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Abstract  
 

The turning process has various factors, which affecting machinability and should be investigated. These are surface 
roughness, tool life, power consumption, cutting temperature, machining force components, tool wear, and chip thickness 
ratio. These factors made the process nonlinear and complicated. This work aims to build neural network models to 
correlate the cutting parameters, namely cutting speed, depth of cut and feed rate, to the machining force and chip 
thickness ratio. The turning process was performed on high strength aluminum alloy 7075-T6. Three radial basis neural 
networks are constructed for cutting force, passive force, and feed force. In addition, a radial basis network is constructed 
to model the chip thickness ratio. The inputs to all networks are cutting speed, depth of cut, and feed rate. All networks 
performances (outputs) for all machining force components (cutting force, passive force and feed force) showed perfect 
match with the experimental data and the calculated correlation coefficients were equal to one. The built network for the 
chip thickness ratio is giving correlation coefficient equal one too, when its output compared with the experimental results. 
These networks (models) are used to optimize the cutting parameters that produce the lowest machining force and chip 
thickness ratio. The models showed that the optimum machining force was (240.46 N) which can be produced when the 
cutting speed (683 m/min), depth of cut (3.18 mm) and feed rate (0.27 mm/rev). The proposed network for the chip 
thickness ratio showed that the minimum chip thickness is (1.21), which is at cutting speed (683 m/min), depth of cut 
(3.18 mm) and feed rate (0.17 mm/rev). 
 
Keywords: Machining forces, chip thickness ratio, neural network, optimization, turning operation. 

1. Introduction 
 

The turning process is among the most 
significant cutting operation. It would once 
generate a variety of cylindrical products like solid, 
hollow, profile shafts and threads, etc. Due to its 
important, a lot of scientists considered the 
parameter which impacting the process either to 
generate a good finished product, improve tool life 
or both. Additionally, they examined the power 
usage reduction and the production time [1]. 

The machining force ���� in turning operation is 
a three-dimensional vector. Three components 
represent it, namely, the cutting force���) which is 
in the direction of cutting axis, the passive force ���� in the direction of radial axis and feed force 

���� in the direction of feed axis as shown in  

Fig. 1. The cutting force has the biggest value in 
the three force components. Several researchers 
learned such components and taking into accounts 
the effect of cutting variables. Stachurski, et al. [2] 
utilized a power polynomial to model the cutting 
force during turning steel C45. Astakhov and Xiao 
[1] applied mathematical models to estimate the 
cutting forces during machining two materials, 
aerospace aluminum alloy 2024 and T6AISI 
bearing steel E52100. Agustina, et al. [3] 
implemented a design of experiment to evaluate the 
impact of cutting factors to the cutting force when 
turning aluminum alloy (UNS A97075) in dry 
conditions. They examined the influence of micro 
grove size and shape on the cutting temperature, 
cutting force and tool wear. C.X.Yue, et al. [4] 
produced a three-dimensional model by using 
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Abaqus/Explicit to simulate the cutting operation of 
hardened steel GCr15. For their model the cutting 
temperature, surface residual stresses, cutting force 
and the side flow were investigated.  

The chip thickness ratio (CTR) gives essential 
indication for the cutting process stability. It can be 
explained as the ratio relating the chip thickness to 
the undeformed chip thickness. It is usually greater 
than unity (CTR>1) [5]. Through the definition, the 
higher CTR means that the chip is thicker. The 
reason is the limitation to the chip movement, that 
in turns, can cause rise in the machining power and 
vice versa. Santos, et al. [5] researched the 
machining force (Fu), chip thickness ratio (CTR) 
and chip disposal during turning ductile (1350-O 
grade) and high strength (7075-T6 grade) 
aluminum alloys at different cutting conditions. 
Astakhov and Shvets [6] investigated the chip 
compression ratio with several cutting parameters.  

 

 
 

Fig. 1. Machining force and its components. 
 
 

In recent years, the scientific approaches such as 
neural network, fuzzy logic, genetic algorithm, ant 
colony or combinations of them, are used to model 
nonlinear, complicated and multi parameters 
system. In addition, they are used in the 
optimization of such systems. The neural network 
is miming human brain. It consists of an input layer 
to presents data to the network, output layer to 
produces the network response, and one or more 
hidden layers. The hidden and output layers’ 
topology, weights and activation functions are the 
network characterization. A neural network is 
trained with various data sets and tested with other 
testing data sets to reach an optimum topology and 
weights. Once the network is trained, it can be used 
for prediction, simulation, monitor and control 
complicated system [7].  

