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Abstract:-      
In the present work a dynamic analysis technique have been developed to 

investigate and characterize the quantity of elastic module degradation of cracked 
cantilever plates due to presence of a defect such as surface of internal crack under 
free vibration. A new generalized technique represents the first step in developing a 
health monitoring system, the effects of such defects on the modal frequencies has 
been the main key quantifying the elasticity modulii due to presence any type of un-
visible defect. In this paper the finite element method has been used to determine the 
free vibration characteristics for cracked cantilever plate (internal flaws), this present 
work achieved by different position of crack. Stiffness reduction in term of elastic 
material properties is analyzed through a parametric study of crack density factor. 
Results are given for Young’s modulus and shear modulus variation with respects the 
vibrational characteristics.                          
 
Key words: Free vibration, cantilever plate, stiffness degradation.  

 

1. Introduction 

 In many branches of modern 
engineering the vibration of 
cantilever plate, plays an important 
role in the design and operation of 
the final engineering systems. 
Whether one is concerned with 
propellers, turbine cantilever 
plates, or satellite booms, where 
the vibrational behaviors of such 
system is perpendicular to the 
plane of rotation, this behavior is 
one of the most serious problems 
that should be studied and 
considered. Basically in the most 

general terms damage can be 
defined as changes introduced into 
system that adversely affect the 
future performance of the plate 
structure. Thus, the study of 
damage identification in structures 
will be limited to changes of 
material and for/or geometric 
properties, but still the need for the 
ability to monitor and detect 
damage at earliest possible stages 
is objected engineering aim. Such 
investigations of damaged plates 
are determined whether the damage 
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recognized by measuring the 
vibration characteristics so that, 
severe damage can be prevented, 
the need for quantitative global 
damage detection techniques that 
can be applied to complex 
structures. This vibration based 
damaged defection is deals with the 
significantly alter the stiffness, 
mass or energy dissipation 
properties of plates. 

Such structural element in rotor 
craft requires assessment of their 
dynamic tolerance, and then accurately 
predicting technique tool for the 
behavior of damaged structure [1]. The 
dynamic analysis under present of 
internal (invisible) flaws is an 
important issue of the structural 
investigation and design, and 
determine the free vibration 
characteristics often appears to be the 
fundamental task in dynamic analysis 
[2]. Carnaege studied the vibration of 
cantilever plate by using the energy 
method [3]. The increment of strain 
energy due to rotation was first 
investigated. Further studies of the 
vibration characteristics of thin 
cantilever plates using the finite 
difference method [4] and the extended 
Holzer’s method [5] were presented by 
Carnaege and co-workers. Krupka and 
Baumanis [6] studied the bending- 
bending mode of a cantilever plate 
including rotary inertia and shear 
deflection by the Myklestad method. 
Stafford and Giurgiutiu [7] used a 
semi-analytic method based on transfer 
matrix method to study a Timoshenko 
beam. Abbas [8] and Thomas and 
Abbas [9] developed a finite element 
model which can satisfy all the 
geometric and natural boundary 
conditions of athick non-cantilever 
plate. Abbas [10] further used the finite 
element model for a thick cantilever 
plate with flexible root. The effect of 
the local flexibility of a cracked 
column upon its buckling load was 
studied by liebowitz et al. [11,12] and 

okamura et al. [13]. Riceand levy [14] 
recognized the coupling between 
bending and extensional compliance of 
a cracked column in compression. 
Dimargonas [15], Dimargonas and 
Paipetis [16] and Chondros and 
Dimargonas [17] studied the effect of 
cracks upon the dynamic behavior of 
cracked beams. The effect of 
peripheral cracks upon the torsional 
vibration of a rod of circular cross-
section was studied by Dimarogonas 
and Paipetis [16]. 

Recently, design for durability can 
be important reason for the long time 
material performance, thus for a 
rotational design it is necessary to 
quantify the damage tolerance of the 
cantilever plate. The assessment of this 
tolerance requires a capability to 
simulate the progressive damage and 
cracks characters of structures and 
loading. A different type of defects and 
typical notable in cantilever plates and 
the presence of these defects changes 
the dynamic characteristics of structure 
[18]. 

