
Ammar A. Hassan /Al-khwarizmi Engineering Journal ,Vol.2, No. 2 PP 32-41 (2006)

23

Low Cost Hardware Back Propagation Algorithm

Ammar A. Hassan

 Computer Engineering Department / College of Engineering

 University of Baghdad

(Received 14 November 2005; accepted 4 April 2006)

Abstract:-

The first successful implementation of Artificial Neural Networks (ANNs) was published a

little over a decade ago. It is time to review the progress that has been made in this research area. This

paper provides taxonomy for classifying Field Programmable Gate Arrays (FPGAs) implementation of

ANNs. Different implementation techniques and design issues are discussed, such as obtaining a

suitable activation function and numerical truncation technique trade-off, the improvement of the

learning algorithm to reduce the cost of neuron and in result the total cost and the total speed of the

complete ANN. Finally, the implementation of a complete very fast circuit for the pattern of English

Digit Numbers NN has four layers of 70 nodes (neurons) on single chip using Xilinx FPGA technique

is given.

The main goal of this paper is how to achieve the suitable activation function and weights for

this network that gives minimum hardware cost when all stages of this ANN algorithm is implemented

on FPGA.

1.Introduction

Artificial neural networks (ANNs) are a

form of artificial intelligence, which have

proven useful in different areas of application,

such as pattern recognition [1] and function

approximation/ prediction [2]. The most

popular neural network is the multi-layer

perceptron trained using the error back

propagation algorithm [3]. However, an

important obstacle in using this network in

many applications is the slow training and the

lack of clear methodology to determine the

network topology before training starts. It is

then desirable to speedup the training and allow

fast experimentation with various topologies.

One possible solution is an implementation on a

reconfigurable computing platform (e.g Field

Programmable Gate Arrays) FPGA.

Reconfigurable computing is a means of

increasing the processing density (i.e. greater

performance per unit of silicon area) above and

beyond that provided by general-purpose

computing platform [4]. Field Programmable

Gate Arrays (FPGAs) are a medium that can be

used for reconfigurable computing, since they

allow for custom design of fine-grain logic

compared to course-grain logic found in

general-purpose computing platforms. FPGAs

are a form of programmable logic, which offer

flexibility in design like software, but with

performance speeds closer to Application

Specific Integrated Circuits (ASICs). With the

ability to be reconfigured an endless amount of

Al-khwarizmi
Engineering

 Journal

Al-Khwarizmi Engineering Journal, Vol.2,No.2,pp 32-41 (2006)

Ammar A. Hassan /Al-khwarizmi Engineering Journal ,Vol.2, No. 2 PP 32-41 (2006)

22

times after it has already been manufactured,

FPGAs have traditionally been used as a

prototyping tool for hardware designers.

However, as growing die capacities of FPGAs

have increased over the years, so has their use

in reconfigurable computing applications too

[2, 4].

2.Problem Formulation

The design problem in ANN using

FPGA is a precision vs. area trade-off. One way

to help achieve the density advantage of

reconfigurable computing over general-purpose

computing is to make the most efficient use of

the hardware area available. In terms of an

optimal precision vs area Trade-off, this can be

achieved by determining the minimum

allowable precision, whose criterion is to

minimize hardware area usage without

sacrificing quality of performance. Because a

reduction in precision introduces more error

into the system, minimum allowable precision

is actually a question of determining the

maximum amount of uncertainty (i.e.

quantization error due to limited precision) that

an application can withstand before

performance begins to degrade. Hence,

determining a minimum allowable precision

and suitable numeric representation to use in

hardware is often dependent upon the

application at hand, and the algorithm used.

Fortunately, suitable precision for

backpropagation-based ANNs has already been

empirically determined in the past.

Selecting weight precision is one of the

important choices when implementing ANNs

on FPGAs. Weight precision is used to trade-

off the capabilities of the realized ANNs against

the implementation cost. A higher weight

precision means fewer quantization errors in the

final implementations, while a lower precision

leads to simpler designs, greater speed and

reductions in area requirements and power

consumption. One way of resolving the trade-

off is to determine the “minimum precision”,

required to solve a given problem.

Traditionally, the minimum precision is found

through “trial and error” by simulating the

solution in software before implementation.

Holt and Baker [5] studied the minimum

precision required for a class of benchmark

classification problems and found that 16-bit

fixed-point is the minimum allowable precision

without diminishing an ANN’s capability to

learn these benchmark problems.

3.ANN Example

3.1.Structure of the Circuit

 Following example [6] present how

these two parameters effect on hardware

resources. Remember that in neural network

resources capacity differ from network to other

according to number of neurons in each layer.

