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Abstract

Robust controller design requires a proper definition of uncertainty bounds. These uncertainty bounds are commonly
selected randomly and conservatively for certain stability, without regard for controller performance. This issue becomes
critically important for multivariable systems with high nonlinearities, as in Active Magnetic Bearings (AMB) System.
Flexibility and advanced learning abilities of intelligent techniques make them appealing for uncertainty estimation. The
aim of this paper is to describe the development of robust H,/H,, controller for AMB based on intelligent estimation of
uncertainty bounds using Adaptive Neuro Fuzzy Inference System (ANFIS). Simulation results reveal that the robust
controller design objectives of wide bandwidth and improved performance are satisfied for a wide range of frequency
variations. It can be concluded that the intelligent uncertainty weighting functions can precisely compensate for the effects
of modelling errors and nonlinearities in the system.

Keywords: Active Magnetic Bearings (AMB) , Adaptive Neuro Fuzzy Inference System (ANFIS), H,/H,, robust controller,

modelling errors, uncertainty bounds.

1. Introduction

Recently research involving the combination
of hard and soft computing has developed with
the aim of complementing these sets [1]. Real-
world problems can be solved in more innovative
ways by combining the attractive features of both
computing methods. The goal of this paper is to
show such combination applied to an industrial
process. This research will show that the soft
computing aspects of adaptive neuro fuzzy
inference system can be used together with the
hard computing features of robust H,, control to
accomplish valuable results in an easier, more
efficient fashion.

Robust control is a hard computing design
methodology dedicated to provide assured
stability and performance for uncertain dynamic
systems. Robust control synthesis needs a precise
mathematical model of the plant dynamics and
bounds on the uncertainty related to that model.

Such uncertainties may result from parameter
variations, under-modeled dynamics, or process
disturbances [2]. By specifying a nominal model
and a “hard bound” on the uncertainty related to
that model, robust control aims to guarantee
robust stability for the actual system, which must
lie within the set defined by the model plus the
uncertainty bound.

For robust control synthesis it is accustomed to
choose uncertainty bounds (uncertainty weighting
functions) that are somewhat random and
exceedingly conservative to guarantee stability,
usually at the expense of performance. In order to
overcome this drawback, intelligent methods are
developed to design the unstructured uncertainty
(or the modelling error) weighting function for H,,
robust control synthesize. Reliable and efficient
tool are obtained as in [3],[4].

As a combination of neural networks (NNs)
and fuzzy logic, neural-fuzzy systems can make
good use of both sensory numerical data and
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expert linguistic information; system performance
tuning is flexible as the number of membership
functions and training epoch numbers can be
altered easily [5]. Therefore, the ANFIS technique
is used in [6] to estimate the uncertainty bounds
for robust motion controlled system. Then the
applied ANFIS estimation is further improved in
[7] to estimate uncertainties in more difficult
situations. The frequency ranges of the
uncertainties in the model are precisely located,
and the synthesized controlled system becomes
insensitive to them while guaranteeing a specified
performance and larger stability margin of robust
controllers, as measured by the v-gap metric. The
design application to an uncertain MIMO system
model of an Active Magnetic Bearing (AMB)
system [8] has been extended in this paper to
include the theoretical formulation of the control
problem and the estimation of uncertainties using
different ranges of frequencies. Precise
quantification of uncertainty due to ‘mainly’ the
modelling errors has been achieved. Robustness
against changes in operating frequencies has been
observed.

This paper is organized as follows: Section 2
describes the dynamics of the AMB system,
Section 3 introduces a brief description of robust
identification, Section 4 presents Adaptive Neuro
Fuzzy Inference System (ANFIS) for Uncertainty
Estimation, Section 5 defines the applied H./H.,,
robust control, Section 6 presents some
simulation results and discussion and finally, in
Section 7 conclusions will be drawn.

