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Abstract 

 
The linear segment with parabolic blend (LSPB) trajectory deviates from the specified waypoints. It is restricted to 

that the acceleration must be sufficiently high. In this work, it is proposed to engage modified LSPB trajectory with 
particle swarm optimization (PSO) so as to create through points on the trajectory. The assumption of normal LSPB 

method that parabolic part is centered in time around waypoints is replaced by proposed coefficients for calculating the 

time duration of the linear part. These coefficients are functions of velocities between through points. The velocities are 

obtained by PSO so as to force the LSPB trajectory passing exactly through the specified path points. Also, relations for 

velocity correction and exact velocity solution are derived. Simulation results show that the engagement of modified 

LSPB trajectory with PSO to work well on the tested cases. This proposed method is very simple which can be used for 

on-line path planning, and not necessarily to use high acceleration magnitude. 

 

Keywords: Adaptive inertia weight, Linear segment with parabolic blend, Particle swarm optimization, Robot 

manipulator, Through point, Trajectory generation. 

 

 
1. Introduction 

 
Straight line segments is the output from 

motion planners. This path has velocity 

discontinuity at waypoints. To achieve an efficient 

execution on the robot, blends are added to ensure 
a smooth transition between segments [1]. A 

common trajectory for industrial robots is the 

linear segment with parabolic blend (LSPB) [2, 
3]. The LSPB needs only the initial and final joint 

angles, traveling time, and either angular 

acceleration or angular velocity. Numerous 
methods and algorithms have been established 

which generate such trajectories with velocity, 

acceleration, and jerk limitations [4, 5].  

In LSPB, it is required to use high 
acceleration's magnitude to be quite close to the 

desired waypoint. Time-optimal solution for time 

durations of LSPB so as to satisfy the constraints 
velocity and acceleration is presented in [6]. This 

requires calculation a factor for velocity reduction 

of two neighboring linear segments in order to 

prevent overlapping of blend phases. Yet, this 

ethomd can lead to very slow trajectories [7]. 

Rymansaib et al. used a series of time-delayed 
third-order exponential function to generate an 

approximation to the trapezoidal velocity profile 

of LSPB [8]. The motion duration is affected by 
high blending percentage as well as the 

corresponding accuracy at waypoints. A new 

technique "envelope of tangents planning" had 
been developed so as to generate trajectory that 

reaches waypoints in specified moments of time 

[9]. This is achieved by assigning positions and 

tangential velocities that the joints must have 
when the end-effector passes through each of 

those waypoints. Additionally, the online 

trajectory generation algorithm was combined 
with the Reflexxes libraries to make the trajectory 

reaches waypoint with continuous acceleration 

and jerk [10, 11].  
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New path planning algorithm was developed 
for the control of an XY -motion stage using 

LSPB and minimum time trajectory for an aerosol 

printing system [12]. The algorithm calculates 
blend times and constant velocity based on given 

trajectory conditions. But large error in speed 

appeared for acute angle trajectory. This problem 

can be considered as multi-segment trajectories 
without stopping at waypoints. Weber et al. used 

the tool CorDe (Corner Drive with Defined 

Speed) to visualize the characteristic of the 
distance to the corner depending on the speed 

deviation for transition between path segments 

[13]. But the absolute maximum acceleration is 

difficult to obtain as a realistic value which is the 
sole characteristic value. This results in a loss on 

performance for many transition points. 

Classic optimization approaches suffer from 
many drawbacks, such as high time complexity in 

high dimensions and trapping in local minima, 

which make them inefficient in practice. Modern 
or nontraditional optimization methods such as 

genetic algorithm and swarm intelligence are 

widely used in path planning problems [14-16]. 

Particle swarm optimization (PSO) is simple and 
fast because it has few parameters to be adjusted 

[17]. 

In the above mentioned works, the suggested 
methods have limitations and use the same basic 

equations of LSPB. The LSPB trajectory still 

deviates from the specified waypoints. In this 
work, the LSPB trajectory is modified and 

engaged with PSO. The novelty in this work is to 

modify LSPB trajectory using two coefficients for 

calculating the time duration of the linear part in 
LSPB trajectory. These coefficients are functions 

of  velocities between through points. The 

velocities are obtained by PSO to force the LSPB 
trajectory passing exactly through the specified 

path points. Also, relations for velocity correction 

and exact velocity solution are derived. 

