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Abstract  
 

This paper presents the application of a framework of fast and efficient compressive sampling based on the concept 
of random sampling of sparse Audio signal. It provides four important features. (i) It is universal with a variety of 
sparse signals. (ii) The number of measurements required for exact reconstruction is nearly optimal and much less then 
the sampling frequency and below the Nyquist frequency. (iii) It has very low complexity and fast computation. (iv) It 
is developed on the provable mathematical model from which we are able to quantify trade-offs among streaming 
capability, computation/memory requirement and quality of reconstruction of the audio signal. Compressed sensing CS 
is an attractive compression scheme due to its universality and lack of complexity on the sensor side. In this paper a 
study of applying compressed sensing on audio signals was presented. The performance of different bases and its 
reconstruction are investigated, as well as exploring its performance. Simulations results are present to show the 
efficient reconstruction of sparse audio signal. The results shows that compressed sensing can dramatically reduce the 
number of samples below the Nyquist rate keeping with a good PSNR. 

 
Keywords: Sub-Nyquist Sampling, Compressive Sampling, Compressed Sensing, Nonlinear Reconstruction, Random 
Matrices.  
                                                                                                                                                                                           
 
1. Introduction 

 
The 20th century has seen the development of a 

huge variety of sensors/detectors acquiring 
measurement in a faithful representation of the 
physical world (e.g. radio receivers, optical 
sensors, seismic detector ...). Since the purpose of 
these systems was to directly acquire a 
meaningful ''signal", a very fine sampling of this 
latter had to be performed. This was the context 
surrounding the famous Shannon-Nyquist 
condition stating that every continuous (a priori) 
band-limited signal can be recovered from its 
discretization if its sampling rate is at least two 
times greater than its cutoff frequency. 

Recent theory named Compressed Sensing (or 
Compressive Sampling) [1, 2] states that this 
lower bound on the sampling rate can be highly 
reduced, as soon as, first, the sampling is 
generalized to any linear measurement of the 
signal, and second, specific a priori hypotheses on 
the signal are realized. More precisely, the sensing 
pace is reduced to a rate that equals a few multiple 

of the intrinsic signal dimension rather than the 
dimension of the embedding space. 

Technically, this simple statement is a real 
revolution both in the physical design of sensors 
and in the theory of reliable signal sampling. It 
means that a "given signal does not have to be 
acquired in its initial space as previously, but it 
can really be observed through a "distorting glass" 
(providing it is linear) with fewer measurements". 

The history of Compressed Sensing has started 
in 2006 by the seminal works of D. Donoho, E. 
Cande's, T. Tao and J. Romberg [3, 4], even if 
some of its founding concepts, e.g. sparse 
recovery by convex optimization, were known 
from several decades. CS has actually emerged 
and grown from the rich multidisciplinary hotbed 
of Information and Sampling Theory, Inverse 
Problems solving, Statistics and Measure 
Concentration, Graph theory, and High-
Dimensional (Polytope) Geometry. 

In this paper I present a study of the 
performance of CS for a variety of audio signals 
and illustration the differences in performance 
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depending on the basis and the reconstruction 
algorithm used. 

 
 

2. Compressed Sensing 
 

The Nyquist-Shannon sampling theorem states 
that to restore a signal exactly and uniquely, you 
need to have sampled with at least twice its 
frequency. Of course, this theorem is still valid; if 
you skip one byte in a signal or image of white 
noise, you cannot restore the original. But most 
interesting signals and images are not white noise. 
When represented in terms of appropriate basis 
functions, such as trig functions or wavelets, 
many signals have relatively few non-zero 
coefficients. In compressed (or compressive) 
sensing terminology, they are sparse [5].  

Before starting with the mathematics related 
with CS let us first explain the idea with the 
following simple example: 

Let us think of two numbers whose average is 
3. What are the numbers? After complaining that 
there is no enough information, you might answer 
2 and 4. If you do, you have unconsciously 
imposed a kind of regularization that requires the 
result to be two distinct integers; the problem is a 
1–by–2 system of linear equations with matrix A= 
[1/2 1/2] and right–hand side b=3  

We want to find a 2–vector y that solves Ay=b. 
The minimum norm least squares solution is 
computed by the pseudo inverse,  
y =[3 3] but different solution is possible:x =[6 0]. 
Both solutions are valid, but human puzzle–
solvers rarely mention them. Notice that the 
second solution is sparse; one of its components is 
zero. 

