3)

This latter formula measures the total number of possible decisions (= VLJ(G) - 1) i.e. the number of
simple IF statements in the whole program - compound Boolean expressions with m predicates are
weighted as m decisions (McCabe, 1976).
The original use intended by McCabe was to take a single flowgraph representing a code module for
which the value of V(G) could be calculated. As a consequence, the basis for testing paths could be
evaluated. A second use is to apply this approach to the whole program (using either Equation (2) or
(3)) to get a value of V(G) or VLJ(G) respectively for the whole program and then use this to suggest
as an heuristic to divide the program into subroutines following the classic decomposition principles
as propounded by Parnas (1972).
However, essentially as a result of asymmetric nestings on these decision branches, the minimum
number of decisions taken at runtime may be less than the value suggested from consideration of
V(G). Sagri (1989) introduces this notion as the "operating complexity", v0, calling McCabe's
original number the "rated complexity", vr. These two numbers represent the minimum and
maximum number of possible individual decisions. He argues that the interval (v0, vr) provides a
more useful assessment of program complexity. However, no account is taken of the distribution of
values (i.e. can all values in the interval be realised), a characteristic which might also be of interest
(Monarchi, 1992, p.c.).
The value of VQ is a measure probably more related to computational complexity than to structural
complexity (Figure 1), suggesting that the interval may not be as useful a measure of structural
complexity as originally envisaged. Furthermore, it should be stressed that the number of decisions
discussed here is not the same as the number of paths through the module, as might be required for
constructing testing procedures (see also Nejmeh, 1988). This value may be as high as 2n where the
program contains n binary decisions.

Sagri (1989) analysed five graphs gl~g5 (Figure 2) constructed from different arrangements of three
if-else statements (two further possible arrangements of three if-else statements are included as graphs

26 AJIS



g6 and §7) and found the minimum and maximum number of possible decisions that have to be made
in each graph (Table 1) to arrive at the following conclusions:

1. During execution, since the number of decisions that have to be made in graphs g2 and g4
is smaller than in graph gl, it is concluded that the nested and concatenated if- elses
(graphs

g2, g4) are less complex than un-nested if-elses (graph gl). The complexity ordering of these
graphs is g4 < g2 < g3, g5 < gl.

2. The distinction between rated and operating complexity helps in comparing two
alternative programs with the same cyclomatic number.

Graph

El
g2
g3
g4
K5
g6
g7

No. of run-time decisions
min+1

4
2
3
3
3
2
2

max+1
4
4
4
3
4
4
4

v(G)

4
4
4
4
4
4
4

Table 1: Comparison of v(g) with minimum and maximum decisions taken during execution
Table 1 also suggests that the concepts of rated and operating complexity cannot distinguish graph g3
from g5 or graph g2 from g6 or g7. Sagri (1989) specially noted that in graph gl, it is necessary to
evaluate 3 decisions during run time irrespective of the path taken. In other words, it has a constant
complexity in the sense that all runs make the same number of decisions. This gives it the highest
overall operating complexity, reflecting the fact that this is a measure of computational resources used
on average and has little to do with comprehension since graphs g2 and g3 are unstructured (Section
3.1) and graphs g4 and g6 contain nested structures, commonly regarded as adding complexity
(Magel, 1981; Myers, 1977; Piwowarski, 1982) (see also discussion in Section Modularization and
Nesting).
Whilst relying on "intuition" to support his case (as do other authors e.g. Myers (1977) cf. Shepperd
(1988)), Sagri (1989) fails to comment on three distinct anomalies of the mode of presentation of
"three IPs" in Figure 2. Firstly, graphs g2 and g3 do not and cannot represent structured code (see
below). Secondly, the arguments rely solely on the graphical design resulting from the construction of
a DAG from 3 decisions. This is contrary to McCabe's presentation of V(G) in which he stresses the
use of V(G) in extracting a DAG from code not from design. This (mis)application of V(G) to the
DAG, using it as a surrogate to infer code complexity, was not intended by McCabe (1976). Such
analyses of DAGs, made by e.g. Piwowarski (1982) and Sagri (1989), frequently result in apparently
well-designed logical structures which are unimplementable in a structured fashion, requiring highly
complex Boolean predicates and duplicate code or else the use of unconditional GOTOs (for example,
Magel's (1981) example DAG number 9).

