
AJIS Vol 13, No. 1 September 2005

 150

SECURING XML QUERY PROCESSING STORAGE

Charles A. Shoniregun

School of Computing and Technology,

University of East London
Longbridge Road, Dagenham,

Essex, RM8 2AS, UK

E-mail: C.Shoniregun@uel.ac.uk

Oleksandr A. Logvynovskiy

Business, Computing, and Information Management (BCIM),
London South Bank University
Borough Road, SE1 0AA, UK.

Kevin Lu
Department of Information Systems and Computing

Brunel University

Uxbridge UB8 3H, UK

ABSTRACT

The effective processing of semi-structured data queries is a preliminary part of data mining
stage. XML queries employ regular path expressions to find structural patterns within XML

documents. The operation of structural join is a crucial part of XML query processing.

Existing approaches reduce complex join expressions to several binary structural joins. In
this paper, we are proposing a new structural join algorithm called sequence join algorithm,

for sequential regular path expressions in securing XML query processing storage. It
exploits information about position of the elements in a product to skip generation of the
redundant intermediate lists. This paper further discusses the algorithm that performs the

merge of several input lists of nodes in one pass. We carried out comparative experiments,

and the results prove that the algorithm is better than multiple binary joins algorithm for
queries of both small and large cardinality.

Keyword: semi-structured data mining, data model, indexing XML data, sequence

algorithm, graph numbering, and query processing.

INTRODUCTION

Each industry requires certain safeguards to protect its data while in transit. Bringing

autonomic capabilities to storage systems would certainly be an improvement, but if

computing systems that mine data in those storage repositories become next to impossible

to manage, that partial automation will not yield much benefit. XML is now becoming a

standard to represent and exchange semi-structured data over the Web (Xyleme 2001, Bray

et al 2000). The problem of storing XML data in one or several tables is challenging, since

the XML tree describe some irregular structure while tables are by definition regular. In a

situation where the XML document has no schema, or when the schema changes

frequently, it has a more dramatic impact on performance. The key idea behind these

structures is called partial schema. The partial schema helped to build a concise graph

representing paths of the data (Wang & Liu 2001). It also served as a guideline for building

indexes and views or a starting point for structure-based document clustering based on

approach proposed by Deutsch et al (1999) that uses the XML instance to infer a relational

schema. The idea is to find regularities that may exist in a given XML data instance, and to

organise the storage base on those regularities (Deutsch et al 1999, Cooper et al 2001). The

challenge in any storage schema is that it has to be flexible enough to accommodate

AJIS Vol 13, No. 1 September 2005

 151

data, and efficient as regular data storage. The number of accessible XML documents tends

to grow as more and more business are storing and interchanging data between applications

using XML as a common format.

SEMI-STRUCTURED DATA REPRESENTATION

We can represent semi-structured document as a graph or as a tree. The tree model reflects

nesting of elements within XML file and treats reference elements (IDREF) as values. The

graph model resolves semantics of reference elements and, thus, allows an element to have

multiple parent elements. When semi-structured data is represent as a label, directed, and

possibly cyclic graph, the vertices of such a graph correspond to objects that are either

treated as containers for some other objects or associated with atomic values (such as text,

multimedia content, etc.). Edges of the graph stand for containment relationship between

nodes and have object types as labels. An example of such a model is the Object Exchange

Model (OEM) (Papakonstantinou et al 1995), in this model, each XML element becomes

an edge (labelled with the tag name) and directed towards an individual node. Each node

corresponds to an XML element and has element’s ID as its label. Each edge in the XML

data graph has a label and a target, where the target is either a node representing a scalar

data value (e.g. a string or integer) or a reference to an element node in the document via its

ID. The edge belongs to a class, which can be one of sub-element, attribute, or IDREF (ID

reference). Both IDREF and sub-element edges always direct towards element nodes in the

graph; attribute edges. Every element node has precisely one incoming edge of sub-element

type and any other incoming edges must be of IDREF type. If all IDREF edges of an XML

data graph are converted into attribute edges (with destination value equal to the target node

ID), the data graph can be mapped into a tree. Each element of the document forms a node

in the tree labelled with the element type (tag name) and value. The edges of the tree stand

for parent-child (containment) relationship between the elements. All sub-elements nested

within an element appear in the tree as the child nodes directly connected with the edges to

a parent node. The attribute in the elements represents in a nested sub-elements and form

additional nodes in the tree, emanating from the associated parent nodes.