The signal or image restoration problem is a 
larger instance of the same task; we are given 
thousands of weighted averages of millions of 
signal or pixel values. Our job is to re-generate 
the original signal or image. 
 
2.1. Problem Statement of Compressible 
Signals 
 

Consider a real-valued, finite-length, one-
dimensional, discrete-time signal x, which can be 
viewed as an N × 1 column vector in  with 
elements x[n], n = 1, 2, . . . , N. Any signal in   
can be represented in terms of a basis of N × 1 

vectors . Using the N × N basis matrix 
 = [ψ1|ψ2| . . . |ψN] with the vectors {ψi} as 

columns, a signal x can be expressed as 

X =      or   X =                            ...(1) 

Where s is the N × 1 column vector of 
weighting coefficients si =   = ψi

T x. 
Clearly, x and s are equivalent representations of 
the signal, with x in the time or space domain and 
s in the  domain. The signal x is K-sparse if it 
is a linear combination of only K basis vectors; 
that is, only K of the si coefficients in (1) are 
nonzero and (N − K) are zero. The case of interest 
is when K  N. The signal x is compressible if 
the representation (1) has just a few large 
coefficients and many small coefficients. 
 
2.2. Transform Coding and its 
Inefficiencies 
 

The fact that compressible signals are well 
approximated by K-sparse representations forms 
the foundation of transform coding [3, 6]. In data 
acquisition systems (for example, digital cameras) 
transform coding plays a central role: the full N-
sample signal x is acquired; the complete set of 
transform coefficients {si} is computed via s =  
Tx; the K largest coefficients are located and the 
(N − K) smallest coefficients are discarded; and 
the K values and locations of the largest 
coefficients are encoded. Unfortunately, this 
sample–then–compress framework suffers from 
three inherent inefficiencies. First, the initial 
number of samples N may be large even if the 
desired K is small. Second, the set of all N 
transform coefficients {si} must be computed 
even though all but K of them will be discarded. 
Third, the locations of the large coefficients must 
be encoded, thus introducing an overhead. 
 
2.3. The Compressive Sensing Problem 

 
Compressive sensing address these 

inefficiencies by directly acquiring a compressed 
signal representation without going through the 
intermediate stage of acquiring N samples [1, 7, 
8]. Consider a general linear measurement process 
that computes M < N inner products between x 

and a collection of vectors  as in yj = 
. Arrange the measurements yj in an M × 1 

vector y and the measurement vectors T as rows 
in an M × N matrix . Then, by substituting  
from (1), y can be written as 

                               …(2) 
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             K-sparse 
(a) 
 

(b) 

where  is an M × N matrix. The 
measurement process is not adaptive, meaning 
that  is fixed and does not depend on the signal 
x. The problem consists of designing   a) a stable 
measurement matrix  such that the salient 
information in any K-sparse or compressible 
signal is not damaged by the dimensionality 
reduction from to  and   b) a 
reconstruction algorithm to recover x from only 
M ≈ K measurements y (or about as many 
measurements as the number of coefficients 
recorded by a traditional transform coder). 
 
2.4. Designing a Stable Measurement 
Matrix 
  

The measurement matrix  must allow the 
reconstruction of the length-N signal x from M <  
N measurements (the vector y). Since M < N, this 
problem appears ill-conditioned. If, however, x is 
K-sparse and the K locations of the nonzero 
coefficients in s are known, then the problem can 
be solved provided M ≥ K. A necessary and 
sufficient condition for this simplified problem to 
be well conditioned is that, for any vector v 
sharing the same K nonzero entries as s and for 
some  >  0 

 

                              …(3) 
 
That is, the matrix  must preserve the lengths of 
these particular K-sparse vectors. Of course, in 
general the locations of the K nonzero entries in s 
are not known. However, a sufficient condition 
for a stable solution for both K-sparse and 
compressible signals is that  satisfies (3) for an 
arbitrary 3K-sparse vector v. This condition is 
referred to as the restricted isometry property 
(RIP) [4]. A related condition, referred to as 
incoherence, requires that the rows { } of  
cannot sparsely represent the columns {ψi} of ψ 
(and vice versa). Direct construction of a 
measurement matrix  such as    has 
the RIP that requires verifying (3) for each of the 

