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Abstract:- 

The first successful implementation of Artificial Neural Networks (ANNs) was published a 

little over a decade ago. It is time to review the progress that has been made in this research area. This 

paper provides taxonomy for classifying Field Programmable Gate Arrays (FPGAs) implementation of 

ANNs. Different implementation techniques and design issues are discussed, such as obtaining a 

suitable activation function and numerical truncation technique trade-off, the improvement of the 

learning algorithm to reduce the cost of neuron and in result the total cost and the total speed of the 

complete ANN. Finally, the implementation of a complete very fast circuit for the pattern of English 

Digit Numbers NN has four layers of 70 nodes (neurons) on single chip using Xilinx FPGA technique 

is given. 

The main goal of this paper is how to achieve the suitable activation function and weights for 

this network that gives minimum hardware cost when all stages of this ANN algorithm is implemented 

on FPGA. 

 

 

1.Introduction 

Artificial neural networks (ANNs) are a 

form of artificial intelligence, which have 

proven useful in different areas of application, 

such as pattern recognition [1] and function 

approximation/ prediction [2]. The most 

popular neural network is the multi-layer 

perceptron trained using the error back 

propagation algorithm [3]. However, an 

important obstacle in using this network in 

many applications is the slow training and the 

lack of clear methodology to determine the 

network topology before training starts. It is 

then desirable to speedup the training and allow 

fast experimentation with various topologies. 

One possible solution is an implementation on a 

reconfigurable computing platform (e.g Field 

Programmable Gate Arrays) FPGA. 

Reconfigurable computing is a means of 

increasing the processing density (i.e. greater 

performance per unit of silicon area) above and 

beyond that provided by general-purpose 

computing platform [4]. Field Programmable 

Gate Arrays (FPGAs) are a medium that can be 

used for reconfigurable computing, since they 

allow for custom design of fine-grain logic 

compared to course-grain logic found in 

general-purpose computing platforms. FPGAs 

are a form of programmable logic, which offer 

flexibility in design like software, but with 

performance speeds closer to Application 

Specific Integrated Circuits (ASICs). With the 

ability to be reconfigured an endless amount of 
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times after it has already been manufactured, 

FPGAs have traditionally been used as a 

prototyping tool for hardware designers. 

However, as growing die capacities of FPGAs 

have increased over the years, so has their use 

in reconfigurable computing applications too 

[2, 4]. 

 

2.Problem Formulation 

The design problem in ANN using 

FPGA is a precision vs. area trade-off. One way 

to help achieve the density advantage of 

reconfigurable computing over general-purpose 

computing is to make the most efficient use of 

the hardware area available. In terms of an 

optimal precision vs area Trade-off, this can be 

achieved by determining the minimum 

allowable precision, whose criterion is to 

minimize hardware area usage without 

sacrificing quality of performance. Because a 

reduction in precision introduces more error 

into the system, minimum allowable precision 

is actually a question of determining the 

maximum amount of uncertainty (i.e. 

quantization error due to limited precision) that 

an application can withstand before 

performance begins to degrade. Hence, 

determining a minimum allowable precision 

and suitable numeric representation to use in 

hardware is often dependent upon the 

application at hand, and the algorithm used. 

Fortunately, suitable precision for 

backpropagation-based ANNs has already been 

empirically determined in the past.  

Selecting weight precision is one of the 

important choices when implementing ANNs 

on FPGAs. Weight precision is used to trade-

off the capabilities of the realized ANNs against 

the implementation cost. A higher weight 

precision means fewer quantization errors in the 

final implementations, while a lower precision 

leads to simpler designs, greater speed and 

reductions in area requirements and power 

consumption. One way of resolving the trade-

off is to determine the “minimum precision”, 

required to solve a given problem. 

Traditionally, the minimum precision is found 

through “trial and error” by simulating the 

solution in software before implementation. 

Holt and Baker [5] studied the minimum 

precision required for a class of benchmark 

classification problems and found that 16-bit 

fixed-point is the minimum allowable precision 

without diminishing an ANN’s capability to 

learn these benchmark problems. 

 

3.ANN Example 

3.1.Structure of the Circuit  

 Following example [6] present how 

these two parameters effect on hardware 

resources. Remember that in neural network 

resources capacity differ from network to other 

according to number of neurons in each layer. 