PATTERN SPECIFICATION LANGUAGE

A number of languages have been proposed for querying semi-structured and XML

databases, which includes following XQuery, Lorel, XML-QL, and UnQL. A common

characteristic of all existing language proposals is the existence of a pattern specification

language e.g. Xpath, which built around path and sub-tree expressions. These expressions

replace the traditional SQL FORM clause and enable selections based on value predicates
as well as path navigation and branching through the XML data graph in order to reach

relevant data elements. Path queries are popularised in the context of object-oriented

databases, while the pattern specification language proposed for XML data are substantially

more complex. In particular, the XPath language, Xquery, and XSLT, is the dominant W3C

language proposals for XML querying and transformation, which allows branching of other

regular path expression to enable queries navigation along the paths of data that uses label

names, wild cards, value predicates and branching predications on the existence of specific

product paths.

The key idea underlying the implementation of the existing join algorithms is the

decomposition of the original query path expression into a set of simple (binary) path

AJIS Vol 13, No. 1 September 2005

 152

expressions. Each binary expression produces an intermediate join result, which is used on

the subsequent stage. The XISS system introduces three join algorithms: element-attribute

(EA-join), element-element (EE-join), and Kleene-closure (KC-join). The element-attribute

algorithm joins two intermediate results from sub-expressions, which are a list of elements

and a list of attributes. The element-element algorithm joins two lists of elements. The

principal difference between these algorithms is that the latter one checks ancestor-

descendant relationship between each pair of the input lists while the former one tests

parent-child relationship. The Kleene-closure algorithms iteratively uses element-element

algorithm to compute closure of the expression. It repeatedly applies EE-join to the result

from the previous stage of iteration. Both EA-join and EE-join algorithms have a loop over

one input list nested into a loop over another list and, therefore, have time complexity

O(|E1|·|E2|), which is quadratic in the size of the input lists. As KC-join depends upon EE-

join, it has quadratic time complexity either.

However, structural join algorithms proposed by Al-Khalifa et al (2002) exploit the

advantage of element numbering to decrease the time of processing (Al-Khalifa et al 2002).

The tree-merge join algorithm is an extension of relational equality merge join performed

on sorted inputs. The time complexity of the tree-merge join is non-quadratic O(|E1|+|E2|),

but may include multiple passes over the same input set of descendant nodes. To avoid this

problem, the second of the proposed algorithms, stack-tree join algorithm, utilises stack of

nodes and has time complexity O((|E1|+|E2|)/B), where B is the blocking factor. However,

semi-structured data imposes new challenges for parallel algorithms and requires new

methods.

DATA MODEL

In representing semi-structured data, we use a graph data model labelled pseudo graph

G = {V, A, L}, where V = {v1, … , vn} is a non-empty finite set of vertices,

A = {(vi, vj)|vi, vj∈V} is a finite set of ordered pairs of vertices called arcs, and

L = {l1, … , lk} is a set of labels ascribed to vertices and/or arcs. Such definition of the

database assumes that a graph can have loops and multiple arcs among its vertices. From

the perspective of the database, a vertex of the graph is an object of the database and an arc

is a relation. The data graph has an implicit order of its nodes obtained by the graph

traversal. In order to make most of the graph numbering, we map original data graph into a

directed cyclic graph. One of the important properties of the directed cyclic graph is that it

has a cyclic ordering of nodes. We exploit this property to define a position of every node

in the graph. Each object and relation within the database forms a node of the numbering

graph. The edges of the graph stand for relationships between both of these elements,

objects and relations. Relations that form cycles are reversed and relabelled. Position is an

important characteristic of graph nodes and intensely used for indexing and querying semi-

structured data. The position of the node ni is denoted as (Di, Si, Ei, Li), where Di is the

graph component identifier within the database; Si, Ei are distinct graph ordering numbers

of the node ni (pre-order and post-order respectively), and Li is the nesting depth of the

node ni within the graph. The ancestor-descendant relationship gives a graph node of ni, and

position (Di, Si, Ei, Li). The graph node nj and its position (Dj, Sj, Ej, Lj), the node ni is an

ancestor of the node nj (and node nj is a descendant of the node ni) if Di = Dj (both nodes

belong to the same component), Si < Sj and Ei > Ej (ancestor-descendant) or Si > Sj and

Ei < Ej (descendant-ancestor). Intermediate nodes nx and their positions (Dx, Sx, Ex, Lx) that

constitute path between the two nodes are select to meet the criteria:

AJIS Vol 13, No. 1 September 2005

 153

Dx = Di = Dj, Si < Sx < Sj and Ei > Ex > Ej (node ni is an ancestor of the node nj); or

Dx = Di = Dj, Si > Sx > Sj and Ei < Ex < Ej (node ni is a descendant of the node nj).