 
 

2. Multisegment Linear Path with Blends 
 

For the case in which there are many 

waypoints, linear segments with parabolic blends 
are considered. In LSPB, the segment is divided 

into three parts: parabolic, linear, and parabolic; 

respectively (Fig.1). 
Considering the path waypoints which are  j, k, 

and 1. The time duration for blend region of point 

k is tk.  The time duration for linear part between 

points j and k is tjk. The time duration of the 
segment which connects points j and k is tdjk. 

According to Fig. 1, the linear velocity between 

points j and k is 
jkθ& , the acceleration at point k is 

kθ&& , and the path point position is 
kθ . The blend 

times tk is computed from the given: path points 

kθ , desired time durations tdjk, and the magnitude 

of  acceleration
kθ&& . For interior path points, this 

follows simply  the equations [2]: 

djk
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θθ
θ

−
=&                                                …(1.a) 
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where SGN ( ) returns the sign of the value in the 
brake.  

In the first and last segments there is an entire 

blend region at one end of the segment. For the 
first segment [2]: 
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Fig. 1. Multisegment linear path with blends [2] 

 

 

Likewise, for the last segment (the one connecting 
points n-1 and n), which leads to the solution:  

nnnn SGN θθθθ &&&& )( 1 −= −                           …(3.a) 
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In these linear-parabolic-blend splines, when 

acceleration capability is sufficiently high, the 

paths will come quite close to the desired 
waypoint. The manipulator must come to a 

complete stop if it is desired to pass exactly 

through a waypoint. The term "through point", as 
it was mentioned in [2], will be used in the next 

sections to specify a path point through which the 

manipulator is forced to pass exactly. 

  
 

3. Problem Definition 

 
In the previous section, the LSPB trajectory is 

constrained to the following [6]: 
1-The velocity at the first and last through point 

must be zero. 

2-The velocity and acceleration of the trajectory 

must be:  

maxmax )()( θθθθ &&&&&& ≤∧≤ tt . 

The limitations of this algorithm are: 

1-Sufficiently large acceleration is required so as 

to obtain linear portion in the segment. 
2-The manipulator's velocity must be zero so as to 

pass into waypoints. 

3- The system should generate two pseudo points 
so as to make the manipulator passes exactly 

through a path point without stopping. 

4-The parabolic portion is assumed to be centered 
equally in time about through point.  

This later assumption makes the apex of parabolic 

part to be shifted away from through point as 

shown in Fig. 2. 
For interior path point (equation (1)), the apex 

of the parabolic portion is not equally centered in 

time about waypoint. This can be easily proved 
using the kinematic equations for LSPB trajectory 

as presented below. 

 

1θ& 2θ&

0=θ&

 
 

Fig. 2. Trajectory of parabolic part. 

 

 

Proof 1:  

,0and,0,0Given 21 <<> θθθ &&&&  the velocities at 

the parabolic path for constant acceleration are:   

abtθθθ &&&& −=− 12                                          …(4.a) 

atθθθ &&&& −= 1                                                …(4.b) 

btθθθ &&&& −=− 2                                             …(4.c) 

where 
21 and,, θθθ &&&  are the velocities of 

previous segment, apex point, and next segment; 

respectively. But when the trajectory changes its 

direction, the apex point's velocity becomes zero. 
The above equations of velocities are solved for 

unknown time durations as: 

θθ &&& /1=at                                                   …(5.a) 

θθ &&& /2=bt                                                    …(5.b) 

ba tt ≠∴                                                     …(5.c) 

Therefore the apex of parabolic path is not 

exactly placed under a waypoint unless 
21 θθ && =   in 

magnitude.  
 

 

4. Proposed Method 
 

The assumption of normal LSPB that parabolic 

portion is centered in time around waypoints is 
replaced in this work by proposed coefficients 

which are functions of  velocities between through 

points. From equations (4 and 5), the time 
durations on the parabolic blend around through 

point are obtained as:  

θθθ
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&&&&

&&&
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From equation (6), now two coefficients (αj & 

αk) are obtained for calculating the time duration 
of the linear portion of the trajectory. These 

coefficients are obtained from the LSPB 

kinematic equations. Two coefficients are used to 
calculate the time's duration of the parabolic 

portions in the segment's time duration (tdjk).  