        These changes can be used to 
identify the existence location and 
magnitude of effect damage, before 
they can grow to their critical size [17]. 
The present work will be concerned 
with the main macroscopic effects of 
cracks on cantilever plates, where such 
defects effects is reduction of stiffness. 
Where it is more deterministic than 
strength, such reduction can be related 
to physical damage, In present work 
the characteristics features of the 
stiffness reduction cantilever plate will 
be considered, and investigated under 
unique boundary condition, While the 
material properties presented by elastic 
module take as variable, It must be 
realized that the changes in 
deformations response are given by the 
total changes in stiffness matrix if the 
crack is presence and characterized. 
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2. Theory 
   
In the present work, the finite element 
formulation for a superparametric shell 
element is introduced followed by the 
required procedure to evaluate the 
Eign- Value problem, for calculating 
natural frequencies, the present 
proposed technique, Proceed for 
investigate the influence of cracks.  

 
The present element is a modified 

form of shell element described by 
Ahmed [20] is selected. The super 
parametric shell element with eight 
nodes and five degree of freedom at 
each node is investigated. It is 
presented by Zienkiewicz [21]. Which 
the geometric shape functions are 
higher order than the displacement 
shape functions. The element is called 
a superparametric element. If the 
reverse the element is called 
subparametric. 
    

The superparametric shell elements are 
derived from the original three-
dimensional isoparametric elements. 
The development and application of 
isoparametric family of elements is 
presented by Zienkiewicz [21]. 
   
2.1. Free Vibration Analysis 
     If any elastic structures are disturb 
in an appropriate manner initially at 
t=0, the structure can be made to 
oscillate harmonically. This oscillatory 
motion is a characteristic property of 
the structure and it depends on the 
distribution of mass and stiffness in the 
structure Rao [19]. 
     The oscillatory motion occurs at 
certain frequencies known as natural 
frequencies or characteristic values, 
and it follows well define deformation 
patterns known as mode shapes or 
characteristic modes. The equation of 
motion by assuming the external force 
vector {R} to be zero; i.e. homogenous 
equation; and the displacements to be 
harmonic [22] so: 

 
  [M]{U&& }+[K]{U}=0           …(1) 
  Ui =Φi sin (ωi t+θi)      i=1,2,….DOF  
                                               …(2) 
      
In this harmonic expression, Φi  is a 
vector of nodal amplitudes (mode 
shape) for the ith mode of vibration. 
The symbol ωi  represents the angular 
frequency of mode i, and θi denotes the 
phase angle. By differentiating Eq. (2) 
twice with respect to time t to get: 
 

)sin(2
iiiii tU θωω +Φ−=&&     …(3) 

  

  Substitution of Eq. (3) and Eq. (2) 
into Eq. (1) allows cancellation of the 
term sin (ωi t+θi), which leaves, 
 
   0])[]([ 2 =Φ− ii MK ω        …(4) 
 
Eq. (4) has the form of the algebraic 
eigenvalue problem.  
     The most efficient type of Eq. (4) 
for structural vibrations accepts the 
eigenvalue problem only in the 
following standard, symmetric form: 
 
  0])[]([ =− ii XXIA λ          … (5) 
    

     In which [A] is a symmetric matrix 
(dynamic matrix) and  [I] is an identity 
matrix. The symbol iλ  denotes the ith 
eigenvalue. And XXi is the 
corresponding eigenvector for a new 
system of homogeneous equations. 
Putting Eq. (4) into form of Eq. (5) by 
factoring either matrix [K] or matrix 
[M], using the Cholesky square root 

method (which is a direct method for 
solving a linear system which makes 
use of the fact that any square matrix 
[A] can be expressed as the product of 
an upper and lower triangular matrix, 
weaver [22] ). 
    The step solution to solve Eq. (4) by 
using this method (if the stiffness 
matrix is positive definite) was: 
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a- Choosing of factor [K] for an 
important reason that will soon be 

apparent. Thus: 

 
         [K]=[Q]T [Q]        …(6) 
  
     
Where the factor [Q] is an upper 
triangular matrix,  
b- Substituting Eq. (6) into Eq. (4) to 
obtain: 
 
   0])[][]([ 2 =Φ− ii

T MQQ ω   
                                           … (7) 
c- Pre-multiply this equation by [Q]-T 
and insert I= [Q]-T [Q] after matrix 
[M], which yields: 