Sick [8], used the neural network to estimate the 
development of tool wear. Sharma, et al., [9] utilize 
the neural network to model the cutting force and 
surface roughness as a response to the approach 
angle, cutting speed, feed rate and depth of cut. 
Chen, et al., [10] constructed nested artificial neural 
network. Their model consists from two networks, 
the first one is the enclosed network which take the 
cutting parameters to predict the cutting force and 
tool vibration, and the second is the output network 
which take the outputs of the first network and the 
cutting parameters as inputs and give the surface 
roughness as output. Sangwana, et al., [11]  
optimized the surface roughness during turning of 
Ti-6Al-4V titanium alloy by integrating feed 
forward neural network and the genetic algorithm. 
AL-Khafaji, et al., [12] applied Levenberg- 
Marquardt algorithm for backpropagation training 
algorithm to train four feed forward neural network. 
Their networks were constructed to different insert 
type. The network takes the cutting speed, feed rate 
and depth of cut as input and predict the surface 
roughness. These networks are used to optimize the 
cutting parameters for minimizing surface 
roughness. Mia and Dhar, [13] presented an 
artificial neural network based model to predict the 
surface roughness of EN 24T steel in turning 
operation. Their model take the cutting speed, feed 
rate, material hardness and the machining 
environment, coolant or dray conditions, as input. 
The model output was surface roughness.   

This paper aims to build neural network model 
to correlate the cutting variables, cutting speed (��), 
depth of cut (	), and feed rate (
), to the machining 
force (��) and the chip thickness ratio during 
machining aluminum alloy 7075-T6. 

 
 

2. Experimental Data 
 
The implemented experimental data are 

conducted by Santos, et al. [5]. The workpieces are 
artificially aged aluminum alloy 7075-T6, they are 
cylindrical extruded bars (Ø 101×2,000 mm) in 
dimension. Their chemical composition is 1.20–
2.00 % Cu, 0.40 % Si, 2.10–2.90 % Mg, and 5.10–
6.10 % Zn. The experiments had been executed on 
CNC lath machine ROMI Multiplic 35D applying 
6% concentration of soluble oil with 360 l/h. The 
cutting tool implemented comes with ISO 
designation of (TCGT16T308-AZ HTi10) which is 
cemented carbide inserts. The tool holder utilized in 
the experiments is made by Mitsubishi which has a 
designation of (STGCR2020K16Z). The applied 
tool geometries have been: rake angle, ��  15°; 
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relief angle, ��  7°and approach angle, �� 
 90°. These angles have been estimated after 
installing the tool on the tool holder. The forces 
measuring system is made up from three elements, 
a force sensor which is force dynamometer, a signal 
conditioning and USB 6251 data acquisition board. 
The force sensor and a signal conditioning element 
are made by Kistler company both have model no. 
(9265B) and (5019B), respectively. The USB 6251 
data acquisition board made by National 
Instruments controlled by LabVIEW® 9.0 software 
were applied for data recording. When the cutting 
conditions are getting a steady-state stage, the data 
recorded for a 10s interval at 6kHz as sample rate. 
The system has been calibrated prior to conducting 
the experiments. The machining variables that will 
be considered in this paper are cutting speed (��� 
depth of cut �	� and feed rate �
).  Five level were 
given for each variable, for cutting speed,  ��, (117, 
200, 400, 600, and 683 m/min), for depth of cut, 	, 
(0.38, 1.00, 2.50, 4.00, and 4.62 mm) and for feed 
rate, 
,  (0.170, 0.200, 0.275; 0.350; and 0.380 
mm/rev). The experimentation output were cutting 

force, ��, passive force, ��, feed force, ��, and chip 

thickness ratio, ���.The experimental data shown 
in table 1. The tests no. 8, 9, 10 and 11 shown in the 
table1 duplicated so that average of their results has 
been utilized in the modeling. 

 

3. Neural Netowrk Modelling 

 
The feedforward networks have number of 

neurons in their layers, the layers arrange 
sequentially. The outputs of one layer are inputs to 
the next layer neurons. As mentioned in advance 
that the feedforward neural network consists from 
one or more hidden layer. These layers are 
characterized by their activation function and 
neurons number [13]. The network training is a 
process to adjusts the networks’ weights to reach 
the minimum error between the network output and 
the target, the experimental data. The most common 
algorithm used to train neural network, adjusting 
weights, is the Backpropagation algorithm. [7]. 