Given through points (joint's angles), time 

durations, and assuming accelerations for all 
through points, the modified LSPB equations are 

as below:  

Modified mid segments 

kjkklk θ/θθt &&&& )( −=                                       …(7.a) 

kkjjdjkjk tαtαtt −−=                               …(7.b) 

)( jkijjkj θθ/θα &&& +=                            …(7.c) 

)( kljkjkk θθ/θα &&& +=                           …(7.d) 

Modified first segment 

1121 θ/θt &&&=                                                   …(8.a) 

2211212 tαttt kd =−−=                               …(8.b) 

)( 2312122 θθ/θα &&& +=                             …(8.c) 

Modified last  segment 

n)n(n-n θ/θt &&&
1−=                                           …(9.a) 

nnnjnndnn- ttαtt −−= −−=− 11)1()1(         …(9.b)
 

)( )1()1)(2()1(1 nnn-n-nnn- θθ/θα −− += &&&         …(9.c) 

By using these coefficients, the apex of 

parabolic portion  is positioned exactly under the 
through point. Although the apex of parabolic part 

is now positioned exactly under through point, but 

it stills not passing through it. This is because of 
replacing a linear part region of the segment by 

parabolic part. This can be proved as below. 

Proof 2:  

The position for linear part with constant velocity 
during a time t is 

t θ ll ⋅= θ&                                                       …(10) 

and that for parabolic part with constant 

acceleration in the same time duration is: 

2

2

1
tθt θ lp
&&& −⋅= θ                                          …(11) 

The difference (Δθ) between these parts is: 

lp θθθ −=∆                                             …(12) 

Substituting equations (10) and (11) into equation 
(12) gives: 

ttθtθ ll ⋅−−⋅=∆ θθ &&&& 2

2

1

 

2

2

1
tθθ &&−=∆                                            …(13) 

which means this displacement of parabolic 

part is less than that of linear part for same time 

duration.  

This problem can be solved by increasing the 
velocity between through points in presence of 

acceleration limits. The problem of finding the 

velocities' value can be solved by optimization 
methods such as PSO. 

  

 

4.1. Velocity Correction 

 
In the above modified LSPB, the initial 

velocities are obtained from equation (1). But 

from proof 2, there is an error due to the parabolic 

part (equation (13)). Therefore, these velocities 
can be corrected by adding the change of velocity 

(equation (14.b)) based  on the error of the 

parabolic parts as: 

jkjkjk θθθ &&& ∆+=corrected)(                           …(14.a) 

jkjkjkjk tSGN /)( θθθ ∆=∆ &&                     …(14.b) 

))
2

1
()

2

1
((

2

1 22
kkjjjk tt ⋅+⋅=∆ θθθ &&&&   …(14.c) 

 
In the above equation, half  of the blend durations 

(tj and tk) are accepted as an approximated value. 

This corrected velocity is used as initial velocity 

to begin the optimization process. 
 

 

4.2 Exact Solution of Velocity 
 

The LSPB offers exact solution of velocity for 
path segment when there is acceleration from zero 

velocity to linear velocity and deceleration to zero 

velocity. For example, the first and second 

segments (ij and jk) or the second and third 
segments (jk and kl) have such situation (Fig.1). 

The second and third segments are considered to 

derive a general solution. Let ts, tl, and te are times' 
duration for first parabolic part, linear part, and 

last parabolic part for the path from through point 

j to through point k. The total displacement is the 
summation of these three parts as below: 

2/2/ 22
eklexactsjjk ttt θθθθθ &&&&& ++=−  …(15.a) 

esdjkl tttt −−=                                         …(15.b) 

jexactst θθ &&& /=                                          …(15.c) 

kexactet θθ &&& /=                                          …(15.d) 
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Solving the above quadratic equation (equation 
(15.a)) for the exact velocity to obtain: 

⋅
⋅+

⋅+⋅−−−+
=

)/()(

)/()(22

kjkj

kjkjjkdjkdjk

exact

tt

θθθθ

θθθθθθ
θ

&&&&&&&&

&&&&&&&&

&

 
)( jkSGN θθ −                                      …(16) 

In the above derivation, absolute values are 
used to prevent sign confusion. The sign of 

velocity is introduced after solving the quadratic 

equation. 

 
 

4.3. Steps of Proposed Method 
 

The proposed modified LSPB is presented here 

which overcomes the limitations of the normal 
LSPB. It provides logic sequence for computer 

programming to generate through points: 

Step 1: Calculate velocities and accelerations 
according to equation (1). 