The existence of hidden units allows the 

network to develop complex feature detectors, 

or internal representations. Fig.(1) shows the 

application of four layers network to the 

problem of recognizing english digit numbers. 

The two dimensional grid containing the 

numeral “7” forms the input layer (it can be 

arranged this two dimension array as one 

dimension, so that, number of input neurons is 

thirteen). 
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The first hidden layer is formed from 40 

units each unit might be strongly activated by 

horizontal line in the input, while the second 

hidden layer molded from 20 hidden units, each 

unit fully connected with each unit in the first 

hidden layer. The output layer has ten units that 

represent the value of the digit number. 

Knowing that, the behavior of these hidden 

units is automatically learned not 

preprogrammed, then the computing weight of 

each layer in the network accuracy by using 

C++ programming language and implementing 

this result on FPGA as shown in the next 

section. 

 

 3.2.Implementation ANN Components on 

FPGA 

Digital ANN architecture proposed in 

the previous section is an example of a 

reconfigurable computing application, where all 

stages of the algorithm reside together on the 

FPGA at once. These components based in idea 

of implementation on simple (or basic) 

arithmetic operations (such as addition and 

multiplication operations). 

 The floating-point precision is the 

problem of which an engineer must deal with 

when testing and validating circuits since it 

limits quantization errors according to number 

of bits in each node. 

Therefore, truncation technique will be 

used in design to reduce the floating-point 

precision value and employ minimum hardware 

resources available on FPGA. Adding to this, 

choosing the optimal activation function 

suitable for implementation with truncation 

technique. 

Previously as declared, the ANN 

algorithm components (such as number of 

hidden layers and number of units in each 

Fig.(1): Multilayer Network to Learn to Classify English Numbers 

0 1 2 3 4 5 6 7 8 9 

Output 

10 nodes 

Hidden2  

20 nodes 

Input 

25 nodes 

Hidden1  

40 nodes 
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layer) differ from application to another. The 

English digit numbers NN is the application 

used in this work to implement ANN on FPGA, 

which is composed from four layers. 

 

 

The quantization error after 5,000 

iteration using two types of activation functions 

 are given in table (1). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

By using sigmoid function and without 

truncation (30-bit floating-point), quntization 

error is 0.02 (i.e. 98% of the corrected output). 

While, by the same method, but using bipolar 

function instead of sigmoid function, 

quntization error will be given 0.04.  

 

4.Arithmetic Architecture for FPGA based 

ANNs  
 To calculate the cost required for 

English digit number NN in FPGA, it should be 

declared the way of selecting activation 

function against truncation approach as 

following: - 

 

 4.1.Sigmoid Function without Truncation 

(30-bit) 
 Before calculating the cost of FPGA 

based digit NN, it should be known that this 

function produced floating-point values. Then, 

it required a large number of logic storage as 

basic logic cells (LCs) called Look- UP- Tables 

(LUTs). These LCs are formed as RAM to store 

the output value of this function in each unit in 

the NN algorithm. 

 For 30-bit flotation-point, RAM cost 

implementation in FPGA 30-bit input and 30-

bit output, for each unit in NN algorithm. Then, 

when sigmoid function applied in algorithm 

design is increased number of LCs, so that, it 

increased the over all hardware resources of NN 

algorithm. 

 The average cost of each unit (node) is 

calculated according to equation (1).  

 

   **/ nnunitCost

               

(1) 

 Where, n = Number of bits in data bus.  

   α = Cost for each Multiplier in 

FPGA.  

   β = Cost for each Adder / 

Subtractor in FPGA.  

 δ  = Cost for each LUT in 

FPGA for sigmoid function. 

i- For n=30 bit with sigmoid function α is a 

(30*30)-bit Multiplier and require about (2250) 

cell. β is a 30-bit Adder / Subtractor and require 

about (225) cell. Finally δ requires about 

(125000) cell using CORDIC approach. 

So that, the cost of arithmetic 

components / unit (for 30-bit sigmoid)   

200,000 cell. Therefore for English Digit NN 

algorithm from previously, there are seventy 

units then: - 

   Total Cost (for English 

Digit NN) = 200,000 * 70 = 14,000,000 cell. 