  possible combinations of K nonzero entries 
in the vector v of length N. However, both the RIP 
and incoherence can be achieved with high 
probability simply by selecting  as a random 
matrix. For instance, let the matrix elements  
be independent and identically distributed (iid) 
random variables from a Gaussian probability 

density function with mean zero and variance 1/N  
[1, 2, 4]. Then the measurements y are merely M 
different randomly weighted linear combinations 
of the elements of x, as illustrated in Fig. 1(a). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 1. (a) Compressive Sensing Measurement 
Process with a Random Gaussian Measurement 
Matrix and Discrete Cosine Transform (DCT) 
Matrix. The Vector of Coefficients s is Sparse with 
K = 4. (b) Measurement Process with   
There are Four Columns that Correspond to 
Nonzero si Coefficients; the Measurement Vector y 
is a Linear Combination of These Columns [9]. 
 
 

The Gaussiam measurement matrix has two 
interesting and useful properties:  
a- The matrix  is incoherent with the basis  
= I of delta spikes with high probability. More 
specifically, an M × N  iid Gaussian matrix  = 

 I =  can be shown to have the RIP with 
high probability if  M  ≥  c K  log (N/K), with c a 
small constant [1, 2, 4]. Therefore, K-sparse and 
compressible signals of length N can be recovered 
from only M ≥ cK log(N/K)  random 
Gaussian measurements. 
b- The matrix  is universal in the sense that 

  will be iid Gaussian and thus have RIP 
with high probability regardless of the choice of 
orthonormal basis . 
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2.5. Designing a Signal Reconstruction 
Algorithm 
 

The signal reconstruction algorithm must take 
the M measurements in the vector y, the random 
measurement matrix  (or the random seed that 
generated it), and the basis  and reconstruct the 
length–N signal x or, equivalently, its sparse 
coefficient vector s. For K-sparse signals, since M 
< N in (2) there are infinitely many  that satisfy 

  = y. This is because if s = y then (s + 
r) = y for any vector r in the null space N( ) of 

. Therefore, the signal reconstruction algorithm 
aims to find the signal’s sparse coefficient vector 
in the (N − M)-dimensional translated null space          

. 

a- Minimum l2 norm reconstruction: 

Define the lp norm of the vector s as 

. The classical approach to 
inverse problems of this type is to find the vector 
in the translated null space with the smallest l2 
norm (energy) by solving 
 

  = argmin such that  = y            …(4) 
 

This optimization has the convenient closed-
form solution  = T( )-1 y. 
Unfortunately, l2 minimization will almost never 
find a K-sparse solution, returning instead a non 
sparse  with many nonzero elements. 

b- Minimum l0 norm reconstruction: 

Since the l2 norm measures signal energy and 
not signal sparsity, consider the l0 norm that 
counts the number of non-zero entries in s. (Hence 
a K-sparse vector has l0 norm equal to K). The 
modified optimization 
 

  = argmin such that  = y           …(5) 
 
can recover a K-sparse signal exactly with high 
probability using only M = K + 1  iid Gaussian 
measurements [5]. Unfortunately, solving (5) is 
both numerically unstable and NP complete, 

requiring an exhaustive enumeration of all   
possible locations of the nonzero entries in s. 

c- Minimum l1 norm reconstruction: 

Surprisingly, optimization based on the l1 
norm 

  = argmin such that  = y           …(6) 
 
can exactly recover K-sparse signals and closely 
approximate compressible signals with high 
probability using only  M ≥ cK log(N/K)  iid 
Gaussian measurements [1], [2]. This is a convex 
optimization problem that conveniently reduces to 
a linear program known as basis pursuit whose 
computational complexity is about O(N3). 
 
2.6. The Reason Behind the Convergence 
of l1 rather than l2 
 

The geometry of the compressive sensing 
problem in  helps visualize why l2 
reconstruction fails to find the sparse solution that 
can be identified by l1 reconstruction. The set of 
all K-sparse vectors s in  is a highly nonlinear 
space consisting of all K-dimensional hyper 
planes that are aligned with the coordinate axes as 
shown in Fig. 2(a). The translated null space 