2. Dynamic AMB System Model

AMB is a collection of electromagnets
producing a magnetic field to support a rotating
iron shaft without any physical contact. AMBs are
open loop unstable and the stabilization of the
system can only be done by feedback control. In
addition, their complex structure requires
powerful control system design approaches for
robust stability and robust performance. The rigid
body diagram for an AMB is shown in Figure. 1.
The steel rotor has a mass of 1.549 Kg and a
length of 0.457 m, the two steel disks are
positioned to modify the modal characteristics at
high speeds. Two radial AMBs are located at the
ends of the rotor, orthogonally aligned in the x
and y directions, together with two orthogonal
pairs of sensors to measure rotor displacements
from the bearing line of centre. These radial
AMBs comprise a four input (bearing currents)
and four output (displacements) dynamic system.
A linearized system dynamics obtained from a

Lagrangian analysis of an AMB can be expressed
using a state vector composed of the rotor
displacement and their time derivatives [4]:

X = AX + Bu (1)
y =CX ...(2)

Zy, 0 |
where, x =| , A= o o ,
Zy, MBKs _MBGB

SRR

Xa
M, =T:'MT, .G, =T-'GT %
B~ 'F 298 = IF 112y = ’
’ Ya
Yo
[k, 0 0 0
0 k,—k., O 0 ,
K, =
0 0 K, 0
| O 0 0 k,—k,
'k, O O O
0O k, 0 o0
K, =
0O 0O k, O
|0 0 0 Kk
1 0 o o
I, -1, O O
T =
o o 1 1
o o0 —1I, |,
I, I, O O
T -1 1 -1 0 o]
I,+1,|]0 O 1, 1,
o 0 —1I, 1,
m O O O
M o1, 0 0],
|0 0 m O
0O o0 0 1,
0O 0 0 O
O 0 0 —1I,|,
G=0
0O 0 0 O
o1, 0 O
with system parameters m=1.549kg,

I, =1,=239x10%Kgm*, 1,=10"Kgm?,

X

|, =0.153m, |, =0.170m, Q = 627.0rad/sec.,

k, =-96.5x10°N/m , k, =29.9N/A ,and
k,=2.6x10°N/m . The resulting continuous-
time model is unstable, with eigenvalues [13]

A= —471 + 3.6i,471 + 3.6,
—351 + 0.006i,351 + 0.006i. (3
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Fig. 1. Generalized rigid rotor supported by two
radial bearings [4].

3. Robust Identification

In standard identification problems, the
perturbations potentially arise from two different
sources as illustrated in Table 1. In most practical
situations, the model error is considered,
especially when the order of the nominal model
must be small, as usually required in robust design
techniques. Moreover, while prior information on
measurement noise can be obtained, similar
hypothesis on unmodeled dynamics is less
realistic.

Three  main  approaches  for  robust
identification have been addressed in literature:

1. Stochastic Embedding (SE), which can be
described as: “A frequency domain method
which assumes that unmodeled dynamics can
be represented adequately by a non- stationary
stochastic process whose variance increases
with frequency” [9].

2. Set Membership Identification (SMI), provides
efficient algorithms for estimating the set of
feasible models, compatible with the available
data and the UBB error assumption [10].

Table 1,
Sources of perturbations in a standard
identification problem.

Sources Characteristics

Generally uncorrelated
Variance  Measurement  with the input signal
error noises (when the data is
collected in open loop).
Strongly depends on the
estimated nominal model

The effect of .
. structure and on the input
Bias un-modeled . :
- signal used in the
dynamics

identification
experiment.

3. Model Error Modelling (MEM), is an effective
robust parametric identification approach to

estimate the model uncertainty bound. MEM
technique employs standard prediction error
methods to identify an error model from input—
output time domain data. The un-modelled
dynamics can be estimated by looking at that
part of identification of residuals that
originates from the input, [11], and [12]. In
addition, the uncertainty can be estimated
regardless of the order of the nominal model.
For these appealing features, this method is
implemented in this work.

MEM can be briefly described as follows: If
assuming that (u, y,) is the measurement data set,
and Gy is the system nominal model estimated
with (u, Y,), then the model error modelling
method can be summarized as follows:

i.  First, compute the residual:

g:yo—GNu (4)

ii.  Consider the “error” system with input u and
output &, and identify the model-error model
Ge for this system. This model provides the
estimation of the under- modelling error.

iii. From the nominal model and the model error,
the uncertainty region can be constructed by
adding the model error to the nominal model
in the frequency domain. This gives a region
where true system is supposed to be found.

iv. Model validation: The nominal model is not
falsified if and only if it lies inside its own
uncertainty region (as delivered in step iii).

Nevertheless, the drawback of this technique is
that it leads to conservative uncertainty sets
because it is based on the worst case assumptions
[2], [13], and [14]. MEM has been modified in
[4] to a non-parametric regression problem in the
frequency domain using feed forward neural
networks. The identification reduces the
conservativeness of the estimated uncertainty
bounds with a suitable confidence region. In this
work, it will be further modified using ANFIS to
simplify the computational efforts and reduce the
calculating time, making real time implementation
more suitable.