 
 
 
 
 
 
 
 
  
  

 

 
Table 1, 

Machining experimental results taken from Santos, et al. [5] 

No 
Input Measured 

��� �
�� � ! (mm) " ���

#$%�   &��'� &(�'� &"�'� )*+ 

1 117 2.5 0.275 564 -24.9 158 1.32 
2 200 4 0.2 749 -1.9 233 1.69 
3 200 4 0.35 1150 -23.1 222 1.71 
4 200 1 0.2 167 -5.76 31.5 1.5 
5 200 1 0.35 257 -11.4 30.5 1.96 
6 400 4.6 0.275 923 -40.4 134 1.45 
7 400 2.5 0.17 377 -9.5 133 1.48 
8 400 2.5 0.275 518 -30.7 112 1.45 
9 400 2.5 0.275 518 -31 113 1.45 
10 400 2.5 0.275 522 -32.7 114 1.45 
11 400 2.5 0.275 520 -27.9 115 1.45 
12 400 2.5 0.38 636 -51.1 101 1.41 
13 400 0.38 0.275 84.8 28.6 14 1.14 
14 600 4 0.2 678 4.51 185 1.5 
15 600 4 0.35 992 -28 167 0.75 
16 600 1 0.2 153 -8.64 24.9 1.5 
17 600 1 0.35 238 -19.1 11.8 1.61 
18 683 2.5 0.275 491 -29.5 106 1.36 

 
 

The radial basis function (RBF) neural networks 
type is fundamental categories of neural networks. 
The primary features of the RBF model are its 
efficiency, the implementation simplicity. In 

addition, good learning and generalization 
capabilities. The radial basis function network 
construction requires two different layers, a single 
hidden layer and the output layer. The hidden layer 
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has nonlinear processing neuron, which provides an 
alternative goal from that in the feedforward 
multilayer perceptron MLP network. The output 
layer has neurons to compute the scalar product of 
its inputs and provides the response of the network. 
The input space transformation to the hidden-unit 
space is nonlinear, whereas it is linear from the 
hidden-unit space to the output space. It can be 
concluded that the RBF network is a feedforward 
neural network with single hidden-layer [14].  

The RBFs are generally proven to have 
universal approximation capabilities. They are 
suitable for solving pattern classification and 
function approximation problems because of their 
uncomplicated topology and their capability to 
show the learning proceeds in an explicit manner 
[14]. The hidden layer activation function in the 
radial basis neural network is radial function. The 
most radial basis function used is Gaussian 
function. In a RBF network having k radial units in 
the intermediate layer and one output [15]. The 
weights connecting the hidden and output units are 
estimated either by the least mean square (LMS) or 
the gradient descent method [14]. Radial basis 
networks might need more neurons compared to 
standard feedforward backpropagation networks, 
although they can be designed with a less time that 
it takes to train standard feedforward networks. 
They operate most effective when many training 
vectors are implemented [16]. 

In this work a RBF neural network were used to 
model the cutting parameters against machining 
force components and chip thickness ratio. Four 
models were constructed using MATLAB neural 
network toolbox. The input to all networks are 
cutting speed ��, depth of cut and feed rate 
. The 
first three networks’ responses are cutting force ��, 

passive force �� and feed force ��, respectively. 

Whereas, the fourth network’s response is chip 
thickness ratio ���.  

As stated in advance the RBF network is like 
feedforward MLP network in architecture with only 
one hidden layer. The function, newrb, in Matlab 
neural toolbox used in this work to generate the 
models networks is conducting it calculates the 
distance of network input from the weights’ matrix 
rows, rather than matrix multiplication as in MLP 
network. In addition, it multiplies the bias instead 

of adding it. Therefore, the input of hidden layer ,-. 
neuron is computed by (1)   [16] [17]. 
/01  23 − 5012. 701                                                 ... (1) 

Where, 3 is the input vector, 51 is the weights’ 

matrix and 71 is the bias. Each weights’ matrix 
element is considered as center point, a point at 
which the net input is zero. Whereas, the bias is 

used to scale the output of the hidden layer transfer 
function (the radial basis function) output either 
stretching or compressing it.  