  
  0])[][]([][ 2 =Φ−−

ii
TT MQQQ ω                   

… (8) 
 
d- Rearranging terms in reverse order, 
this found that: 

 
  ([M A] –λi [I])ΦAi =0                 … (9) 
        Where, 
   [MA] = [Q] -T [M] [Q]-1    

 and   2
i

i
1

ω
=λ ; ΦAi =[Q] iΦ            

...(10) 
e- Determination the angular 
frequencies and mode shapes (in 
original coordinate): 
 

 Aii
i

i Q Φ=Φ= −1][;1
λ

ω    

                                                  … (11) 
 
Because the matrix MA in the new 
coordinates is symmetric, all of its 
eigenvectors are linearly independent. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2.2. Crack Characteristics Modeling 
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Following the suggested procedure for 
the crack characterization of the 
damage mode and free vibration 
consideration, for simplicity in one off-
exist plane, and the thickness of the 
cracking )( 1t , and )(t  is the total 
thickness of plate. Let )(b is the width 
of a typical crack, which for a 
uniformly vibrated cantilever plate. 
  The study of cracked cantilever 
plate is based on the assumption that 
cracks can be modeled as a statically 
uniform array localized in a specified 
position at surface, in transverse 
direction. Usually these cracks almost 
instantaneously propagate through the 
thickness of the plate. Fig (1) describes 
schematically the geometrical 
dimension a of cracked damaged 
cantilever plate. 
  The damage vector in 
cantilever plate can be defined as a 
different mode for presenting the states 
of defects. In the present work the 
focusing study on the most common 
type, which and surface cracks, then 
the point of concentration subjected to 
the failure tolerance in working 
performance of such cantilever plates, 
so the attempts of the stiffness 
degrading quantification based on 
condition of unchanged geometry and 
boundary condition, and loading where 
the remain effective parameters still 
the elastic material properties (i. e 

ν,,GE  ).   
  Firstly, it is important to focus 
the light on the stiffness-damage 
relation, the connected to dynamic load 
conditions.     
Consider now load-time history, 
illustrated in Fig (2-a), which induced 
damage in given cantilever plate [17]. 
 If the loading is interrupted at 
times )...,,,( 321 etcttt  and the cantilever 
plate is subjected to small, 
monotonically increasing stress with 
rotational speed increasing stresses at 
these times such that no additional 

damage is induced under these stresses 
then we might obtain the stress- strain 
behavior illustrate in Fig. (2-b). Thus 
the changes in stiffness with time )(t  
would reflect the development of 
damage under the applied load-time 
history.     
 Based on this fact the present 
study aims for investigation the 
reduction in modules of elasticity (both 
of axial, torsional modulus, at the 
Same time it is important to quantify 
this changes effects in material 
properties to decide the critical damage 
tolerances, then Therese assessment 
the cost-effective performance).      
 
3. Results and Discussion 
                                                                       
 Several numerical investigations are 
conducted to characterize the dynamic 
detection of cracked cantilever plates 
under free vibration consideration, 
comparisons are made between the 
response of healthy cantilever plate 
and other cracked ones. Then a 
parametric study is the main purpose of 
using the developed computer 
program.  Firstly results showed this 
numerical methodology technique a 
accurately predicts the undamaged 
reduction in natural frequencies, for  
comparison examples of detailed 
validation studies, then a various 
parameters effects being taken into 
consideration with a new developed 
dynamic stiffness degradation of 
cracked cantilever plate. 
 The present works were compared 
with experimental and theoretical 
results in Ref. [23] to find the natural 
frequencies. Table (1) explains the 
current results with experimental and 
theoretical results in Ref. [23], and the 
values of percentage error with 
experimental and theoretical results. 
Table (1) shows that the percentage 
errors between the current results with 
experimental results are less than the 
percentage error between the 
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experimental results and theoretical 
results in Ref. [23]. 
The calculating frequencies of cracked 
plated are proceed the proposed block 
diagram in Fig. (3), [24]. 
 The following case will be used as 
verification case to the equations 
derived in this work. The results to be 
presented here obtained by using the 
following data [21]:  
E=200 G mN / , ρ =7850  3/ mKg , 

3.0=υ  
Width of cantilever plate )(b =0.025 m, 
thickness of the cantilever plate )(t  
=0.011m 
 The numerical values of the 
fundamental natural frequencies for 
different length are shown in Table (1). 
The numerical results reported in Table 
(1) Show good agreement with the 
experimental and theoretical results in 
Ref. [23]. For this table, it can be 
observed that when length decreased, 
the percentage error increased 
especially with experimental result.  
 