4. Adaptive Neuro Fuzzy Inference System
(ANFIS) for Uncertainty Estimation

ANFIS as created by [15] may be attributed to
have generated a new paradigm in fuzzy-neural
computation which strongly supports Zadeh’s
soft-computing ideas [16]. The use of the ANFIS
is characterized by [14]:
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= The fuzzy logic component gives the algorithm
a degree of robustness and combines it with
the learning abilities of the neural network.

= The neural network aspects of the ANFIS
allows for multiple attempts of generating the
rule base and membership functions. This
provides a detection scheme that has a low
error rate in predicting the output, with the
fewest number of rules and membership
functions to keep computation times to a
minimum, the consequent parameters thus
identified are optimal under the condition that
the premise parameters are fixed.

= The hybrid approach that combines neural
network and fuzzy logic is much faster than
the strict gradient descent.

One of the most important and effective areas
of applications of ANFIS is modelling, estimation
and prediction of systems with uncertainties.
Some of these applications can be found in [17]-
[24]. The common advantages between these
works can be summarized as follows:

= There is the ability to converge much faster
that the back-propagation ANN; the number of
epochs is several orders of magnitude less than
the one needed for training of the
corresponding back-propagation ANN.

= The ability to adapt to environmental changes.

= The ANFIS is also repeatable over time, with
minor recalibration.

4.1. ANFIS Structure

Figure 2 shows the equivalent type-3 Takagi
and Sugeno (T-S) fuzzy if-then rules used for
ANFIS architecture [15], where the system has
two inputs x and y. The output of each rule is a
linear combination of input variables plus a
constant term, and the final output is the weighted
average of each rule’s output.

The fuzzy IF-THEN rule set, in which the
outputs are linear combinations of their inputs, is:
» Rulel:If x is Ajand y is B; Then

fi=pix+auy+r;
= Rule2:If x is A2 and y isB2 Then

f2=p2x+q2y+r2
where, A’s and B’s are particular fuzzy subsets
defined by nonlinear coefficient, namely premise
parameters, while p’s, q’s and r’s are linear
coefficients determining the output of each
applied Fuzzy rule, usually known as consequent
parameters.

Figure 3 shows the basic architecture of
Adaptive Neuro-fuzzy Inference System (ANFIS).
In general, ANFIS has input and output layers,

and three hidden Ilayers that represent the
membership functions and the fuzzy rules [15].
Layer 1 is the input layer. It consists of adaptive
nodes, which generate membership grades of
linguistic labels based upon premise signal that
use the generalized bell membership function.
Layer 2 is the input membership or fuzzification
layer with fixed nodes designated II that
represents the firing strength of each rule. The
output of each node is the fuzzy AND of all the
input signals. Layer 3 is the fuzzy rule layer. The
outputs of Layer 3 are the normalized firing
strengths. Each node is a fixed rule labelled N.
The adaptive nodes in Layer 4 calculate the rule
outputs based upon consequent parameters. The
single node in Layer 5, labelled X, calculates the
overall ANFIS output from the sum of the node
inputs.

Starting from initial model and following
modelling optimization procedure, as described in
[24], the optimal number of fuzzy rules is
determined. Accordingly, ANFIS of four rules is
found to be most suitable for this application.

Va' = o FiEPXHOy+r
/ N\ A\
4 X N ;
) [ | fEpaxqayrs
\ \
x X ) ¥

Layer1 Layer2 Layer3 |_)§ye¥4 Layer 5

Fig. 3. Architecture of an ANFIS equivalent to a
first-order sugeno fuzzy model with two inputs and
two rules [15].