The sibling relationship gives graph node ni and its position (Di, Si, Ei, Li). The graph node

nj and its position (Dj, Sj, Ej, Lj), the node ni is a sibling of the node nj (and node nj is a

sibling of the node ni) if Di = Dj (both nodes belong to the same component), Si < Sj and

Ei < Ej (preceding) or Si > Sj and Ei > Ej (following). The path between these two nodes is

selected with respect to one of the common ancestors of nodes ni and nj, nc and its position

(Dc, Sc, Ec, Lc): Dc = Di = Dj, Sc < min(Si, Sj) and Ec > max(Ei, Ej). Then intermediate nodes

nx and their positions (Dx, Sx, Ex, Lx) are select to meet the criteria:

Dx = Dc, Si < Sx < Sc and Ei > Ex > Ec or Sc < Sx < Sj and Ec > Ex > Ej (ni precedes nj); or

Dx = Dc, Sj < Sx < Sc and Ej > Ex > Ec or Sc < Sx < Si and Ec > Ex > Ei (ni follows nj).

Finding a relationship between a pair of nodes is the core operation of the semi-structured

data query processing. Graph numbering is the efficient way to determine it fast.

Nevertheless, the scale of the real-world data challenges its wide application. As one of the

solutions to overcome scale problem, we use graph layering as shown in Figure 1.

Figure 1. Layered data view

The original data graph is processed in order to determine its strong components. A strong

component D of a graph G is a sub graph of every node in D and the removal of that node

does not make D none connected. A node that ruins connectivity of the graph is a median.

Nodes within a strong component are always connected. Nodes representing strong

components of the graph along with medians form sets of trees. These trees are the next

layer with its separate numbering. Every node of the original graph ascribed to the pair of

positions, within the component tree. The procedure of finding whether a couple nodes are

connected or not takes two steps: a) determine if their component are connected and if they

are then b) determine their relationship within the component.

GRAPH NUMBERING AND QUERY PROCESSING

We have proposed the graph numbering using indexing for querying connections among

data that exploits the concept of node position to merge several input lists in one pass. As it

Data graph

Component tree

AJIS Vol 13, No. 1 September 2005

 154

processes several binary structural relationships that form a sequence, we call it sequence

join algorithm. The basic idea of the algorithm is to synchronously read input lists to find

first match of the node intervals and put it into the result list. If the intervals in two adjacent

lists do not match, based on the result of their comparison, the record of one of the lists will

be deleted. The propagation of changes goes from the last list back to first. The depth of the

recursion is equal to the number of input lists, which relates to XML data tree input. For

regular path expression a1/a2/…/an, both approaches require n selection operators resulting

in lists of nodes A1, A2, …, An respectively. The execution plans for binary joins and

sequence join are shown in Figure 2 below. We consider the total time to perform join

operation as the sum of time needed to read input lists (σ) and time necessary to create

output list (τ): σ + τ.

Figure 2. Execution plans of the binary and sequence joins

The task of matching complex query reduces the performance of join operation for each

binary structural relationship in query expression. For n input lists of nodes, it causes

creation of intermediate lists of nodes. The next step is to perform binary join operation

over the intermediate lists. The latter will be applied until the result is the only one, in result

list. Thus, the whole number of intermediate list (including the result list) is n – 1. In Figure

2 a) these lists are denoted as An+1, …, A2n–1. The total time necessary to perform multiple

pair wise join is:

The τi and σi is the time required to create and read list i respectively. The sequence join

reads input lists A1, …, An and project the result list A2n–1, as shown in Figure 2 b). The total

time necessary to perform sequence join is:

The σi is time required to read input lists, and τ2n–1 is time needed to create the result table.

… A1 A2

An+1

A2n–1

…

An–1 An

An+½n

…

…

… A1 A2

A2n–1

An–1 An

a) b)

AJIS Vol 13, No. 1 September 2005

 155

The parameters τi and σi depend on the capacity of the list i. If the number of nodes in each

list is comparable then we can assume the times to create and read list are equal. The time

differences between the two approaches in Figure 2 above is illustrated in Figure 3 below:

Figure 3. Time differences

However, the parameters of τi and σi depend on the capacity of the list i. If the number of

nodes in each list is comparable then we can assume the times to create and read list are

equal: ∀i, i = 1,…,n; σi = σ, τi = τ. Time cost functions of the algorithms is:

(σ + τ)(n – 2), (1a)

Where τ and σ is average time required to create an output and read an input list

respectively, n is number of original input lists. The Figure 4 shows the time cost graphs of

sequence join algorithm performance.

Figure 4. Time difference between the binary and sequence joins

The key idea of our proposed framework is to consider the original database as a graph:

• Both objects and relations of the database are represented as graph nodes – this

provides a unified way for their arrangement, indexing and storage.

• The initial graph is direct and, generally, cyclic – we convert it into a directed

cyclic graph by giving database relations status of nodes, then rearranging nodes

so the graph is rooted.

• Every node of the graph ascribed with a couple of ordering numbers of the graph

and post-order graph traversals analogous to a tree traversals.