Step 2: Use equation (16) to solve for exact 

velocity if there is a change in velocity direction 

between two following through points. 
Step 3: Obtain the time durations for the 

trajectory using equations (7-9). 

Step 4: Apply velocity correction using equation 
(14) to all calculated velocities at step 1 except 

that obtained at step 2. 

Step 5: Use these velocities as initial solution for 

the optimization process.  
This algorithm can be easily converted into 

computer program to perform optimization 

process (Fig. 3). The velocities are obtained from 
optimization process so as to force the LSPB 

trajectory passing exactly through specified path 

points. 

nnn tttt 1121 ...,,,...,,Calculate −

(16)Eq.fromfor 1+iiθ&

nnndn tt θθθθ &&&&   ..., ,,...,,,...,, 11121 −

nnn θθθθ &&&&&&   ..., ,,...,,Calculate 1112 −

(14)Eq.fromfor 1+iiθ&

 
 

Fig. 3. Algorithm flowchart for proposed modified 

LSPB trajectory. 

 
 

5. Particle Swarm Optimization 

 
Recently, modern or nontraditional methods of 

optimization are widely used for solving different 

optimization problems. Edward and Kennedy  
formulated PSO in 1995. The process was 

inspired by the social behavior of animals, such as 

bird flocking or fish schooling. Each particle has 

two characteristics which are: a position and a 
velocity. It must remember the best position in 

terms of objective function value. The particles 

adjust their individual positions and velocities by 
sharing the received information of the best 

position [18]: 
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where v is particle's velocity, w is inertia weight,  

P is particle position or variable, r1 and r2 are 
uniform distributed random numbers, Plocal best is 

best local postion, Pglobal best is best global position, 

i is particle index, j is dimension of variable, Γ1 is 

individual learning rate, Γ2 is group learning rate. 
Premature and local optimum convergence are 

the disadvantages of traditional PSO. 

Modifications to PSO were applied so as not to 
skip the optimal solution [19]. These 

modifications are happened either on basic 

components or on swarms itself. Modifications on 

basic components of PSO are: inertia weight [20, 
21], velocity constriction [22, 23], and velocity 

clamping [24]. Five basic benchmark optimization 

functions had been tested by using fifteen 
different inertia weight variants in [25]. They 

concluded that chaotic inertia weight improves the 

accuracy of the solution. Modifications on the 
swarms itself are: insertions new swarms [26, 27], 

mutation [28], and swarm initiation [29]. These 

modifications can increase the search diversity. 

Applying multiple modifications on the basic 
components of PSO and swarms was  suggested 

as future work in [30]. An improved chaotic PSO 

algorithm based on adaptive inertia weight 
(AIWCPSO) was proposed in [31]. Initially, the 

positions and velocities of the population are 

generated by using chaotic mapping. The inertia 
weight is adjusted according to the values of: 

iterative number, aggregation degree factor, and 

improved evolution speed parameter. AIWCPSO 

algorithm with chaotic swarm initiation and 
swarm injection were used in [32]. This combines 

modifications to basic components of PSO and 

swarms. 
In this work, improved chaotic PSO algorithm 

based on adaptive inertia weight (AIWCPSO) is 

used. Also velocity constriction factor, λ, is 

included (equation (18)).  
new
,

old
,

new
, jijiji vpp λ+=                                  …(18) 

 

Steps of AIWCPSO Algorithm 
Step 1: Cubic mapping (equation (19)) is used to 

generate double or triple swarm size as chaotic 

initialization. The cubic mapping is described as 
following: 





<<−

−=+
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3
1

p

ppp nnn                                      …(19) 

where p0 is a random number substituted as initial 
value. These swarms are tested so as to select 

those of best fitness as initial solution to particle 

position. Then this initial solution is mapped to 
the search space range. 

Step 2: Chaotic initialization is also applied to 

generate N initial velocities by cubic mapping 

(equation (19)).  
Step 3: The inertia weight is updated by the 

equations below for a single particle: 
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k
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k
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k
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FFabs

FFabs
adf =            …(20.c) 

where k is the current iteration value. wmax and 

wmin are maximum and minimum values of inertia 
weight; respectively. iter is the current iteration 

number and itermax is the maximum number of 

iteration. The value α and β has the range [0,1]. 
esfi is the improved evolution speed parameter of 

particle i (i =1, 2,..., N), adf  is the aggregation 

degree factor of swarm, F (pbesti
k) is the best 

fitness value of particle i at the kth  iteration, Fbest 

is the best fitness obtained from all particles, Favg 

is the mean fitness of all particles in the swarm at 

the same iteration.   
Step 4: The variance (σ) is calculated for the 

population's fitness (equation (21)). When 

variance is less than threshold value and the 

optimal fitness of current iteration is worse than 
the desired fitness value, chaotic disturbance is 

applied.   