September 1993 27



Figure 2

Finally, such discussions (as cited above) which select one graph among many indirectly suggest that
it is possible to convert one graph to another. This seems highly unlikely since all the graphs
presented implement different functions or algorithms and the question of favouring one among the
others does not arise. The cyclomatic number of all the graphs is the same because it is a function of
only the total number of if-else statements and not of their arrangement. Revising the algorithms and
logic embodied in one graph (say gl) to a more nested structure akin to g4, g5 or g7, say, is unlikely
to be feasible without changing the overall cyclomatic number (see following section). In other words,
the logical constructs of the seven presented DAGs do not map into each other necessarily. This is one
of the drawbacks of McCabe's cyclomatic complexity number because design complexities are often
dependent on the details of the implementation. In other words, the design use of V(G) may mask

28 AJIS



unstructured constructs such that the implemented code (when reverse engineered to a DAG) has a
higher value of V(G).

Code Structuredness

It is perhaps worth reintroducing a third structural complexity measure here: that of "essential
complexity", ve, as defined in McCabe's original paper. This is the complexity remaining after
reduction of the DAG by removal of all closed cycles. Thus, ve V(G) and should equal unity for a
fully structured program. Perhaps a better measure is the"inessential complexity", Vj, defined as

= 1 - - v.
V(G) - 1

(4)

which has values in the range [0,1], if V(G) is not equal to 1. When ve = 1, the ratio V(G) - ve has a

value of unity and thus v, = 0. Since vj = 0 corresponds to a well-structured program, non-zero values
of vj reflect the degree to which a program has unstructured characteristics.

Sagri's graph gl g2 g3 g4 g5 new g6 new g7
V(G)

VP.
vi

KNOTs

4
1
0
0

4
4
1

8-9*

4
4
1
2

4
1
0
0

4
1
0
0

4
1
0
0

4
1
0
0

Table 2: Different Measures of the graphs gl-g7 (^Dependent on coding chosen)

Out of Sagri's five original graphs, two are non-structured by McCabe's definition of containing a
branch into a decision (McCabe, 1976, p316) and hence have a non-zero value of Vj (Equation (4)) -
see Table 2. Since the McCabe approach is to extract a DAG from code, we must presume that Sagri's
graph g3 (used as the example here) was extracted from unstructured code containing at least one
GOTO as in Figure 3. As noted by Sagri, this code (and the DAG) has a value of V(G = 4 - calculated
either

1. directly from Equation (1);
2. as the number of decisions (3) plus one (either from code or DAG); or
3. as the number of regions (McCabe, 1976; Bollobas,1979) = 4 (labelled A, B, C, D in

Figure 2).

IF A THEN

1

_ ELSEIFBTHEN

2

~~"~~ GOTOL3

L3

ENDIF

IF C THEN

3

ELSE

4

ENDIF

5

Figure 3

September 1993 29



However, what is not stated, perhaps because it is obtainable only from the code and not from the
DAGs, is that this program (Figure 3) has a non-zero value for the number of KNOTS1 (Table 2) - a
value long recognized as making programs less maintainable despite the fact that it adds nothing to
V(G). In other words, it does not affect the testability of the code. Thus Sagri appears to confuse,
implicitly, the complexity of testing (as indicated by McCabe's V(G)) with the complexity of
comprehension (not discussed here). We should also note that the two measures, KNOTS and Vj, both
measure the extent of unstructuredness; albeit on different scales.

Graph g3 Original I II III IV
no. of single decisions

V(G)
KNOTs

V(G) + KNOTs

3
4
2
6

7
8
0
8

4
5
0
5

8
9
0
9

4
5
0
5

Table 3: Complexity values for the five coded versions for the implementation of the graph g3 of
figure 3.

As a further corollary, it is interesting to reverse the normal direction of McCabe's discussion of V(G)
and ask how we might implement, for example, Sagri's g3 graph if we were presented with this graph
as the design. In addition to the valid (but non-structured) implementation of Figure 3, we might well
attempt to implement it in fully structured code with no unconditional GOTO statements. This can be
accomplished in many ways (for example, four ways are shown in Figure 4). However, all of these
must utilize four or more simple predicate decisions (Table 3). Although all have a KNOT value of
zero, their cyclomatic complexity V(G) is greater than that of the original unstructured code. A
combination f V(G) and KNOTS seems to offer a rationalization insofar as codes I and III have a
value of V(G) (=7) identical to the value of [V(G) + KNOTS] for Sagri's original graph.