1 2 3 4

5(σ+τ)

(σ+τ)

2(σ+τ)

3(σ+τ)

4(σ+τ)

(σn+τ)
sequence join

(2σ+τ)(n–1)
binary join

ti
m

e

number of lists

AJIS Vol 13, No. 1 September 2005

 156

Figure 5. Framework of treating relational data as semi-structured

Figure 5 is performed has a pre-processing stage of storing new data or wrapping a legacy

system. The query stage exploits graph numbering for fast selection of all intermediate

nodes that constitute paths between nodes.

PROTOTYPE SYSTEM

We implemented a prototype system for storing, indexing, and querying connections

among data. The system works as a wrapper for an existing relational database. The real

world data set has been used as an input of the prototype. We used a subset of over 20,000

companies from a FAME (Financial Analysis Made Easy) database. The FAME database

contains financial and statistical information about all companies in UK. We have limited

our objects to company’s directors, shareholders, postcodes and ownership data. The

prototype screenshot shows the sample query of the semi-structured data to find connection

between a person and a company (see Table 1 for sample queries).

Query XQuery expression Dataset
RPE

length

Q1 /FMDataBase/FCCAmRadio/Address/City HAM-RADIO 3

Q2 /PLAY/ACT/SPEECH/LINE Shakespeare 4

Q3 /country/province/city/name Mondial 4

Q4 Xmark (100Mb) 4

Q5
/person/profile/interest/category

Xmark (1Gb) 4

Table 1. Description and parameters of the test queries

analyse db
structure

1

create
graph

2

apply
numbering

3

select
component

path

1

select
intermediate

nodes

2

present as an
expandable

tree

3

Storage stage Query Stage

1

5
2

4
3

AJIS Vol 13, No. 1 September 2005

 157

-

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

Q1 Q2 Q3

ti
m

e
 (

s
)

sequence join

multiple pair-wise join

-

20.0

40.0

60.0

80.0

100.0

120.0

Q4 Q8

ti
m

e
 (

s
)

Figure 6. Query performance comparisons

The cases with the query path length of more than 2, demonstrates improved performance

of the sequence algorithm against the pair-wise algorithm (see Figure 6). However, the

selection of the result of all intermediate nodes that constitute paths between queries nodes

are represented as a tree with expandable nodes.

CONCLUSION

Current approaches adopted the existing relational storages (and map semi-structured data

into relational) or use native solutions. There exist hybrid solutions as well. Since any input

query may initiate both mining processes and storage/retrieval operations, it is necessary to

define appropriate criteria and algorithms for splitting/joining results obtained on each

level. We have developed the sequence join algorithm for regular path expressions. In

contrast to pair wise approach, the algorithm takes several lists of elements as an input and

exploits the position of the element within XML document to compute faster structural

relationships between elements. The processing of XML documents may require a traversal

of all document structure and, therefore, the cost could be very high. A strong demand for a

means of efficient and effective XML processing has posed a new challenge for the

Q5

AJIS Vol 13, No. 1 September 2005

 158

database world (Shoniregun & Logvynovskiy2004). Therefore, the structural pattern are

matched with available input lists at once but does not generate non-existent sub-results and

hence eliminates creation of excessive intermediate data.

REFERENCES

Al-Khalifa, S. Jagadish, H.V. Koudas, N. Patel, J.M. Srivastava, D. and Wu, Y.,(2002)

“Structural Joins: A Primitive For Efficient XML Query Pattern Matching”, In

Proceedings of the IEEE International Conference on Database Engineering

(ICDE).

Bray, T., Paoli, J. Sperberg-McQueen, C.M., Maler, E., (2000) “Extensible Markup

Language (XML) 1.0 (Second edition) ”, W3c recommendation. Technical Report rec-

xml-20001006, Available from http://www.w3.org/TR/REC-xml, (Access date: 29

October 2004)

Cooper, B. Sample, N. Franklin, M. Hjaltason, G. and Shadmon, M. (2001) “A Fast Index

For Semistructured Data”, In Proceedings of VLDB’01.

 Deutsch, A. Fernandez, M. and Suciu, D. (1999) “Storing Semistructured Data With

Stored”, In Proceedings of SIGMOD Conference

Papakonstantinou, Y. Garcia-Molina, H. and Widom, J. (1995) “Object Exchange Across

Heterogeneous Information Sources”, In Proceedings of the 11th International

Conference on Data Engineering.

Shoniregun, C. A. and Logvynovskiy, O. (2004) “Securing XML Documents”, The

Australian Journal of Information Systems (AJIS), September, Vol 11, pp 194-200.

Wang, K., Liu, H.Q. (2001) “Mining is part of Association Patterns From Semistructured

Data”, In Proceedings of the 9th IFIP 2.6 Working Conference on Database

Semantics (DS-9), Hong Kong, April.

Xyleme, L. (2001) “A Dynamic Warehouse For Xml Data Of The Web”, In Bulletin of the

Technical Committee on Data Engineering, vol. 24, no. 2, June.

 .