 is oriented at a random angle due 
to the randomness in the matrix  as shown in 
Fig. 2(b). (In practice N, M, K 3, so any 
intuition based on three dimensions may be 
misleading) The l2 minimizer   from (4) is the 
point on  closest to the origin. This point can 
be found by blowing up a hyper sphere (the l2 
ball) until it contacts . Due to the random 
orientation of , the closest point   will live 
away from the coordinate axes with high 
probability and hence will be neither sparse nor 
close to the correct answer s. In contrast, the l1 
ball in Fig. 2(c) has points aligned with the 
coordinate axes. Therefore, when the l1 ball is 
blown up, it will first contact the translated null 
space  at a point near the coordinate axes, 
which is precisely where the sparse vector s is 
located. While the focus here has been on 
discrete- time signals x. 
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Fig. 2. (a) Subspaces with two Sparse Vectors in 
R3 lie Close to the Coordinate Axes. (b) 
Visualization of the l2 Minimization (5) that Finds 
the Non-Sparse Point-of-Contact s between the 2 
Ball (Hyper-Sphere, in Red) and the Translated 
Measurement Matrix Null Space (in Green). (c) 
Visualization of the l1 Minimization Solution that 
Finds the Sparse Point-of-Contact s with High 
Probability Thanks to the Pointiness of the l1 ball. 
 
 
3. Simulation Results 
 

Three types of signals are taken, based on 
complexity in time domain and in terms of 
sparsity, see Fig. 3. These signals are sampled and 
then reconstructed from few randomly selected 
samples, Fig. 4 shows the sampling of the first 
signal of cutoff frequency 1.633kHz with 
sampling frequency of 14kHz and then taking 
randomly 10% of these samples to reconstruct the 
signal. The figure shows that reconstruction with 
l1 – norm is accurate with PSNR of 20.5dB while 
reconstructing using l2 – norm was very pad and 

gave meaningless results. Fig. 5 shows the 
original signal3 (with highest sparsity) with cutoff 
frequency of 1633 and the reconstructed one with 
different random samples (m)/total samples (n) 
rations.   
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Fig. 3. Three Time Domain Signals with their 
IDCT. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 4. a) Signal and its Random Samples b) Its 
sparse representation in idct c) Reconstruction 
Using l1 in the Sparse Domain d) Reconstructed 
Signal Using l1 e) Reconstruction Using l2 in the 
Sparse Domain   f) Reconstructed Signal. 
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(a) Original and Reconstructed Signal with m/n 
=0.8, PSNR = 38.6.   

(b) Original and Reconstructed Signal with m/n  
= 0.5, PSNR = 32.   
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(c) Original and Reconstructed Signal with m/n  
= 0.1, PSNR = 21.   
 
 
 
 

 

 

 

 

 

 

 

 

 
 
 
 
(d) Original and Reconstructed Signal with m/n 
=0.05, PSNR = 19.6. 
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Fig. 5. Original and Reconstructed Signal with 
Different m/n Ratios and the PSNR for them, the 
Cutoff Frequency of the Signal is 1.63kHz and Fs 
= 14kHz 
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Fig. 6. The PSNR Versus m/n Ratio for the Three 
Under Testing Signals. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

e) Original and reconstructed signal with  m/n 
=0.02, PSNR = 12.5 
 

 

 

 
From Fig.5, one can see the good 

reconstruction even when the m/n ratio is small; 
the PSNR for each case reflects the goodness of 
reconstruction. 

Fig. 6 shows the PSNR versus m/n ratio for the 
three under testing signals, from the Figure one 
can see that as the sparsity of the signal increases; 
the reconstruction with lower m/n ratio is 
possible.  It is important here to say that since the 
reconstruction process is based on random 
sampling; the PSNR gained may vary based on 
(by chance) hitting the target (the random samples 
takes the largest values of the signal in the sparse 
domain)  

 
 
 
 
 
 

 
 

 

 

 
 
 
 
 
 
 
 
 
 
 

It is convenient here to say that compressive 
sensing also applies to sparse or compressible 
analog signals x(t) as well as digital ones 
 
 
4. Conclusions 
 

Signal acquisition based on compressive 
sensing can be more efficient than traditional 
sampling for sparse or compressible signals. In 
compressive sensing, the familiar least squares 
optimization is inadequate for signal 
reconstruction, and other types of convex 
optimization must be invoked. The CS is 
Nonlinear sampling, so that it is an arbitrary and 
unknown set of size K, exact recovered from 
cKLog(N/K) (almost) arbitrarily placed samples, 
and nonlinear reconstruction by convex 
programming. 