Whilst acknowledging that the structured/non-structured divide was a more prevalent question at the
time of McCabe's original proposition (1976), although still worthy of discussion today (Prather,
1984) the discussion here has highlighted:

l.the important asymmetry in translating from code to DAG compared to implementing a
DAG in code;

2. the apparent increase in complexity (if measured solely by V(G)) when moving from
unstructured to structured code (also noted by Myers, 1977); and

3. the need to characterize non-structuredness by measures other than V(G) (see for example
the large value of KNOTS for graph g2 - Table 2).

This discussion also lays the groundwork for our discussion of modularization and nesting (following
section ) and the role of abstraction, especially in complex structured and object-oriented software
systems.

MODULARIZATION AND NESTING

Modularization, by removing one or more control structures and replacing them by module "CALLs",
does not, per se, change the value of V(G) of the overall system (as calculated by Equation (1))
(Henderson-Sellers, 1992c). However, it does discretize the program into a larger number of
cogniu'vely comprehensible smaller chunks — an idea to be pursued in our discussion of object-
oriented systems in the following section. However, if this process also eliminates duplicate code
containing at least one control structure, then the structurally-related value of V(G) will generally
decrease (Shepperd, 1988; Henderson-Sellers and Tegarden, 1993), although the cognitive effort of
such a process may be different (a discussion of which is beyond the scope of this present paper).

'The value of KNOTS (Woodward et al., 1979) is calculated as
shown in Figure 3 by drawing lines between IF/ELSE/ENDIF
structures and loops and also between GOTO statements and
their target

30 AJIS



I
IF A THEN

1
IF C THEN

3
ELSE

4
ELSEIF B THEN

2 3
ELSEIF C

3
ENDIF
IF NOTA AND NOTE AND NOTC THEN

4
ENDIF
5
5 IPs equivalent to 7 decisions
Code block 4 duplicated and block 3
appears 3 times

II
IF A THEN

1
IF C THEN

3
ELSE

4
ENDIF

ELSEIF B THEN
2 3
ELSEIF C THEN

3
ELSE

4
ENDIF
5

4 IPs Code block appears 3 times
and block 4 twice

III
IF A THEN

1
ELSEIF B

2
3

ENDIF
IF NOTA AND B THEN

blank
ELSEIF (A AND C) OR (NOTB AND C)

3
ELSE

4
ENDIF
5

4 IPs equivalent to 8 decisions .
Code block 3 duplicated

IV
IF A THEN

1
IF C THEN

3
ELSE

4
ENDIF

ELSE IF B
2 3
ELSEIF C

3
ELSE

4
ENDIF

ENDIF
ENDIF
5
4 IPs Code block duplicated and block
3 triplicated

Figure 4

September 1993 31



Figure 5 Nested Control Structure adds to the Cyclomatic Complexity

On the other hand, the addition of a nested control structure adds to the cyclomatic complexity
(Piwowarski, 1982), whilst leaving the essential complexity value unchanged (Figure 5). Un-nested if-
elses and loops will be simpler to construct for a programmer than nested if-elses/loops, contrary to
the conclusions of Sagri (1989), because it is easier mentally to handle one independent if-else/[oop at
a time. In other words, only one level of abstraction needs to be "remembered" at one time. Thus the
control structure forms a single, easily understood "chunk" (Cant et al., 1992). Embedding a second
control structure inside this top-level chunk disrupts the flow of cognition by requiring "tracing" —
viz. a change of abstraction level — visualized by the landscape diagram of Cant et al. (1992).
Disregarding the computations embedded within the block, it is obvious that one independent if—
else/loop commonly requires less effort for cognitive processes like chunking and tracing because of
constraints of our short-term memory (Cant et al., 1992). On the other hand, nested if-elses also
contain implicit ands, and thus create distinct paths (and naturally more side effects), which the
programmer has to take into account while writing or modifying programs. Similarly, in a doubly-
nested loop structure the programmer/analyst needs to bear in mind the values of 2 control variables -
chunking and tracing between the two levels of abstraction continually. It is obvious that the logical
structure of nested control structures is difficult to assess fully without the inclusion of programmer
cognition. In this present paper, we retain a focus on artefacts measurable independently of
cognitive complexity issues (cf. Cant et al., 1992).
In this context, we re-evaluate V(G), VQ and ve from the "McCabe family", together with "nesting
complexity (N)" designed specifically to address the questions of nesting (Magel, 1981; Piwowarski,
1982).