In this paper the tool box function newrb is 
implemented to generate the radial basis neural 
network models. The network generated by this 
function use the Gaussian function shown in  

Fig. 2 as a transfer function and defined by (2)  

801  9:;<=                                                                ...(2) 

An essential property of the Gaussian function, 
it is local. Which indicate that the output is near to 
zero if n moves extremely far in either direction 
from the center point. In addition, it is global 
function. It is opposed to the global sigmoid 
functions used in the multilayer perceptron MLP 
whose output remain near to 1 when the net input 
goes toward infinity. The output layer in RBF 
network is pure line given by (3) [16] [17] 

8>  ∑ 5@>8@1A@B1 + 7>                                     …(3) 
Where, D is the number of neurons in the hidden 

layer, 5> is the weights’ vector connecting the 
hidden layer and the output layer and 7> is the bias 
of the network output layer. The model of the 
proposed radial basis models is shown in fig. ٣ . The 
vector 3 in equation (1) is consist of three 
components which are cutting speed, depth of cut 
and feed rate. The number of hidden layer neurons 
(D� is 18 for all four models. The weights matrix 51 
has size of 18 rows and 3 columns and the bias 
vector  71 has 18 elements. The  5> has 18 elements 
too. 

Table 2 to table 5 show the network weights 
matrices and bias for ��, ��, �� and ��� models, 

respectively. It should be noted that the value of 

second layer bias 7> for ��, ��, �� and ��� 

networks are scalar values equal to (−1058.152), 
(−15.3309), (557.1898) and (0.8283), 
respectively. 

 

 
 

Fig. 2. Gaussian function. 
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Fig.  3. The proposed neural network model. 
 

 

4. Results and Discussion  

 
The networks outputs are extremely matching 

the experimental data. The correlation coefficient � 
is computed for all networks using equation (4) 

�  A ∑ HI ;I:∑ H ∑ ;
JKA ∑ HI=:�∑ HI�=LKA ∑ ;I=:�∑ ;I�=L

                  … (4) 

All networks responses gave value of R equal to 
one. This is a perfect match.  
Fig.  4-7) which showing the networks responses 
compared with the experimental data taken from 

Santos, et al. [5] for ��, ��, ��, and ���, 

respectively. It can be seen from those figures that 
all networks outputs are perfectly coincide with the 
experimental data given by Santos, et al. [5]. The 
machining force �� is the resultant of the three 
components as mentioned in advanced. It can be 
computed using equation (5).  According to the 
perfect matching between experimental and 
networks outputs of the machining forces’ 
components, the machining force �� computed 
from the networks outputs is perfectly coincide 
with the experimental ��. Fig.  8 shows the perfect 
match of the computed �� versus the experimental 
�� from Santos, et al. [5]. 

��  J��> + ��> + ��>                                      … (5) 

 
 
 
 
 
 
 
 
 
 
 
 

Table 2, 

The &� network weights matrices and bias. 

no. MN ON MP 

1. 200 4.00 0.350 0.833 13961.3 
2. 400 2.50 0.380 0.833 0 
3. 600 4.00 0.350 0.833 11092.91 
4. 400 4.60 0.275 0.833 1913.422 
5. 117 2.50 0.275 0.833 1622.152 
6. 683 2.50 0.275 0.833 1549.152 
7. 200 1.00 0.350 0.833 3520.709 
8. 600 1.00 0.350 0.833 3356.444 
9. 200 4.00 0.200 0.833 -11940.5 
10. 600 4.00 0.200 0.833 -9187.46 
11. 400 2.50 0.170 0.833 -8603.13 
12. 400 0.38 0.275 0.833 1079.067 
13. 200 1.00 0.200 0.833 -2244.6 
14. 600 1.00 0.200 0.833 -2096.74 
15. 400 2.50 0.275 0.833 9977.41 
16. 400 2.50 0.275 0.833 0 
17. 400 2.50 0.275 0.833 0 
18. 400 2.50 0.275 0.833 0 

 
 
Table 3, 

The &( network weights matrices and bias. 

no. MN ON MP 

1. 400 2.5 0.38 0.8326 0 
2. 400 4.6 0.275 0.8326 -24.312 
3. 400 0.38 0.275 0.8326 44.644 
4. 683 2.5 0.275 0.8326 -14.169 
5. 400 2.5 0.17 0.8326 1381.82 
6. 117 2.5 0.275 0.8326 -9.569 
7. 600 1 0.35 0.8326 -335.18 
8. 200 4 0.35 0.8326 -683.21 
9. 600 4 0.35 0.8326 -1047.9 
10. 600 4 0.2 0.8326 1051.56 
11. 200 4 0.2 0.8326 686.05 
12. 200 1 0.35 0.8326 -177.49 
13. 600 1 0.2 0.8326 336.650 
14. 200 1 0.2 0.8326 184.293 
15. 400 2.5 0.275 0.8326 -1387.3 
16. 400 2.5 0.275 0.8326 0 
17. 400 2.5 0.275 0.8326 0 
18. 400 2.5 0.275 0.8326 0 
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Table 4, 