The existence of hidden units allows the

network to develop complex feature detectors,

or internal representations. Fig.(1) shows the

application of four layers network to the

problem of recognizing english digit numbers.

The two dimensional grid containing the

numeral “7” forms the input layer (it can be

arranged this two dimension array as one

dimension, so that, number of input neurons is

thirteen).

Ammar A. Hassan /Al-khwarizmi Engineering Journal ,Vol.2, No. 2 PP 32-41 (2006)

23

The first hidden layer is formed from 40

units each unit might be strongly activated by

horizontal line in the input, while the second

hidden layer molded from 20 hidden units, each

unit fully connected with each unit in the first

hidden layer. The output layer has ten units that

represent the value of the digit number.

Knowing that, the behavior of these hidden

units is automatically learned not

preprogrammed, then the computing weight of

each layer in the network accuracy by using

C++ programming language and implementing

this result on FPGA as shown in the next

section.

 3.2.Implementation ANN Components on

FPGA

Digital ANN architecture proposed in

the previous section is an example of a

reconfigurable computing application, where all

stages of the algorithm reside together on the

FPGA at once. These components based in idea

of implementation on simple (or basic)

arithmetic operations (such as addition and

multiplication operations).

 The floating-point precision is the

problem of which an engineer must deal with

when testing and validating circuits since it

limits quantization errors according to number

of bits in each node.

Therefore, truncation technique will be

used in design to reduce the floating-point

precision value and employ minimum hardware

resources available on FPGA. Adding to this,

choosing the optimal activation function

suitable for implementation with truncation

technique.

Previously as declared, the ANN

algorithm components (such as number of

hidden layers and number of units in each

Fig.(1): Multilayer Network to Learn to Classify English Numbers

0 1 2 3 4 5 6 7 8 9

Output

10 nodes

Hidden2

20 nodes

Input

25 nodes

Hidden1

40 nodes

Ammar A. Hassan /Al-khwarizmi Engineering Journal ,Vol.2, No. 2 PP 32-41 (2006)

23

layer) differ from application to another. The

English digit numbers NN is the application

used in this work to implement ANN on FPGA,

which is composed from four layers.

The quantization error after 5,000

iteration using two types of activation functions

 are given in table (1).

By using sigmoid function and without

truncation (30-bit floating-point), quntization

error is 0.02 (i.e. 98% of the corrected output).

While, by the same method, but using bipolar

function instead of sigmoid function,

quntization error will be given 0.04.

4.Arithmetic Architecture for FPGA based

ANNs
 To calculate the cost required for

English digit number NN in FPGA, it should be

declared the way of selecting activation

function against truncation approach as

following: -

 4.1.Sigmoid Function without Truncation

(30-bit)
 Before calculating the cost of FPGA

based digit NN, it should be known that this

function produced floating-point values. Then,

it required a large number of logic storage as

basic logic cells (LCs) called Look- UP- Tables

(LUTs). These LCs are formed as RAM to store

the output value of this function in each unit in

the NN algorithm.

 For 30-bit flotation-point, RAM cost

implementation in FPGA 30-bit input and 30-

bit output, for each unit in NN algorithm. Then,

when sigmoid function applied in algorithm

design is increased number of LCs, so that, it

increased the over all hardware resources of NN

algorithm.

 The average cost of each unit (node) is

calculated according to equation (1).

 **/ nnunitCost

(1)

 Where, n = Number of bits in data bus.

 α = Cost for each Multiplier in

FPGA.

 β = Cost for each Adder /

Subtractor in FPGA.

 δ = Cost for each LUT in

FPGA for sigmoid function.

i- For n=30 bit with sigmoid function α is a

(30*30)-bit Multiplier and require about (2250)

cell. β is a 30-bit Adder / Subtractor and require

about (225) cell. Finally δ requires about

(125000) cell using CORDIC approach.

So that, the cost of arithmetic

components / unit (for 30-bit sigmoid)

200,000 cell. Therefore for English Digit NN

algorithm from previously, there are seventy

units then: -

 Total Cost (for English

Digit NN) = 200,000 * 70 = 14,000,000 cell.

This process can be achieved

approximately by 17 of propagation gates

delay.

Activation

Function

Quantization

Error without

Truncation

(30-bit)

Direct Truncation

After Learning

(10-bit)

Sigmoid

Bipolar

2%

4%

13-19%

18-26%

Table (1): Quntization Error with and without Truncation

Ammar A. Hassan /Al-khwarizmi Engineering Journal ,Vol.2, No. 2 PP 32-41 (2006)

23

ii- When applying truncation technique through

the learning process with sigmoid function on

ANN, the unit output precision reduces to be

10-bit and using equation (1).