∑
= −

−
=

N

i
k

avg
k
i

k
avg

k
i

FxFabs

FxF

1

22 )
]1]],)([[[maxmax

)(
(σ

                                                                      …(21) 
where F( xi) is fitness values of particle i. 

Step 5: Chaotic disturbance strategy: 

Cubic mapping (equation (19)) is used to generate 
chaotic vector oij (i =1, 2,..., N; j =1,2,..., J), where 

o0j is (-1,1) of random numbers, and the 

component of this vector is loaded to the range of 

chaotic disturbance of  [−γj, γj ] (j=1, 2,..., J). Then 
chaotic disturbance variation is Δpi = (γ1 oi1, γ2 oi2 

,...,γJ oiJ). The position updated of particle after 

adding the chaotic disturbance variation is given 
by: pbij (k +1) = pij (k) + vij (k) + Δpij. Finally, 

comparison is made between the fitness values of 

F(pbi (k +1)) and F (pi (k +1)). If F(pbi (k +1)) is 
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better than F(pi (k +1)), then pi (k +1) is updated 
by pbi (k +1). Note: J is the variable's dimension 

of particle i. For more details about AIWCPSO  

algorithm see [31]. 
 

 

6. Simulation Results 
 
Simulations are presented to validate the 

proposed method. These simulations are 
implemented in Matlab7 on Pentium 4 PC 

processor (Intel (R)  Core (TM) i5-2450M CPU 

@ 2.50 GHz). The parameters of PSO are set as 
follows: Γ1=2.05; Γ2=2.05; λ=0.7298 [22]; N= 40; 

itermax= 30; wmax=0.09, wmin= 0.05; α=0.99; 

β=0.01; γ=10-4; threshold value= 10-5; desired 

fitness value =10-12. The objective function to be 
minimized has the form: 

∑
=

=
np

i

ie
2

2Fitness                                               …(22) 

where e is the error at through point, np is total 

number of through points. The error at through 

point 1 is always zero because it is starting point. 

Considering a single joint: Through points of the 
path in degrees: 10, 35, 25, 10. The time durations 

of the segments are: 2, 1, 3 seconds; respectively. 

The acceleration at blend points is 50 
degrees/second2. Although different accelerations 

at different through points can be used.    

At first, the trajectories of normal LSPB 
(equations (1-3)) and modified LSPB (equations 

(7-9)) are compared (Fig. 4). The normal LSPB 

trajectory is shifted while the modified is equally 

spaced about through points. A comparison of 
linear part velocities is presented in Table 1 for 

50 degrees/second2 acceleration between normal 

LSPB, modified LSPB with velocity correction, 
and optimum modified LSPB (section 4.3). It is 

clear that modified LSPB with velocity correction 

is better choice as initial velocity to begin the 
optimization process. A range between 0.9 to 1.2 

of these later calculated velocities is used as initial 

value for the optimization. This will reduce the 

number of iterations to reach optimum solution. 
PSO is used to generate optimal linear 

velocities for the linear parts. In fact, that 

increasing the velocities of the linear portions will 
compensate the error resulted from inserting 

parabolic region in the path between two 

neighboring through points. Figure 5 shows 

comparison between the normal and modified 
LSPB trajectories using PSO method. The normal 

LSPB trajectory deviates from the through points, 

while the engagement of modified LSPB with 
PSO (proposed method in section 4.3) passes into 

them. In the normal LSPB method, it is restricted 
to use acceleration's value higher than 40 

degrees/second2 [2].  Figure 6 shows results of 

proposed method for the two acceleration values 
using PSO. The results of comparison are 

presented in Table 2 for different acceleration 

values. Acceleration values are: 30, 50, 70 

degrees/second2.  
  

 
 

Fig. 4. Trajectories of normal and modified LSPB 
 

 

Table 1,  

Comparision of linear velocities. 