            The second set of results will 
initiate the tendency of changes in the 
elastic parameters with the variation of 
crack location and relatively length. In 
Figs.(4),(5),(6),(7) the percentage loss 
in elastic modules with different 
location of crack (L1/L)at certain 
relatively crack length(t1/t), are seems 
logically changes, in dramatic form , 
where it is maximum near the fixed 
end , then decreases as far as the crack 
tends to be closer from the free end, 
these values starts with 5% 
approximatly closer to clamped edge , 
and tends to 1.5% at (L1/L) =0.4, the 
same trend can be noticed from all 
mentioned figures but with different 
grades. 
          In the next demonstrated figures, 
are shows the inversely relatively crack 
length variation at different location. 
The Figs. (8), (9), (10) and (11), shows 
the percentage losses in elastic 

modulus with quantification values. 
The distinguished changes from these 
figures indicates the increasing of these 
quantified  losses values with 
increasing relatively crack depth it can 
be noticed clearly, and such behavior 
refer to the clear degradation in 
stiffness. The normalized elastic 
modulus changes with different crack 
length and location is shown clearly 
.The degree for stiffening the cracked 
cantilever plate can be related by 
recognized the normalized reduction 
degree for each location and relative 
length under one crack only. 
 Where the resonant frequencies 
are enforced in iterative process for 
determining the percent variation in 
elastic stiffness parameters, where the 
geometry and boundary conditions are 
considered fixed parameters under free 
vibration analysis.  .The results from 
this mode analysis for cracked 
cantilever   plate can be input initially 
for the iterative during natural 
frequency calculation where   it is used 
as a designated point for reaching, 
when some elastic modules are 
changed.  
          Where the recalculation the 
normalized elastic modules (Ec/Eh) 
ratios, the influence of stiffness losses 
degree on the axial and shear stiffness, 
are well documented to an accurate 
variation  in elastic modules 
Figures.(12),through (15), shows the 
percent variation in axial and shear  
stiffness modules, ratios (Ec/Eh)  ,and  
(Gc/Gh) for cracked cantilever  plates 
having such dynamic characteristics , 
the clear percentage changes are clear 
starts at 5% for this case study as an 
example , tends to 2% nearly, free 
edges .The same note it can be 
distinguished from the reduction in 
axial/shear ratio variation with 
different cracks length or location. 
                 Finally, the correlation 
between the present reduction, and 
stiffening in elastic modules ratio with 
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different crack length or location on 
dynamic characteristics detection 
signifies the importance of plate 
stiffness .And more detailed 
observations can be useful in the 
development of damage indices for 
durability detection based on vibration 
techniques  
 
4. Conclusion 
 
    The present work gives a simplified 
design methodology for determining 
the dynamics stiffness characteristics 
degradation based on the crack 
location and thickness variety. This 
design methodology is can be provide 
a design charts for any types of surface 
damages. The conclusions obtained 
from the present analysis can be  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
summarized as follows: 

1. The crack position is very important 
and effective on the frequency 
parameters, the maximum effect of 
crack occur at the fixed end of 
cantilever plate and the minimum of 
crack occur at near of the free end. 
2. The maximum value of relative 
frequency reduction is (4.85%) at 

]3.0)/[( 1 =tt  and ]0)/[( 1 =LL .  
3. The maximum value of relative 
elastic modulus reduction and relative 
shear modulus reduction is (9.44%) at 

]3.0)/[( 1 =tt  and ]0)/[( 1 =LL .  
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Table 1. Values of the fundamental natural frequencies for different length of 

cantilever plate. 
 

Length (m) Present Exp. 
Ref.[23] 

Theo. 
Ref.[23] 

Error % 
Exp. Theo. 