Total Cost / unit 4000

cell.

Where n = 10-bit, α = 300 cell, β = 75

cell, and δ = 60 cell.

Total Cost (for English Digit NN) =

4000 * 70 = 280,000 cell with over all

propagation delay reduced to 7 propagation

gates delay.

From this result, when applying this

technique in NN algorithm design it can reduce

number of LUTs on FPGA and so reduce the

over all hardware resources capacity.

4.2.Bipolar Function
 As demonstrated from previous section,

it required a large number of cells to implement

NN based on sigmoid function. Then, bipolar

function instead of sigmoid function in a NN

algorithm can be used. Where, this function

does not need storage cells for the output values

in LUTs, because the output from this function

is either “-1” or “1”, this technique called

multiplierless technique.

 This approach has α =1 cell and δ=0 cell

Therefore, the cost for each unit in a NN

algorithm based bipolar function calculated

using equation (2).

 */ nnunitCost

 (2)

 n = Number of bits in data bus.

 β = Cost for each Adder /

Subtractor in FPGA.

i- Without truncation technique (i.e. n=30-bit)

β = 215 cell, therefor the cost / unit 6,500

cell. This process exceeds in 17 propagation

gates delay. Then, to implement the English

digit NN, that included 70 active neurons the

total cost 455,000 cell.

ii- With truncation technique (i.e. n=10-bit) β =

64 cell, therefor the cost / unit = 650 cell. Also,

this process exceeds in 7 propagation gates

delay. So that, to implement the English Digit

NN that included 70 neurons the total cost

45,500 cell.

Then, the total LUTs cost of NN can be reduced

when applying bipolar function with truncation

technique on FPGAs.

5.Proposed Backpropagation Algorithm

[5]

An ANN using the classic

backpropagation algorithm [6] as in fig.(2) has

three basic phases named (1, 2 and 3) of

execution the proposed backpropagation

algorithm has same structure of the classic

backpropagation algorithm with three

additional steps for the proposed

backpropagation algorithm named (1a, 2a and

3a) as following:

Ammar A. Hassan /Al-khwarizmi Engineering Journal ,Vol.2, No. 2 PP 32-41 (2006)

23

Fig. (2): Generic structure of an ANN.

5.1.Initialization

The following initial parameters have to

be determined by the ANN trainer a priori: (i)

)()(nW s

Kj is defined as the synaptic weight that

corresponds to the connection from neuron unit

j in the (S-1) th layer, to K in the S th layer of

the neural network. (ii) is defined as the

learning rate and is a constant scaling factor.

(iii))(s

K is defined as the bias of a neuron,

which is similar to synaptic weight in that it

corresponds to a connection to neuron unit K in

the (S-1)th layer of the ANN ,but is NOT

connected to any neuron unit j in the(S-1) th

layer.

(1a) Set counter =0

5.2.Forward Computation

During the forward computation, data

from neurons of a lower layer (i.e (S-1) th layer),

are propagated forward to neurons in the upper

layer (i.e. (S) th layer) via a feedforward

connection network. The structure of such a

neural network is shown in Figure 2, where

layers are numbered 0 to M, and neurons are

numbered 1 to N. The computation performed

by each neuron (in the hidden layer) is as

follows:

θowH
(s)

k

)(s-

j

s-N

j

(s)

kj

(s)

k

1
)1(

1

 (3)

Where j < k and s=1,….,M

)1(s-N = Number of neurons in the (S-1)th

layer of the ANN.
)(s

KH = Weight sum of the K th neuron in the Sth

layer.
)(s

KjW = Synaptic weight which corresponds to

the connection from neuron unit j in the (S-1) th

layer to neuron unit K in the S th layer of the

neural network
)1(s

jo Output of the jth neuron in the (S-1) th

layer.

On the other hand, the output computation of

neurons in any layer is as follows:

) f (Ho
(s)

k

(s)

k

 (4)

Where k =1,…,N and s= 1,…,M

o
s

k

)(
 = neuron output of the Kth neuron in the sth

layer.

) f (H
(s)

k
 = activation function computed on

the weighted sum H
(s)

k
 .