Method 

 

 

 

 

Velocity 

Normal 

 LSPB 

(eqs.1-3) 

Modified 

 LSPB  

&  

velocity  

correction 

(eqs. 7-9&14) 

Modified  

LSPB 

 &  

PSO 

(eqs. 7-9) & 

 (eqs. 14, 16-
24) 

12θ
&

 
(deg/sec) 

13.3975 14.3854 14.6446 

23θ
&

 
(deg/sec) 

-10.0000 -11.8111 -11.5306 

34θ&
 

(deg/sec) 
-5.0862 -5.1090 -5.0728 

t1  

(sec) 
0.2679 0.2877 0.2929 

 

 

The error at through points is reduced for the 

cases of proposed method. The error at point 2 is 
zero because of using the exact velocity solution 

(equation (16)). The error at point 3 is 0.2916∙10-

12, 0.3588∙10-12, and 0.0107∙10-12 degree for 

accelerations 30, 50, and 70 degrees/second2; 
respectively. Optimal velocities' value are 

presented in Table 3. 
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Table 2, 

Comparison of error at through points between normal and modified LSPB using PSO. 

Case 
Acceleration 
(deg/sec2) 

e2 
(deg) 

e3 
(deg) 

e4 
(deg) 

Normal LSPB (eqs.1-3)  

& PSO (eqs. 17-22) 

30 0.7919 0.9480 0.6877 

50 0.3785 0.5844 0.5021 

70 0.2539 0.4010 0.3431 

Proposed method 
(eqs. 7-9 &  eqs. 14, 16-24) 

30 0.0003∙10-12 0.2916∙10-12 0.3038∙10-12 

50 0.0002∙10-12 0.3588∙10-12 0.5524∙10-12 

70 0.0001∙10-12 0.0107∙10-12 0.5240∙10-12 

 

 
 

 
 

 

Fig. 5. Comparison between normal and modified 

LSPB trajectory using PSO. 

 

0 1 2 3 4 5 6

10

15

20

25

30

35

40

Time (sec)

P
o

si
ti

o
n

 (
d

e
g

re
e

)

 

 

Through point

Acceleration=50 

Acceleration=30

 
 

Fig. 6. Trajectories obtained by proposed method. 

 

 

 

Table 3,  

Optimal values obtained by proposed method. 

Variable 
Acceleration 

(deg/sec2) 

 30 50 70 

12θ
&

  
(deg/sec) 

17.7526 14.6446 13.8751 

23θ
&

 
(deg/sec) 

-13.9218 -11.5307 -10.9786 

34θ&
 

 deg/sec) 
-5.1142 -5.0728 -5.0525 

t1  

(sec) 
0.5918 0.2929 0.1982 

 

 
The run execution time is found to be about 

5.4% of the first parabolic portion (0.2929 

seconds) for the 50 degrees/second2 acceleration. 
This value is enough to generate trajectory of 

desired path by using the algorithm of the 

proposed method for on-line path planning. 

Point to point position trajectory is simulated 
for two-link planar robot manipulator (Fig. 7). It 

has revolute joints. The masses m1 and m2 are 

assumed to be concentrated at the distal end of the 
links which have the lengths l1 and l2; 

respectively. The robot starts at point (2.95, 0.05) 

and passes through points  (2.45, 0.05) and (2.7, 

0.30). Then it stops at point (2.95, 0.05). All 
coordinates are in meters. The time durations are: 

4, 3, 3 seconds. The robot dynamic equation and 

controller are taken from early published paper 
[33]. The desired through points in joint space are 

obtained by solving the inverse kinematics 

equations [2]. The trajectory for the two joints is 
generated by using the proposed method (Fig.8). 
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Fig. 7. Planar robot arm with two links [2] 
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Fig. 8. Two-link joint's desired trajectory 

obtained by proposed method. 

 
 

The Cartesian trajectory of the two-link 

manipulator is presented in Fig. 9. The errors in 
the Cartesian space are: 0.5722∙10-5, 0.4180∙10-5, 

0.4365∙10-5, and 0.2551∙10-5 in meters for these 

through points. The error  at the starting point is 

not zero because of the used controller which is 
learning on-line. The error at through points is 

presented in Table 4. 