0.0635 2268.35 1968.3 2282.20 15.44 0.60 

0.0529 3268.49 2736.8 3286.30 19.42 0.54 

0.0454 4437.58 3594.7 4473.10 23.44 0.79 

0.0397 5803.33 4550.0 5842.40 27.54 0.66 

0.0353 7340.22 5513.5 7394.30 33.13 0.73 

0.03175 8546.00 6731.80 8358.70 25.61 1.16 
 
 
 

Table 2. Relative elastic modulus reduction variation with varies (t1/t) and (L1/L). 
 

 
LL /1  

0 0.1 0.2 0.3 0.4 

tt /1
 

 

0.02 0.47 0.42 0.33 0.17 0.13 
0.04 0.83 0.67 0.53 0.30 0.20 
0.06 1.22 0.97 0.74 0.44 0.28 
0.08 1.65 1.28 0.94 0.60 0.36 
0.10 2.11 1.62 1.17 0.75 0.45 
0.12 2.59 1.98 1.45 0.93 0.56 
0.14 3.14 2.38 1.72 1.12 0.67 
0.16 3.72 2.80 2.08 1.31 0.81 
0.18 4.35 3.27 2.38 1.54 0.92 
0.20 5.02 3.78 2.75 1.78 1.07 
0.22 5.77 4.34 3.15 2.05 1.22 
0.24 6.77 4.95 3.58 2.34 1.42 
0.26 7.45 5.60 4.08 2.67 1.61 
0.28 8.40 6.33 4.60 3.04 1.81 
0.30 9.44 7.15 5.17 3.44 2.07 
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Table 3. Relative frequency reduction variation with varies (t1/t) and (L1/L).  
 

 
LL /1  

0 0.1 0.2 0.3 0.4 

tt /1
 

 

0.02 0.25 0.22 0.18 0.10 0.08 
0.04 0.43 0.35 0.27 0.17 0.11 
0.06 0.63 0.50 0.38 0.24 0.15 
0.08 0.84 0.66 0.49 0.31 0.20 
0.10 1.07 0.83 0.61 0.39 0.24 
0.12 1.32 1.01 0.74 0.48 0.29 
0.14 1.59 1.21 0.88 0.57 0.35 
0.16 1.89 1.43 1.04 0.67 0.41 
0.18 2.21 1.67 1.21 0.79 0.48 
0.20 2.56 1.92 1.39 0.91 0.55 
0.22 2.94 2.21 1.60 1.05 0.63 
0.24 3.35 2.52 1.82 1.19 0.72 
0.26 3.81 2.86 2.06 1.36 0.82 
0.28 4.31 3.23 2.33 1.54 0.93 
0.30 4.85 3.65 2.63 1.74 1.05 

 
 

 
 

Table 4. Relative shear modulus reduction variation with varies (t1/t) and (L1/L). 
 

LL /1  
0 0.1 0.2 0.3 0.4 

tt /1
 

 

0.02 0.47 0.42 0.34 0.17 0.13 
0.04 0.83 0.68 0.52 0.30 0.20 
0.06 1.22 0.96 0.74 0.44 0.29 
0.08 1.65 1.27 0.94 0.60 0.36 
0.10 2.11 1.63 1.17 0.75 0.46 
0.12 2.59 1.99 1.46 0.94 0.56 
0.14 3.15 2.38 1.73 1.12 0.68 
0.16 3.73 2.80 2.08 1.31 0.83 
0.18 4.36 3.28 2.38 1.55 0.91 
0.20 5.02 3.77 2.76 1.78 1.07 
0.22 5.77 4.34 3.15 2.05 1.22 
0.24 6.57 4.95 3.58 2.34 1.42 
0.26 7.45 5.60 4.08 2.68 1.61 
0.28 8.40 6.33 4.60 3.04 1.82 
0.30 9.45 7.15 5.17 3.45 2.07 
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(b) 

Fig. 2 
(a) A load-time history 
(b) Stress-strain response at various times in load-time history 

b 

1t  

(a)  

(b)  

Fig. 1 
(a) The cracked cantilever plate.  
(b) The section of side view of crack.   

d 

t 
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•   Compute the damaged frequency nω  

• Compute the percentage frequency reduction )( hch ωωω − *100 

Start 

• Geometric & mode specifications 
• (Health laminates), Bcs 
• Material properties (E, G) 

Modal Analysis 
(Numerical Free Vibration) 

Out Put 
Health Natural 

Frequency ( nω ) 