This process can be achieved 

approximately by 17 of propagation gates 

delay. 

Activation 

Function 

Quantization 

Error without 

Truncation 

(30-bit)  

Direct Truncation 

After Learning 

(10-bit) 

 

Sigmoid  
 

Bipolar 

 

2% 

 

4% 

 

13-19% 

 

18-26% 
 

Table (1): Quntization Error with and without Truncation 



Ammar A. Hassan /Al-khwarizmi Engineering Journal ,Vol.2, No. 2 PP  32-41 (2006) 

 

 

23 

ii- When applying truncation technique through 

the learning process with sigmoid function on 

ANN, the unit output precision reduces to be 

10-bit and using equation (1). 

Total Cost / unit   4000 

cell. 

Where n = 10-bit, α  = 300 cell, β = 75 

cell, and δ = 60 cell. 

Total Cost (for English Digit NN) = 

4000 * 70 = 280,000 cell with over all 

propagation delay reduced to 7 propagation 

gates delay. 

From this result, when applying this 

technique in NN algorithm design it can reduce 

number of LUTs on FPGA and so reduce the 

over all hardware resources capacity. 

 

4.2.Bipolar Function 
 As demonstrated from previous section, 

it required a large number of cells to implement 

NN based on sigmoid function. Then, bipolar 

function instead of sigmoid function in a NN 

algorithm can be used. Where, this function 

does not need storage cells for the output values 

in LUTs, because the output from this function 

is either “-1” or “1”, this technique called 

multiplierless technique. 

 This approach has α =1 cell and δ=0 cell 

Therefore, the cost for each unit in a NN 

algorithm based bipolar function calculated 

using equation (2). 

     

   */ nnunitCost      

      

      (2) 

  n = Number of bits in data bus.  

    β = Cost for each Adder /  

 

 

 

 

 

 

 

 

 

 

Subtractor in FPGA.   

i- Without truncation technique (i.e. n=30-bit ) 

β = 215 cell, therefor  the cost / unit  6,500 

cell. This process exceeds in 17 propagation 

gates delay. Then, to implement the English 

digit NN, that included 70 active neurons the 

total cost   455,000 cell.   

ii- With truncation technique (i.e. n=10-bit ) β = 

64 cell, therefor the cost / unit = 650 cell. Also, 

this process exceeds in 7 propagation gates 

delay. So that, to implement the English Digit 

NN that included 70 neurons the total cost   

45,500 cell. 

Then, the total LUTs cost of NN can be reduced 

when applying bipolar function with truncation 

technique on FPGAs. 

 

5.Proposed Backpropagation Algorithm 

[5] 

An ANN using the classic 

backpropagation algorithm [6] as in fig.(2) has 

three basic phases named (1, 2 and 3) of 

execution the proposed backpropagation 

algorithm has same structure of the classic 

backpropagation algorithm with three 

additional steps for the proposed 

backpropagation algorithm named (1a, 2a and 

3a) as following: 
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Fig. (2): Generic structure of an ANN. 

 

5.1.Initialization 

The following initial parameters have to 

be determined by the ANN trainer a priori: (i) 

)()( nW s

Kj  is defined as the synaptic weight that 

corresponds to the connection from neuron unit 

j in the (S-1) th layer, to K  in the S th layer of 

the neural network. (ii)  is defined as the 

learning rate and is a constant scaling factor. 

(iii) )(s

K  is defined as the bias of a neuron, 

which is similar to synaptic weight in that it 

corresponds to a connection to neuron unit K  in 

the (S-1)th  layer of the ANN ,but is NOT 

connected to any neuron unit j in the(S-1) th  

layer. 

 

(1a) Set counter =0 

 

5.2.Forward Computation 

During the forward computation, data 

from neurons of a lower layer (i.e (S-1) th layer), 

are propagated forward to neurons in the upper 

layer (i.e. (S) th layer) via a feedforward 

connection network. The structure of such a 

neural network is shown in Figure 2, where 

layers are numbered 0 to M, and neurons are 

numbered 1 to N. The computation performed 

by each neuron (in the hidden layer) is as 

follows: 

θowH
(s)

k

)(s-

j

s-N

j

(s)

kj

(s)

k
      



1
)1(

1

                                       

                 (3) 

Where j < k  and s=1,….,M 

 

)1(s-N  = Number of neurons in the (S-1)th  

layer of the ANN. 
)(s

KH  = Weight sum of the K th neuron in the Sth 

layer. 
)(s

KjW = Synaptic weight which corresponds to 

the connection from neuron unit j in the (S-1) th 

layer to neuron unit K in the S th layer of the 

neural network 
)1( s

jo  Output of the jth neuron in the (S-1) th 

layer. 