It is important to mention here that the MP3 
and JPEG files used by today’s audio systems and 
digital cameras are already compressed in such a 
way that exact reconstruction of the original 
signals and images is impossible.  
 
 
 
 
 
 
 
 
 
 
 
 
 



Ahmed A. Hashim                                  Al-Khwarizmi Engineering Journal, Vol. 8, No.3, PP 53- 62 (2012) 

  
61 
 
 

5. References 
 
[1] Justin Romberg and Michael Wakin 

''Compressed Sensing: A Tutorial'',  IEEE 
Statistical Signal Processing Workshop, 
Madison, Wisconsin, 2007. 

[2] Albert Cohen, et al. ''Compressed sensing 
and best k-term approximation'' , Naval 
Resarch Contracts ONR-N00014-03-1-0051, 
2006 

[3] Yin Zhang '' On Theory of Compressive 
Sensing via l1-Minimization: Simple 
Derivations and Extensions'', CAAM 
Technical Report TR08-11, 2008 

[4] Emmanuel Cand`es and Justin Romberg '' l1-
magic: Recovery of Sparse Signals via 
Convex Programming'', 2005 

[5] Alyson K. Fletcher ''Necessary and Sufficient 
Conditions for Sparsity Pattern Recovery'', 
IEEE, revision of arXiv:0804.1839v1 [cs.IT], 
2009 

[6] Cleves Corner ''the World's Simplest 
Impossible Problem'', The MathWorks 
Newsletter, Vol.4, No. 2, 1990 

[7] P. Wojtaszczyk ''Stability of l1 minimisation 
in compressed sensing'',2009  

[8] Yin Zhang ''When is missing data 
recoverable?'', CAAM Technical Report 
TR06-15, 2006 

[9] Kaichun K. Chang , …etal, “Sub-Nyquist 
Audio Fingerprinting for music 
Recognition”, 2010 
 

 
 

  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  

  



 )2012( 53- 62، صفحة 3، العدد 8مجلة الخوارزمي الھندسیة المجلد                                                       ھاشم أحمد عبد الصاحب

  
62 
 
 

 
  

  نایكویستقل من أبإستعمال تردد  ءوكف صوت ضغط

  
  ھاشم الصاحبأحمد عبد

   جامعة بغداد /تللبنا كلیة العلوم/ الحاسوبقسم علوم  
dreng.ahmed@yahoo.com لالكترونيا البرید:  

 
  

  الخلاصة
  

ھذا النوع من الضغط . المتناثرعینة عشوائیة من إشارة الصوت ال معلى أساس مفھوسریع وفعال لأخذ العینات  تعرض ھذه الورقة تطبیق إطار ضغط      
تشكیل الاشاره الصوتیة بالضبط القیاسات المطلوبة لإعادة  عدد) ب(متناثرة الشارات الإمجموعة متنوعة من ل ةي طریقھ شاملھ) أ. (یوفر أربع سمات ھامة

 خلال من) ث( اتالحسابب وسرعھمنخفضة التعقید للغایة  )ت(تردد نایكویست  أقل منخذ العینات والمستعمل لأأقل بكثیر من التردد ھو الأمثل تقریبا و
اء البن، ونوعیة إعادة ةالمطلوب ذاكرةالمبادلات نسبھ الى الحجم تدفق  قدرة حساببین  ةمقارننحن قادرون على تحدید ضعھا في نموذج ریاضي یمكن اثباتھ و
تقدیم دراسة  في ھذه الورقة تم. جانب الاستشعارلعالمیتھ وعدم وجود تعقید في  نظراً إسلوب ضغط جذابھو  CSمضغوط الالاستشعار . شارات الصوتیةللإ

ى اشارات ذات اسس بتطبیقھا عل ةالطریقھ وقدرتھا على اعادة تشكیل الاشار أداء تم التحقیق من. على الإشارات الصوتیة المضغوط لتطبیق الاستشعار
مضغوط الالنتائج تظھر أن الاستشعار . ةمتناثرالالإشارات الصوتیة  تشكیلنتائج المحاكاة موجودة لإظھار كفاءة إعادة . ھامختلفھ ، وكذلك استكشاف أداء

 الى ضوضاء ةعلى نسبة أعلى اشار ةمع المحافظأقل من معدل نایكویست الصوتیة  ةالمطلوبھ لأعادة تشكیل الاشارحد بشكل كبیر من عدد العینات یمكن أن ی
PSNR ةجید.  
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