Piworwarski's Sequential Nested Unstructured

No. of single decisions
V(G)V*(G)

Operating Complexity (v^
Essential Complexity (vp)

N* (Equation 6)
Piwowarksi's N

KNOTs
PI
P9

A B
2
3
3
1
0
3
0
3
3

2
3
3
1
0
3
0
3
3

C D
2
3
2
1
1
4
0
4
4

2
3
3
1
1
4
0
4
4

E F
2
3
2
3
0
5
1
5
9

2
3
3
3
0
5
1
5
9

Table 4: Values for the 6 programs/graphs of Piwowarski. (Here V(G)V*(G)). Also indicated are
values of PI and ?2 given by equations (7) & (8)

In Table 4 are presented values for these three complexity measures and Piwowarski's (1982) N for his
six example DAGs (Figure 6). The value of N is given by

N = V*(G) + N* (5)

32 AJIS



where V*(G) is an adjusted cyclomatic complexity number, in which case/switch structures are treated
as a single predicate (similar to Myers1 (1977) lower bound) and N* represents the effect of nested
control structures and is given by

N* = i P*(i) (6)

where P*(i) is the nesting depth of the ith predicate defined as the number of predicate node scopes
overlapped or contained by the ith predicate node.

B

D

4
Figure 6 Piwowarski's six examples

Piwowarski's (1982) intentions are to derive a measure which gives high values for unstructured
programs, intermediate values for structured programs with nested control structures and lowest
values for sequential code with only top level control structures embedded. As such, it penalizes
programs, such as E and F in Figure 6, in which KNOTS exist. Thus N reflects not only the
cyclomatic complexity but also the nesting levels and the degree of unstructuredness. The measure
could alternatively be expressed

N = V*(G) + N* + 2 K (7)

September 1993 33



(where N* is redefined as

N* = i P(i) (8)

where P(i) is the straightforward nesting depth of the ith predicate and K is the knot value), i.e. the
sum of the adjusted cyclomatic complexity, allowing for nesting (each nesting level in each control
structure adding one to N), and twice the KNOT value. The former provides an additional weighting
to evaluate nesting complexity whereas the latter addresses the very different issue of unstructuredness
(see above). We recommend maintaining these two descriptions of disparate characteristics as
separate values:

1. V*(G) modified by true nesting values (P(i) not P*(i)) and

2. KNOTS.

Sagri's graph gl g2 g3 g4 g5 g6(new) g7(new)
V(G)V*(G)
V*(G) + (Pi)

KNOTs
Piwowarski's N

vp
vn
Pi
P-7

4
4
0
4
1
0
4
4

4
4

8-9*
20-22

4
1
7
16

4
4
2
8
4
1
7
16

4
6
0
6
1
0
6
6

4
5
0
5
1
0
5
5

4
6
0
6
1
0
6
6

4
7
0
7
1
0
7
7

Table 5: Values of various complexity metrics for the seven graphs based on Sagri's (1989) disussion
(*Dependent on coding chosen)

Applying this philosophy to Sagri's graphs gives the values shown in Table 5. It can be seen that the
"least complex" of the three nested graphs (g4~g7) is identified, using N, as g5; that the two
unstructured DAGs have large, non-zero values for KNOTS and a large (fractional — actually unity)
value for Vj; and that the basic cyclomatic complexity number reflects the number of decisions.

As a tentative indication of the modelling approach we intend to pursue, we note that the factors ve,
N* (Equation (8)) and V(G) all appear to be monotonic increasing functions of "complexity". An
appropriate additive model might therefore be

= al V(G) + a2 N* + a3 (ve - (9)

(the subtraction of 1 from ve being necessary since ve = 1 is a well-structured program adding no
additional complexity); a multiplicative model might be

= a3ve[a1V(G) (10)

where the weights, a^, a2> 33 will depend upon cognitive comprehension issues, as well as the task
being performed. That this is a reasonable initial step (until dimensionality, meaning and cognitive
concerns can be adequately evaluated) is seen in the last two lines of Tables 4 and 5 where both
"product complexity metrics", Pj and P2 are given with the (unjustified) simplistic approach that
aj = a2 = 33 = 1. The overall distribution is seen (Figure 7) to reflect the broad differences we might
anticipate between nested, sequential, structured and unstructured programs.