Ammar A. Hassan /Al-khwarizmi Engineering Journal ,Vol.2, No. 2 PP 32-41 (2006)

23

 Note that some sort of sigmoid function

is often used as the nonlinear activation

function, such as the following logsig function

as in equation (5) or bipoler as in equation (6)

as follows:

(-x)

sig
f(x)

exp1

1

log

(5)

01

01

or x f-

 for x

bipoler
f(x)

(6)

(2a) Increment counter

 For cycle counter = counter +1.

5.3.Backward Computation

In this step, the weights of the networks

are updated. Criterion for the learning algorithm

is to minimize the error between the expected

(or teacher) value and the actual output value

that was determined in the Forward

Computation. The following steps are

performed:

i- Starting with the output layer,

and moving back towards the input

layer, calculate the local gradients, as

follows:

)1(

1

11
11

sN

j

)(s

j

s

kj

(s)

kk
(s)

k ,...,M- s

Ms -

δw

ot
ε

(7)

tk
= The target output for KTH neuron in

the M layer.

)1(sN = Number of neurons in the (S+1)th

layer of the ANN.

 Where
)(s

k
 = error term for the KTH neurons in

the STH layer.

The difference between the teaching signal b _

and the neuron output)(s

Ko
)1(s

j = Local gradient for the j th neuron in the

(S+1)th layer.

 ,....,M s) (Hfεδ
(s)

k

\(s)

k

(s)

k
1

 (8)

ii- Using the local gradients

calculated in step 1, calculate the weight

(and bias) changes for all the weights as

follows:

Noδw s-

)(s

j

(s)

k

(s)

kj
,..., and j,....,Ns k η Δ

1

1
11

 (9)

Where w
(s)

kj
Δ is the change in synaptic weight

(or bias) CORRESPONDING TO THE GRADIENT OF

ERROR FOR CONNECTION FROM NEURON UNIT J

IN THE (S+1) th
 LAYER, TO NEURON K IN THE S th

LAYER.

iii- Once all weight (and bias)

changes have been calculated in step 2,

update all the weights (and biases) as

follows:

(n) (n) Δ) (n www
s

kj

s

kj

s

kj
1

(10)

Where K = 1,….., N neurons in the S th
 LAYER

and j = 1,………, N neurons in the (S-1) th

LAYER.

)1()(nW s

Kj = Update synaptic weight (or bias)

to be used in the (N+1) th iteration of the

Forward Computation.

)()(nW s

Kj = Change in synaptic weight (or

bias) calculated in the N th iteration of the

Backward Computation, where n =the current

iteration.

Ammar A. Hassan /Al-khwarizmi Engineering Journal ,Vol.2, No. 2 PP 32-41 (2006)

23

)()(nW s

Kj = Synaptic weight (or bias) to be

used in the N th iteration of the Forward and

Backward Computations, where n = the current

iteration.

 (3a) Truncation

 For each counter > Q makes a

truncation as in equation (11) to the values of

the weights)()(nW s

Kj .

) -) * (/ (n) Int (W(n)W
nn(s)

Kj

(s)

Kj 122

(11)

Where Q is a small integer value depends on

the ANN, it defaults between 5- to- 50.

 n:- Number of bits in data bus.

 For truncation in the range of 10-bit this

equation becomes as in equation (12).

10231024) * / (n) Int (W(n)W (s)

Kj

(s)

Kj

 (12)

6.Comparative study

 The simple example is the four-layer

network to the problem of recognizing English

digit numbers that has 70 nodes. The

implementation of this NN using ISE 4.1i on

Xilinx platform [7, 8] shows the effect of the

proposed algorithm on the total cost and the

final error as in table (2).

 7.Conclusion

Generally, any complete circuit of ANN

has a very high cost because the high resolution

of the weight values required is about 30-bit or

more. The truncation of this data to low number

such as 10-bit will reduce the total cost to 5%

from the total cost but increase the error to

more than 10 times.

In addition to this, the effect of the

transfer function type such as sigmoid or

bipolar function declared the cost of the classic

NN, where sigmoid function is 30 times over

 the bipolar transfer function but the

bipolar has in average twice the error.

 This work has shown capability choice

of different transfer functions for NN algorithm

that are suitable to reduce the hardware cost

with an optimal choice of precision value, by

applying proposed truncation algorithm to

reduced precision value from 30-bit to 10-bit

with minimum possible error.