4.2. Hybrid Learning Algorithm

From the ANFIS system shown in Figure 3
with fixed premise parameters values, the overall
output can be expressed as a linear consequent of
the consequent parameters. The output f in Figure
3 can be rewritten as:



Safanah M.Raafat

Al-Khwarizmi Engineering Journal, Vol. 11, No. 2, P.P. 1- 11 (2015)

f:Wlf1+W2f2: W, - W, ;
W, + W, WoAW, T oW w,
f=w(px+aqy+n)+w(px+aqy+r) O

which is linear in the consequent parameters py,
01, ', P2, G2, I

The training algorithm of ANFIS takes the
initial fuzzy model and tunes it by means of a
hybrid technique combining gradient descent
back-propagation in the backward pass and mean
least-squares optimization algorithms in the
forward pass, as shown in Figure 4. At each
epoch, an error measure defined as the sum of the
squared difference between actual and desired
output is reduced. Training stops when either the
predefined epoch number or error rate is obtained.
The gradient descent algorithm is implemented to
tune the nonlinear premise parameters, while the
basic function of the mean least-squares is to
optimize or adjust the linear consequent
parameters.

4.3. Implementation of ANFIS for
Identification of Uncertainty Bounds

The main purpose of the intelligent uncertainty
identification is to estimate the upper magnitude
bound of the model error frequency response
function Ge(jw)[4],[6]:

G.(j@)=|G,(jw)-Gy(jo) = E(jo)

U(jo)

where G,(jw) is the measured frequency response
function of the actual system, Gy(jw) is the
frequency response function of the nominal linear
model of the system, E(jw) is the Fast Fourier
Transform (FFT) of prediction error e(t) and
UGw) is the FFT of u(t). Note that plant
uncertainties and non-deterministic effects give
rise to frequency dependent intervals associated
with |Ge(jw)|.

Figure 5 shows non parametric estimation of
the model error frequency response function
|Ge(jw)| using sampled input-output data and a
simple ANFIS structure as described in Section
4.1 enhanced by feedback signal. The ANFIS
provides an estimate of the model error magnitude

G, (ja), f) that is conditioned on the input
frequency w and the ANFIS output function f. The
feedback signal helps to further eliminate the error

between the actual model error frequency
response |Ge(jw)| and the intelligently estimated

uncertainty bound |Gu(jco,f)| . Using this

..(6)

approach, the corresponding intelligent estimation
of uncertainty bound can be formulated as:

Gu(ja)kf f ): W fl(Ge(jwk)'eud (jo ), o, )"’

w, fZ(Ge(jwk)’eud(ja)k—l)’a)k)
()
o (k=1,..,nn)

where f; and f, are selected as second order
nonlinear function models, nn is the number of
data samples and e,q is a prediction error:

ea(K)=[G.(1o )-G,(jo. )] (8)

G,(jo,f) (12) is trained to minimize a cost

function of prediction errors by automatically
adjusting the ANFIS function f. The goal is to
enhance the search for less conservative
uncertainty bound through iterative minimization
procedure until the stopping criteria is met

J(eg) e ko 9

where |eyq| is the absolute value of the prediction
error and ¢ is a pre-specified very small numerical
value, e.g. less than 107,

_ _ _ _ ForwardPass _ _ _ _ _ 1
e e L )
Premise Mean Consequent
Parameters Least- =y Parameters
Squares p.q.r Least-
Squares
Regression
update ]
Gradient
Descent

Backward pass

Fig. 4. ANFIS learning using hybrid technique.
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Fig. 5. Intelligent estimation of the uncertainty
weighting function, using ANFIS.
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Theorem 1: Lete,, —~ =min e (®,) ;

o (k=1..,m) and G, =G,(e, ) foragiven

model error estimation. G, satisfies certain

stopping criteria.  Hence, the intelligent
uncertainty weighting function W, obtained from

the intelligent estimated uncertainty bounds G,
is:

W, =G, min | ...(10)
Proof: Given the measured controlled signal, u,
and estimated error model, ¢, required to develop
the upper magnitude bound of the model-error
function as defined in Equation (6), and
considering ANFIS based intelligent estimation of
uncertainty as given in Equation (7). If Equation
(8) is minimized within a given number of
iterations while satisfying Equation (9), then the
statement of Equation (10) is true for oy
(k=1,...,nn).

The training of ANFIS should cover the
frequency response function magnitude of Ge. In
order to illustrate this issue, the ANFIS should be
trained to identify the model error magnitude
associated with the linear model of the system
over a suitable frequency range, e.g. within the
system’s Nyquist frequency. The ANFIS within
this scheme can efficiently estimate non-
conservative uncertainty bound using large
amplitude signals over different range of
frequencies within short time of calculations and
considerably simplified computation [7].

For a MIMO system, it is necessary to estimate
as many uncertainty weighting functions as the
number of measured variables. Consequently, the
resulted weighting functions will be combined in
the following uncertainty weighting matrix and
used to synthesize the robust controller, as will be
described next.