34 AJIS



3 decisions (table 5)
Piwowarski (table 4)

unstructured
nested 2

sequential 2 1
1 2 3 4

2
1 2

5 6

2
1

7

unstructured
nested
sequential

2 1 2 1
2 1
3 4 5 6 7 8

2

9 10 16
Figure 7

The Role of Abstraction

Abstraction provides a powerful tool in both analysis and design, as reflected in the recent surge of
interest in the use of abstract data types (ADTs) and object-oriented methodologies (Henderson-
Sellers, 1992b; McGregor and Sykes, 1992). The use of abstraction permits the rationalization of
complexity by permitting the designer to concentrate sequentially on the design at different
abstraction levels. This is closely associated with and in some sense opposite to the process of "prime
decomposition" (e.g. Fenton, 1991, p!75) and ties in closely with the chunking concepts of the
cognitive complexity model (Cant et al., 1992).

For example, the un-nested if-elses represents a series of simple abstractions, while the outer if-else in
a nested if-else (e.g. graph g4 of Figure 2) can be considered to be at a higher level of abstraction
subsuming, as one of its immediate lower-level abstraction, a single if-else. Figure 2 (graph g7) adds
one more level of nesting so that this graph can be viewed at any of three abstraction levels. The
innermost control block can be considered independently; then at the next higher level of abstraction,
this whole block can be viewed as a single node (Figure 8); and so on. Such a utilization of abstraction
levels elaborates on the process, described by McCabe (1976) for reducing a flow graph to evaluate its
essential complexity, ve.

Control Bock at Lowest
Abstract ion Level

Figure 8 The Innermost Control Block can be considered independently

In object-oriented systems, abstractions are manifest in the form of encapsulated object classes
connected through networks. Indeed, object modelling focusses on the use of various levels or degrees
of abstractions as a crucial tool (Henderson-Sellers, 1992a; Selic et al., 1992). As we move to higher
levels of abstraction, we tend to concern ourselves with progressively smaller volumes of information,
and fewer overall items. As we move to lower levels of abstraction, we reveal more details, typically
encountering more individual items, thus increasing the volume of information with which we must
deal. Further research on object-oriented structural complexity is clearly warranted, although we note
that initial investigation of the usefulness of an unmodified McCabe cyclomatic number (Tegarden et
al., 1992) suggests that direct application of V(G) can at least highlight the impact of polymorphism

September 1993 35



and inheritance although its use for detecting problems in these areas awaits evaluation since V(G)
and Vjj(G) are best suited to describing control flow structures not architectural configurations.

SUMMARY AND CONCLUSIONS

One of the major problems in complexity research is that of finding an objective assessment of the
term complexity. Whilst it is increasingly recognized (e.g. Fenton, 1991) that the term cannot have a
single, all-encompassing interpretation, it may be possible to define the term in very specific domains.
For instance, the use of flow graphs discussed here can be evaluated with respect to numbers of
decisions and control flow but cannot evaluate complexity due to convoluted variable plans, to linear
algorithms nested between the decision nodes of the flowgraph or due to cognitive difficulties.
We can conclude, therefore, that flow graph complexity measures, such as those of McCabe (1976),
Piwowarski (1982), Sagri (1989) and Henderson-Sellers (1992c) can measure decision routes and
hence may be applicable to maintenance and testing - as originally envisaged by McCabe (1976).
McCabe's (1976) original cyclomatic complexity, measuring decisions, supplemented by metrics for
nesting and knots, has been rationalized in terms of new "product cyclomatic" metrics, Pj and ?2-
However, the application of cognitive complexity models (Cant et al., 1992) may prove useful in this
context and is the subject of ongoing research (Cant et al., 1992). Flowgraph-based complexity
measures may also have some validity in design, to the extent and with the caveats indicated above.
However, in design, a graph such as g5, g6 or g7 (Figure 2) with extensive use of nesting reflects
more accurately recent software enginering techniques based on abstraction techniques which are
reflected in the increasingly popular object-oriented paradigm.
Further work on complexity, including acknowledgement of psychological considerations and human
factors, is required to clarify the operational role of complexity measures in both a structured and
object-oriented software development environment.

ACKNOWLEDGEMENTS

We wish to acknowledge the support of a Small Research Grant (grant number C450.301) from the
Australian Research Council. We also wish to thank Graham Tate and David Monarchi for their
useful comments on the draft of this manuscript.