On the other hand, the output computation of 

neurons in any layer is as follows: 

 

           ) f (  Ho
(s)

k

(s)

k
                

      

      (4) 

Where k =1,…,N and s= 1,…,M 

o
s

k

)(
 = neuron output of the Kth neuron in the sth  

layer. 

) f ( H
(s)

k
 = activation function computed on 

the weighted sum H
(s)

k
  . 
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 Note that some sort of sigmoid function 

is often used as the nonlinear activation 

function, such as the following logsig function 

as in equation (5) or bipoler as in equation (6) 

as follows: 

 

 

(-x) 
  

sig
f(x)

exp1

1

log 
                               

           

(5) 

             









01

01

or x         f-

 for x          
  

bipoler
f(x)                         

            

(6) 

 

 

 

(2a) Increment counter 

 For cycle  counter = counter +1. 

 

5.3.Backward Computation 

In this step, the weights of the networks 

are updated. Criterion for the learning algorithm 

is to minimize the error between the expected 

(or teacher) value and the actual output value 

that was determined in the Forward 

Computation. The following steps are 

performed: 

i- Starting with the output layer, 

and moving back towards the input 

layer, calculate the local gradients, as 

follows: 

 





















)1(

1

11
11

sN

j

)(s

j

s

kj

(s)

kk
(s)

k ,...,M-    s            

Ms                               - 

 
δw

ot
ε

                                      

(7) 

 

tk
= The target output for KTH  neuron in 

the M layer. 

)1( sN  = Number of neurons in the (S+1)th  

layer of the ANN. 

 Where 
)(s

k
 = error term for the KTH neurons in 

the STH layer. 

The difference between the teaching signal b _ 

and the neuron output )(s

Ko  
)1( s

j =  Local gradient for the j th neuron in the 

(S+1)th layer. 

 

 ,....,M    s)          (    Hfεδ
(s)

k

\(s)

k

(s)

k
1                                     

        (8) 

 

ii- Using the local gradients 

calculated in step 1, calculate the weight 

(and bias) changes for all the weights as 

follows: 

  

Noδw s-

)(s

j

(s)

k

(s)

kj
,..., and  j,....,Ns   k            η Δ

1

1
11 



                              (9) 

Where w
(s)

kj
Δ  is the change in synaptic weight 

(or bias) CORRESPONDING TO THE GRADIENT OF 

ERROR FOR CONNECTION FROM NEURON UNIT J 

IN THE (S+1) th
 LAYER, TO NEURON K IN THE S th

 

LAYER. 

 

iii- Once all weight (and bias) 

changes have been calculated in step 2, 

update all the weights (and biases) as 

follows: 

(n)  (n) Δ) (n www
s

kj

s

kj

s

kj
1                             

         

(10) 
 

Where K = 1,….., N neurons in the S th
 LAYER 

and j = 1,………, N neurons in the (S-1) th
 

LAYER. 

)1()( nW s

Kj = Update synaptic weight (or bias) 

to be used in the (N+1) th iteration of the 

Forward Computation. 

)()( nW s

Kj = Change in synaptic weight (or 

bias) calculated in the N th iteration of the 

Backward Computation, where n =the current 

iteration. 
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)()( nW s

Kj = Synaptic weight (or bias) to be 

used in the N th iteration of the Forward and 

Backward Computations, where n = the current 

iteration. 

 

 

 (3a) Truncation 

 For each counter > Q makes a 

truncation as in equation (11) to the values of 

the weights )()( nW s

Kj . 

) -) * (/ (n)  Int (W(n)W
nn(s)

Kj

(s)

Kj 122           

         

(11) 

Where Q is a small integer value depends on 

the ANN, it defaults between 5- to- 50.  

 n:- Number of bits in data bus. 