W, 0 0 0
o w, 0 o0
W, =
0 0 W, 0 ..(11)
o 0 0 W,

5. Simplified H,/H., Robust Control

The generalized plant considered for a system
is:

X=Ax+Bw +B,u ...(12)

z=Cx+Dyu ...(13)

y=Cx+Dy ..(14)
where w; is the exogenous inputs external to the
closed-loop system such as measurement noise, u
is the control input vector, y is the measured
output vector, and z is the regulated output vector.

Then the plant’s transfer matrix can be
partitioned as follows:

_A___ Bl 1: BZ p.
P( S) = C1 0 E D12 = {"l'l' :"1'2} (15)
C D ' 0 P21 1 P22
2 21!
such that

2(s)=PF,(s)w(s)+P,(s)u(s) ..(16)
and
Y(s) =P, (s)a,(s)+P,(s)u(s) -..(17)

with a proper rational controller K(s), the control
is given by
u=K(s)y ...(18)

Substituting equation (18) into equation (16) and
equation (17), the following relationship is
obtained:

2(5) =[R.(s)+P(8)K(8)z,Pyy(s)mr(s)
...(19)

where 7, =[I - P,(s)K(s)[*

The transfer matrix - which is the transfer
function from the exogenous input w;i(s) to the
regulated output z(s) -can be denoted F(s) for
simplicity of notation and can be written as:

z(s)=F(s)w(s) ...(20)
where
F(s)=[R.(s)+P,(s)K(s)z,Pu(s)]

The generalized plant model is shown in Figure 6,
and the Linear Fractional Transformation (LFT)
of model, is:

0 0 W,
-W. W. —-GW
P(s)= e e NTTe .21
(s) 0 0 " (21)
-1 1 -G,

where | is an identity matrix.
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Since there are multi objectives that need to be
satisfied; robust stability, robust performance,
faster tracking and minimized the effects of
uncertainties and measurements errors, the robust
controller is formulated in this case as a mixed
H./H,, problem. The prescribed specifications are
translated into the following criterion:

Minimize o, |T..| + Bn|T.l, .(22)
while maintaining the H, of the closed loop
transfer function T, from w; to z, < y, and
maintaining the H, of the closed loop transfer
function T, from w; to z, < vy, Where ayn >0, fn
>0, 7> 0 and vy >0 are some prescribed value.
Moreover, places the closed loop poles in the LMI
open left hand plan region.

W, is selected to adjust the performance and
eliminate the steady state error. W, is selected to
attenuate the high frequency noises as much as
possible [2]. W, is used to shape the closed-loop
transfer ~ function at  frequencies  where
uncertainties expected to appear. The intelligent
uncertainty weighting function derived directly
from the identified ANFIS uncertainty bound can
be used for robust control synthesis of a system.
The intelligent weighting function accurately
reflects additive uncertainty associated with the
nominal model, as illustrated in Section 4.3. Since
the order of the H,, controller is directly related to
the order of this weighting function, it is
recommended to substitute a low order transfer
function for the ANFIS uncertainty bound.

> 71

Fig. 6. The entire-connection of the robustly-
controlled system.

6. Results and Discussion

The intelligent approach to estimate
uncertainty bound was implemented to adaptively
bound modelling uncertainty for robust controller
design. As a result, an ANFIS estimation of
uncertainty bounds for an AMB system model
was developed and implemented to generate

uncertainty weighting functions required for
robust controller design. Then, in order to validate
these weighting functions a corresponding robust
controller K(s) is designed. The entire connection
of Figure 6 is used, with suitable selection of W,
and W,,.

Table 2 summarizes the numerical results of
the intelligent estimation and robust controller
design of the uncertainty bounds for the AMB
system. Comparison was conducted with
intelligent estimation method of intelligent
Confidence Interval Network Neural Network
(CIN NN) [8] for the purpose of validation; less
complicated procedure, and reduced number of
calculations are achieved. It is also obvious that
the learning time required for ANFIS is almost ten
times faster than the time required for CIN, and
the number of iteration of ANFIS is five times
less than the number of required iterations for
CIN, for the same number of training data pairs.
Since the order of the robust H,/H., controller is
directly related to the order of the uncertainty
weighting function, it is desirable to substitute a
low-order transfer function for the ANFIS bound.
MATLAB’s fitsys command is applied to
construct such a low-order weighting function.
Figure 7 shows the four ANFIS estimated
uncertainty weighting functions at 83.375 Hz.
According to the applied method of MEM to
estimate the upper magnitude bound, these
transfer functions can accurately reflect additive
uncertainties.