REFERENCES

Baker, A. L., Bieman, J. M., Fenton, N., Gustafson, D. A., Melton, A., Whitty, R., (1990), A
philosophy for software measurement, J. Syst. Soft., vol. 12, no. 3, pp. 277-281

Basili, V. R., (1980), Qualitative software complexity models: a summary, in Tutorial Models and
Methods for Software Management and Eng, IEEE Press

Bollobas, B., (1979), Graph theory: an introductory course, Springer-Verlag, New York, p. 180
Brooks, F. P., (1987), No silver bullet - essence and accidents of software engineering,

IEEE Computer, vol. 20, no. 4, pp. 10-19
Cant, S. N., Jeffery, R. D., Henderson-Sellers, B., (1992), A conceptual model of cognitive

complexity of elements of the programming process, Centre for Information Technology
Research Report No. 57, 1992, University of New South Wales, Sydney, Australia
(also submitted for publication)

Conte, S. D., Dunsmore, H. E., and Shen, V. Y., (1986), Software engineering metrics and models
Benjamin/Cummings, Menlo Park, CA, p. 386

Curtis, B., (1979), In search of software complexity, Workshop on Quantitative Software Models
pp. 95-106

Fenton, N. E., (1991), Software metrics: a rigorous approach, Chapman and Hall, 337pp
Henderson-Sellers, B., (1992a), Object-oriented information systems: an introductory tutorial,

Australian Computer J., vol. 24, no. 1, pp. 12-24
Henderson-Sellers, B., (1992b), A Book of Object-Oriented Knowledge, Prentice Hall, Sydney,

297pp

36 AJIS



Henderson-Sellers, B., (I992c), Modularization and McCabe's cyclomatic complexity,
Commun. ACM, vol. 35, no. 12, pp. 17--19

Henderson-Sellers, B. and Tegarden, D. P., (1993), The application of cyclomatic complexity to
multiple entry/exit modules (submitted for publication)

Magel, K., 1981, Regular expressions in a program complexity metric, ACM SIGPLAN Not
vol. 16, no. 7, pp. 61-65

McCabe, T. J., (1976), A complexity measure, IEEE Trans. Soft. Eng., vol. 2, no. 4,
pp. 308-320

McGregor, J. D. and Sykes, D. A., (1992), Object-oriented software development: engineering
software for reuse Van Nostrand, Reinhold, New York, p. 352

Melton, A. C., Gustafson, D. A., Bieman, J. M., and Baker, A. L., (1990), A mathematical
perspective for software measures research, Software Eng. J., vol. 5, pp. 246-254

Myers, G. J., (1977), An extension to the cyclomatic measure of program complexity, ACM
SIGPLAN Not vol. 12, no. 10, pp. 61-64

Nejmeh, B. A., (1988), NPATH: A measure of execution path complexity and its applications,
Commun. ACM vol. 31, no. 2, pp. 188-200

Pamas, D. L., (1972), On the criteria to be used in decomposing systems into modules, Commun.
ACM vol. 15, no. 12, pp. 1053-1058.

Piwowarski, P., (1982), A nesting level complexity measure, ACM SIGPLAN Not., vol. 17, no. 9,
pp. 44-50

Prather, R. E., (1984), An axiomatic theory of software complexity measure, Comp. J., vol. 27,
no. 4, pp. 340-347

Sagri, M., (1989), Rated and operating complexity of program - an extension to McCabe's theory of
complexity measure, ACM SIGPLAN Not., vol. 24, no. 8, pp. 8-12

Selic, B., Gullekson, G., McGee, J., and Engelberg, I., (1992), ROOM: An object-oriented
methodology for developing real-time systems, in CASE'92 Fifth InL Workshop on
Computer-Aided Software Eng. Montreal, Quebec, Canada

Shepperd, M., (1988), A critique of cyclomatic complexity as a software metric, Software Eng. J
vol. 3, pp. 30-36

Tegarden, D. P., Sheetz, S. D., Monarchi, D. E., (1992), Effectiveness of traditional software metrics
for object-oriented systems, HICSS-92, IEEE, San Diego pp. 359-368

Woodward, M., Hennell, M., and Hedley, D., (1979), A measure of control flow complexity in
program text IEEE Trans. Soft. Eng., vol. 5, no. 1, pp. 45-50

Zuse, H., (1991), Software complexity measures and models, de Gruyter and Co.

September 1993 37