 For truncation in the range of 10-bit this 

equation becomes as in equation (12). 

10231024 ) * / (n)  Int (W(n)W (s)

Kj

(s)

Kj    

      

    (12) 

 

6.Comparative study 

 The simple example is the four-layer 

network to the problem of recognizing English 

digit numbers that has 70 nodes. The 

implementation of this NN using ISE 4.1i on 

Xilinx platform [7, 8] shows the effect of the 

proposed algorithm on the total cost and the 

final error as in table (2). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

    7.Conclusion 

Generally, any complete circuit of ANN 

has a very high cost because the high resolution 

of the weight values required is about 30-bit or 

more. The truncation of this data to low number 

such as 10-bit will reduce the total cost to 5% 

from the total cost but increase the error to 

more than 10 times.  

In addition to this, the effect of the 

transfer function type such as sigmoid or 

bipolar function declared the cost of the classic 

NN, where sigmoid function is 30 times over 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 the bipolar transfer function but the 

bipolar has in average twice the error. 

 This work has shown capability choice 

of different transfer functions for NN algorithm 

that are suitable to reduce the hardware cost 

with an optimal choice of precision value, by 

applying proposed truncation algorithm to 

reduced precision value from 30-bit to 10-bit 

with minimum possible error.  

The matching of the proposed algorithm 

with bipolar transfer function will reduce the 

cost to 0.3% from the total cost and increases 

ACTIVATION 

FUNCTION 

NUMBER 

OF BITS  

ALGORITHM FINAL 

ERROR 

% 

TOTAL NN 

COST / CELL 

MAX SPEED 

OF NN / MHZ 

SIGMOID 30 CLASSIC 2 14,000,000 35 

BIPOLAR 30 CLASSIC 4 455,000 35 

SIGMOID 10 CLASSIC 

WITH 

TRUNCATION 

16 280,000 74 

BIPOLAR 10 CLASSIC 

WITH 

TRUNCATION 

22 45,500 74 

SIGMOID 10 PROPOSED 6 455,000 74 

BIPOLAR 10 PROPOSED 9 45,500 74 

 

TABLE (2): QUNTIZATION ERROR, COST AND THE MAXIMUM SPEED OF NN WITH AND 

WITHOUT TRUNCATION. 
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the speed to twice the original speed but 

increase the error from 2% to 10%. While, the 

direct truncation with classic learning algorithm 

with bipolar transfer function will give a very 

high error reaching to 25% while the truncation 

using the proposed learning algorithm with 

bipolar transfer function will reduce the error to 

less than 10% with the same cost and same 

speed. 
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 بناء مستوى واطئ الكلّفة لخوارزمية الانتشار العكسي 
 

 عمار عادل حسن

لهــندسـة/ كــلية اقـسم هـندسة الحـاسبـات  

 جامـعة بغـداد                                                                           

 
 الخلاصة:

( كانت قليلة وقبل أكثر من ANNsمن أولى التطبيقات الناجحة التي تم نشرُها للشبكات العصبية الاصطناعية )
جال هذا النوع من البحوث. يمتاز هذا الملخص بتوفير الفكرة عقد. لذلك حان الوقت لمراجعة التقدّم الذي تم في م

لبناء  (FPGAs)الأساسية حول تطبيق أصناف الأنواع المتوفرة للبوابات المرتبة بصيغة صفوف قابلة للبرمجة 
الشبكات العصبية الاصطناعية. تقنيات مختلفة التطبيق وأفكار للتصميم سيتم مناقشتها لاحقاً, مثلاً الحصول على 
الدالة الفاعلة والمناسبة وتقنية التقليم العددية. كذلك, العمل على تحسين خوارزمية التعلم للتقليل من كلفة بناء 

الكلية وتحسين أداء الشبكة العصبية. وأخيراً, بناء دائرة متكاملة لها الخلية العصبية وبالتالي تقليل الكلفة 
 07السرعة العالية لتميز أشكال الأرقام الإنكليزية من خلال شبكة عصبية اصطناعية لها أربعة طبقات من خلال )

 . Xilinx FPGA( عقدة )خلية عصبية( على رقاقة واحدة باستخدام تقنية 
 