Table 2,

Comparison between two intelligently identified
uncertainty weighting functions. No. of training
data pairs= 1900.

Learning  No. of Order of

time iteration Wak

(sec.) of training  (k=1,..,4)
CIN NNs 106.2426 100 4
ANFIS 16.2154 20 3

Best K- v No. of

objective  Dimension iteration

LMI LMI
CIN NNs 1.998 [4,32] 47
ANFIS 1.997 [4,28] 44

Intelligent robust controller is designed using
the dynamic model described by Equation (1)
based on a nominal rotation speed of 6.0 krpm.
The controller integrated the ANFIS weighting

function VVa of Figure 7, the performance

weighting function W, and input weighting
function W, . Table 2 indicates that the lower
order of ANFIS- W, results in a lower order
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controller matrix than that developed using CIN,
indicating a relatively simplified controller.

Then, another set of experiments is conducted.
The purpose is to illustrate the ability of the
developed intelligent estimation of uncertainties
to follow variations over a wide range of
operating speeds. Figure (8-a) compares the
ANFIS estimated uncertainty weighting functions
W, at 83.375 Hz (the nominal value), 100 Hz and
200 Hz. The magnitudes of these uncertainty
weighting functions show that as the rotational
speed of the system moves away from the
nominal speed that is used in the modelling, and
clearly, the amount of uncertainty increases. It is
clear that these intelligent weighting functions can
accurately reflect model uncertainty variations in
spite of changes in operating speeds. And
according to Theorem 1, the intelligently
estimated weighting functions are optimized
weighting functions.  Similarly, the weighting
functions W,, , Wa3 , and W,4 are changed in
accordance with variations of uncertainty bounds
as frequency changed. These effects can be
observed in Figure 8-b,c,d). As a result, the
synthesized robust controller using these

weighting functions of intelligent Vva will be less

conservative with high performance quality.
Meanwhile, the optimization results of the H,
performance under LMI constraints have been
slightly affected by variations as illustrated in
Table 3.
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Table 3,
Comparison between three intelligently identified
uncertainty weighting functions.

Frequency Learning Best K- v LMI .
of time objective  Dim- NOI
estimated (sec.) LMI ension

W, (Hz)

83.3758 58.1862 1.998 [4*36] 41
100 57.2815 2.004 [4*36] 51
200 61.4213 1.997 [4*32] 43

*NOI :Number of Iterations.

7. Conclusions

The objective of this paper has been to develop
an intelligent estimation of uncertainty bounds for
robust LMI control of AMB systems. Robust
control theory provides systematic representation
of uncertainties. However, the selection of
suitable weighting functions is a critical
requirement for robust stability and performance.
ANFIS in MEM framework is developed to
estimate least conservative uncertainty weighting
function. Successful application of the proposed
ANFIS estimation algorithm for MIMO systems
is accomplished; similar accuracy to neural
network estimation is obtained in a shorter
learning time and less number of iterations of
training. Moreover the order of the estimated
weighting function is reduced using the developed
ANFIS method. The order of the evaluated LMI
robust controller is reduced as well, which is
preferred for practical applications. Different
amount of uncertainties were identified using
ANFIS technique for various frequency operating
conditions, resulting in accurate uncertainty
weighting functions.

The upcoming work is to extend the ANFIS
method for Linear Parameter Varying (LPV)
method to maintain the stability and robust
performance over wider operating ranges.
Moreover, online updating of the ANFIS bounds
will be added to effectively adapt to parameter
variations.

Notation
K A generalized stability margin of the stable
GNK loop [Gh, k]
Ge Model of Model Error
Gy Model of Nominal model
G, Intelligent uncertainty bound
W, Additive Uncertainty weighting function
W, Performance weighting function

W, Control weighting function

eud Prediction error

X,y longitudinal displacement of radial active
magnetic bearings

7 axial displacement of thrust active magnetic
bearing.

m rotor weight

Ix,l,  polar mass inertia of rotor
| axial mass inertia of rotor

~N

Ks displacement stiffness

ki current stiffness

ke coupling stiffness

Q nominal rotor speed

A eigenvalues
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