Finally, a comparison of results is presented 
for path of acute angles from [12]. The pattern 

contains 14 line segments, and beginning at the 

origin. The segments form angles starting at 125° 
and decrease linearly to 5°. The peak velocity 

error shown in Fig. 10 increases as angle 

decreases. For example, a complete change in 

direction or a 0° angle results in a 100% error 
according to the method of [12]; while the error is 

no more 21%  by using the proposed method in 

this work. In LSPB, the trajectory deviates 
slightly from the straight path. This deviation is 

increased as the angle formed by two segments is 

decreased (Fig. 11). 
 

Table 4, 
Error at through points for point to point trajectory 

using the proposed method 

Link 
Error 
(deg) 

 e2 e3 e4 

1 0.0071∙10-12 0.2061∙10-12 0.1474∙10-12 

2 0.0284∙10-12 0.1137∙10-12 0.0675∙10-12 
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Fig. 9. Two-link Cartesian path obtained by 

proposed method. 
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Fig. 10. Comparison of Speed error resulting from 

decreasing segment angle 
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Fig. 11. Trajectory of y-component with decreasing 

segment angles. 

 

 

7. Conclusions 

 
The normal LSPB is restricted to that the 

acceleration must be sufficiently high. In this 

work, modified LSPB is engaged with PSO for 
generating smooth valid trajectories that passes 

through specified path points while satisfying 

velocity and acceleration constraints of physical 
mechanical robot manipulator. 

Increasing the velocity of linear portions 

compensates the error due to inserting parabolic 

part. Velocity correction is used to obtain close 
values to the optimal solution. This reduces the 

number of iterations to obtain the optimum 

solution. Also, exact solution of velocity can be 
used for LSPB path segment when there is 

acceleration from zero velocity to linear velocity 

and deceleration to zero velocity.  
Simulation results show that the proposed 

method to work well on the tested cases. The error 

at through points is almost zero. Advantages of 

the modified LSPB algorithm are: through points 
can be created, easily engaged with optimization 

method, very simple which can be used for on-

line path planning, and not necessarily to use high 
acceleration's magnitude. The proposed method in 

this work has no chance to fail to create through 

points within a reasonable number of iterations. 
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  خَلْق نقاطِ بينية في الدالة الخطيةِ المندمجة مع مسار القطع المكافىءِ بطريقةِ تحقيقِ الأمثلية
 

  الخياط سعد زغلول سعيد
جامعة الموصل / كلية الهندسة / قسم الميكاترونكس  

      alkhyaat@yahoo.comالبريد الألكتروني: 

 
 

 
  الخلاصة

  
كفاية. من مسار القطعة الخطية المندمجة مع مسار القطع المكافئ ينحرف عن المسار المخطط  و هو مقيد بقيمة تعجيل  يجب ان تكون كبيرة بما فيه الأن 

موجودة حاليا حول الموضوع غير قابل للتطبيق مباشرة على ناحية أخرى، التعامل مع مسار القطعة الخطية المندمجة مع مسار القطع المكافئ في المقالات ال
السرب لتوليد نقاط المسارات الحركية. في هذا العمل، اقترح تعديل على مسار القطعة الخطية المندمجة مع مسار القطع المكافئ  و تم تعشيقه مع أمثلة جسيم 

لمتساوي لزمن مسار القطع المكافئ حول نقطة المسار، استبدلت بمعاملات مقترحة لحساب عبر المسار. أن الطرق السابقة التي تعتمد على فرضية  التوزيع ا
قطع المكافئ المطور الفترة الزمنية لمسار القطعة الخطية. هذه المعاملات هي دوال من السرع بين نقاط المسار. أن مسار القطعة الخطية المندمجة مع مسار ال

لمسار التي تستحصل بطريقة امثلية جسيم السرب لإجبار مدبر الروبوت على المرور خلال نقاط المسار المحددة أخذا بنظر يستخدم السرع بين نقاط ا
نتائج المحاكاة العددية السرعة و معادلات لحساب السرعة الفعلية.  حكذلك تم اشتقاق علاقات لتصحيالاعتبار تقيدي السرعة و التعجيل للروبوت المستعمل. 

المقترحة هذه الطريقة وان يعمل بشكل جيد في الاختبارات. مع أمثلة جسيم الحشد المسار الخطي المندمج مع مسار القطع المكافئ المطور تعشيق ان أظهرت 
  بسيطة جدا و يمكن ان تستعمل لتخطيط المسار مباشرة و غير ضروري فيها استخدام قيمة تعجيل كبيرة.

  

 
  

 

 
 

 

 
 

 

 

 
 

 

 
 