The &" network weights matrices and bias 

no. MN ON MP 

1.  200 4 0.2 0.833 189.7411 
2. 400 2.5 0.17 0.833 1062.935 
3. 600 4 0.2 0.833 389.2137 
4. 117 2.5 0.275 0.833 -399.19 
5. 400 4.6 0.275 0.833 -404.308 
6. 683 2.5 0.275 0.833 -451.19 
7. 200 1 0.2 0.833 -233.206 
8. 600 1 0.2 0.833 150.9871 
9. 400 2.5 0.275 0.833 -1456.21 
10. 600 4 0.35 0.833 -772.317 
11. 400 0.38 0.275 0.833 -525.381 
12. 600 1 0.35 0.833 -693.28 
13. 200 4 0.35 0.833 -520.967 
14. 400 2.5 0.38 0.833 0 
15. 200 1 0.35 0.833 -296.439 
16. 400 2.5 0.275 0.833 0 
17. 400 2.5 0.275 0.833 0 
18. 400 2.5 0.275 0.8325 0 

 
Table 5, 

 The )*+ network weights matrices and bias. 

no. MN ON MP 

1. 400 2.5 0.17 0.8326 0 
2. 200 1 0.35 0.8326 15.3151 
3. 200 4 0.35 0.8326 1.05552 
4. 600 1 0.35 0.8326 3.96737 
5. 600 4 0.2 0.8326 24.3887 
6. 400 4.6 0.275 0.8326 0.59432 
7. 683 2.5 0.275 0.8326 0.53165 
8. 117 2.5 0.275 0.8326 0.49165 
9. 400 0.38 0.275 0.8326 0.28587 
10. 600 4 0.35 0.8326 -24.091 
11. 200 1 0.2 0.8326 -14.408 
12. 600 1 0.2 0.8326 -3.2356 
13. 400 2.5 0.275 0.8326 2.88848 
14. 400 2.5 0.38 0.8326 -2.3251 
15. 200 4 0.2 0.8326 -0.1788 
16. 400 2.5 0.275 0.8326 0 
17. 400 2.5 0.275 0.8326 0 
18. 400 2.5 0.275 0.8326 0 

 
 
These networks are used to optimize the cutting 

parameters that produce lowest machining force 
and chip thickness ratio. To do that, a Matlab 
function has been written. The function creates two 
three-dimension arrays with (60, 60, 60) in size and 
initialized with zeros. The first array stores the 
results of �� and the second stores ���.  In 
addition, its  creates three vectors using the linspace 
MATLAB function. Each vector has 60 elements 
for the three parameters cutting speed, depth of cut 
and feed rate. The range of the cutting speed vector 
is (117 – 683) m/min, for depth of cut is (0.38 – 
4.62) and for feed rate is (0.170 – 0.380). Then it 
performs loops to execute the networks with 
different parameters. The optimum parameters are 

founded by searching for minimum �� and 
minimum ��� arrayes.  

 

Table 6 presents the optimum parameters that 
gives lowest �� and ���. The optimum parameter 
for both the �� and ��� are differ only in the feed. 
A surface drawn when taking the optimum cutting 
speed value as constant and changing the remaining 
for both the computed  �� from the networks output 
and  ��� are shown in Fig.  9 and  

Fig.  10, respectively. 
 The square correlation coefficients of the 

proposed models are compared to those given by 
Santos, et al. [5] as shown in Table 7. 
 
 
Table 6, 
The optimum parameters and their corresponding 

optimum values from &Q and )*+ 

 �� R �
�� S !���� " ���

#$%� 
Optimu

m value 

�� 683 3.18 0.27 240.46 N 

��� 683 3.18 0.17 1.21 

 
Table 7, 

RBF neural network TP versus TP from [5]. 

 +P   "U# &Q  +P "U# )*+ 

Proposed RBF 
networks 

1 1 

Results from 
Santos, et al. [5] 

0.998 0.9661 

 
 

 

 
Fig.  4 The neural network for &� response against 
the experimental data from Santos, et al.  [5]. 
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Fig.  5 The neural network for &( response against 

the experimental data from Santos, et al.  [5]. 
 

 
 

Fig. 6. The neural network for &" response against 

the experimental data from Santos, et al.  [5]. 

 
 

 
 

Fig.  7. The neural network for CTR response against 
the experimental data from Santos, et al.  [5]. 
 