Stiffness Degradation 
Loop (I) 

Cracked modeling 

Quantifying Frequency % shifting 

Quantifying material 
properties % reduction E, G 

Loop (II) 

Modal analysis of health with 
new properties ( nω ) 

E % 

G % 

If 
)()( ch ωω =  No Yes Print % 

reduction 

Fig. 3 The typical block diagram of the present stiffness reduction of  
Cracked cantilever  
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Fig. 4  Variation of Relative elastic modulus reduction with different (L1/L) at (t1/t=0.1) 
 

Fig. 5 Variation of Relative elastic modulus reduction with different (L1/L) at (t1/t=0.2) 

Fig.  6 Variation of Relative elastic modulus reduction with different (L1/L) at (t1/t=0.3) 
 

Fig. 7 Variation of Relative elastic modulus reduction with different (t1/t) at (L1/L=0) 
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Fig. 8 Variation of Relative elastic modulus reduction with different (t1/t) at (L1/L=0.2) 

Fig. 9 Variation of Relative elastic modulus reduction with different (t1/t) at (L1/L=0.4) 

Fig. 10 Variation of Relative elastic modulus ratio with different (LI/L) at (t1/t=0.1) 
 

Fig. 11 Variation of Relative elastic modulus ratio with different (LI/L) at (t1/t=0.2) 
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Fig. 12 Variation of Relative elastic modulus ratio with different (LI/L) at (t1/t=0.3) 
 

Fig. 13 Variation of Relative elastic modulus ratio with different (t1/t) at (L1/L=0) 
 

Fig. 14 Variation of Relative elastic modulus ratio with different (t1/t) at (L1/L=0.2) 
 

Fig. 15 Variation of Relative elastic modulus ratio with different (t1/t) at (L1/L=0.4) 
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6. Nomenclature: 
t : Thickness of the cantilever plate (m) 
1t : Thickness of the crack (m) 
1L : The location of the crack (m) 

L : The length of the cantilever plate (m) 
b : The width of the cantilever plate (m) 

hE : Health modulus of elasticity 2/ mN   
Ec : Cracked modulus of elasticity 2/ mN  

hG : Health modulus of rigidity  2/ mN  

cG : Cracked modulus of rigidity   
]100*)/)[(( hc EEE − :  Relative elastic modulus reduction 

)/( hc EE : Relative elastic modulus ratio 
)/( hc GG : Relative shear modulus ratio 

]100*)/)[(( hch GGG − : Relative shear modulus reduction  
100*]/)[( hch ωωω − : Relative frequency reduction 

d=0.05 mm 
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  تحليل الاهتزاز الحر لتكميم الجساءة لعتبة كابولية
                       عدي ابراهيم عبد االله             حسين علي داود .د

  كلية الهندسة/ كلية الهندسة               جامعة بغداد / جامعة بغداد 
   النووية قسم الهندسة                     الميكانيكيةقسم الهندسة 

  
  :خلاصةال

 عتبـة تم في هذا العمل تقديم تقنية عددية لتحليل والتوصيف الديناميكي للانحدار في قيم الجساءة المرنة فـي  
التقنية العامة المقدمة تمثل الخطوة الأولى في منظومة عمـل سـلامة   . مثل التشقق"داٍخليا" كابولية تعاني عيبا
ات على قيم الترددات الطبيعية مثل نقطة تقويم و تكمـيم  تأثير وجود هذه العيوب والتشوه.الهياكل وتشخيصها

تـم   في هذا البحـث .مستويات الانحدار في قيم ثابت المرونة الهندسي لهذه الهياكل بوجود عيوب غير ظاهرية
ق مثل التشق"داٍخليا" كابولية تعاني عيبا ة لعتبةالمواصفات الاهتزازية الحرلإيجاد  استخدام تقنية العناصر المحددة

قيم الانحدار في الجساءة بدلالة الثوابت الهندسية المرنة ثـم تحليـل وفـق     أن. وقعموبوجود شقوق متغيرة ال
وبالاعتماد على قيم .النتائج التي تم الحصول عليها وكذلك تقديم دراسة معلميه بدلالة معاملات تصميميه أساسية

  .لاهتزازيةالهندسية نسبة إلى المواصفات ا و الجساءة معامل المرونة
 