 

 
 

Fig.  8. The  &Q computed from the networks outputs 
against the experimental data from Santos, et al.  [5]. 

 
 

 
 

Fig.  9. &Q surface when cutting speed is (683 m/min) 

 
 

 
 

Fig.  10. )+* surface when the cutting speed is (683 

m/min). 
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5. Conclusion 
 

This study provided an experimental 
investigation, via radial basis function RBF 
network modeling, to estimate the affect of cutting 
parameters. (cutting speed, depth of cut and feed 
rate) on machining force (Fu) and chip thickness 
ratio (CTR) during turning of high strength 
aluminum alloy 7075-T6. The primary conclusions 
of the investigation are given following: 

1. The proposed RBF networks showed an extreme 
match to the experimental data and the computed 
correlation coefficients were equal one. 
additionally, those networks were used to 
optimize the cutting process and obtain the 
optimum cutting parameters.  

2. The proposed methodology based on RBF neural 
network modeling can effectively overcome any 
complicated function approximation with more 
than two inputs.  

3. The outcome also revealed that the effectiveness 
of the developed networks was better compared to 
existing using genetic algorithm (GA). 

The present study for optimizing the cutting 
process is anticipated to open two directions which 
can be suggested to continue this work. The first is 
to investigate the effect of more cutting parameters, 
which include cooling liquids and angles of cutting 
tools, on machining force and chip thickness ratio.  

The second possible direction is to integrate a 
neural network with fuzzy logic to solve a more 
complicated function approximation models. 
 
 

Notation 
 

	  Depth of cut 

71  Network first layer bias vector 

7>  Network second layer bias vector 

���  Chip thickness ratio 

  Feed rate 

��  Cutting force 

��  Passive force 

��  Feed force 

��  Machining Force 

3  Network input vector 

�  correlation coefficient 

��  Cutting speed  

51  Network first layer weights matrix 

51  Network first layer weights matrix 
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  الخلاصة

القطع واستهلاك الطاقة ودرجة  ةتؤثر الكثير من المتغيرات على عملية القطع والتي يجب دراستها. ومن هذه المتغيرات الخشونة السطحية وعمر عد 
معقدة ولا خطية بسبب هذه العوامل. إن الهدف من هذا البحث هو  دحرارة القطع ومركبات قوى التشغيل وتآكل العدة ونسبة سمك النحاتة. ان عملية القطع تع

ة سمك النحاتة.  ببناء نماذج من الشبكات العصبية لتمثيل العلاقة بين متغيرات القطع (سرعة القطع وعمق القطع ومعدل التغذية) وقوة التشغيل وكذلك مع نس
ذلك تم  فضلاعنث شبكات عصبية نصف قطرية لكلٍ من قوة القطع والقوة السلبية وقوة التغذية، . تم بناء ثلاT6-7075عملة الخراطة اجرية لسبيكة الألمنيوم 

 ءمعدل التغذية). تم مقارنة أداالقطع وانشاء شبكة نصف قطرية لنمذجة نسبة سمك النحاتة. ان مدخلات جميع الشبكات هي ظروف القطع (سرعة القطع وعمق 
لعلاقة وكذلك تم حساب معامل ا اتام اتطابقمع التجارب العملية وأعطت غيل (قوة القطع والقوة السلبية وقوة التغذية) لمركبات قوة التش الشبكات (مخرجات)

بكات شمعامل الارتباط مساوٍ للواحد ايضاً، بالمقارنة مع النتائج العملية. ان هذه الها لنسبة سمك النحاتة كان ؤتم بناوكذلك الشبكة التي وجد بأنه مساوٍ للواحد. 
أظهرت نتائج النماذج بإن افضل قوة تشغيل يمكن    التي بدورها تعطي اقل قوة قطع وأقل نسبة سمك النحاتة.وظروف قطع  أفضلاستخدمت لإيجاد  )نماذج(ال

ملم/دورة). وأظهرت الشبكة  ٠٫٢٧ملم) و معدل تغذية (٣٫١٨م/د) و عمق القطع ( ٦٨٣نيوتن) عندما تكون سرعة القطع ( ٢٤٠٫٤٦الحصول عليها هي (
ملم) و معدل تغذية  ٣٫١٨م/د) وعمق قطع ( ٦٨٣عة القطع () عندما تكون سر١٫٢١اقل نسبة يمكن الحصول عليها هي (إن المقترحة لنسبة سمك النحاتة 

  .ملم /دورة) ٠٫١٧(
  

 