The matching of the proposed algorithm

with bipolar transfer function will reduce the

cost to 0.3% from the total cost and increases

ACTIVATION

FUNCTION

NUMBER

OF BITS

ALGORITHM FINAL

ERROR

%

TOTAL NN

COST / CELL

MAX SPEED

OF NN / MHZ

SIGMOID 30 CLASSIC 2 14,000,000 35

BIPOLAR 30 CLASSIC 4 455,000 35

SIGMOID 10 CLASSIC

WITH

TRUNCATION

16 280,000 74

BIPOLAR 10 CLASSIC

WITH

TRUNCATION

22 45,500 74

SIGMOID 10 PROPOSED 6 455,000 74

BIPOLAR 10 PROPOSED 9 45,500 74

TABLE (2): QUNTIZATION ERROR, COST AND THE MAXIMUM SPEED OF NN WITH AND

WITHOUT TRUNCATION.

Ammar A. Hassan /Al-khwarizmi Engineering Journal ,Vol.2, No. 2 PP 32-41 (2006)

34

the speed to twice the original speed but

increase the error from 2% to 10%. While, the

direct truncation with classic learning algorithm

with bipolar transfer function will give a very

high error reaching to 25% while the truncation

using the proposed learning algorithm with

bipolar transfer function will reduce the error to

less than 10% with the same cost and same

speed.

8.References
[1] M. SKRBEK, “FAST NEURAL NETWORK

IMPLEMENTATION”, NEURAL NETWORK WORLD,

VOL. VOL. 9, N. NO. 5, PP. 375–391, 1999.

[2] J. G. ELDREDGE, “FPGA DENSITY

ENHANCEMENT OF A NEURAL NETWORK

THROUGH RUN-TIME RECONFIGURATION”,

MASTER’S THESIS, DEPARTMENT OF

ELECTRICAL AND COMPUTER ENGINEERING,

BRIGHAM YOUNG UNIVERSITY, MAY 1994.

[3] D.E RUMELHART, J.L MCCLELLAND AND

PDP RESEARCH GROUP, PARALLEL

DISTRUBUTED PROCESSING: EXPLORATIONS IN

THE MICROSTRUCTURE OF COGNITION, VOLUME

1: FOUNDATIONS, MIT PRESS, CAMBRIDGE,

MASSACHUSETTS, 1986.

[4] A. DEHON, “THE DENSITY ADVANTAGE OF

CONFIGURABLE COMPUTING”, IEEE COMPUTER,

VOL. 33, N. 5, PP. 41–49, APRIL 2000.

[5] HOLT, J.L., T.E. BAKER. BACK

PROPAGATION SIMULATIONS USING LIMITED

PRECISION CALCULATIONS, IN PROCEEDINGS OF

INTERNATIONAL JOINT CONFERENCE ON

NEURAL NETWORKS. 1991. PP 121-126 VOL. 2.

[6] E. K. KNIGHT, “ARTIFICIAL INTELLINGENCE”

MCGRAW-HILL NEW YORK, SECOND EDITION,

1991.

[7] XILINX.COM, “VIRTEXTM2.5V FPGAS”,

DATA SHEET, WWW.XILINX.COM, MAY 1999.

[8] WOLF, D.F., ROMERO, R. A. F., MARQUES,

E. USING EMBEDDED PROCESSORS IN

HARDWARE MODELS OF ARTIFICIAL NEURAL

NETWORKS. IN PROCEEDINGS OF SBAI -

SIMP َ SIO BRASILEIRO DE AUTOMAO

INTELIGENTE. 2001. PP 78-83.

9.List of symbols

ANN: ARTIFICIAL NEURAL NETWORK.

ASIC: SPECIFIC INTEGRATED CIRCUIT.

CORDIC: COordinate Rotation DIgital

Computer.

FPGA: FIELD PROGRAMMABLE GATE ARRAY.

LC: Logic Cell.

LUT: Look- UP- Table.

RAM: Random Access Memory.

Ammar A. Hassan /Al-khwarizmi Engineering Journal ,Vol.2, No. 2 PP 32-41 (2006)

34

 بناء مستوى واطئ الكلّفة لخوارزمية الانتشار العكسي

 عمار عادل حسن

لهــندسـة/ كــلية اقـسم هـندسة الحـاسبـات

 جامـعة بغـداد

 الخلاصة:

(كانت قليلة وقبل أكثر من ANNsمن أولى التطبيقات الناجحة التي تم نشرُها للشبكات العصبية الاصطناعية)
جال هذا النوع من البحوث. يمتاز هذا الملخص بتوفير الفكرة عقد. لذلك حان الوقت لمراجعة التقدّم الذي تم في م

لبناء (FPGAs)الأساسية حول تطبيق أصناف الأنواع المتوفرة للبوابات المرتبة بصيغة صفوف قابلة للبرمجة
الشبكات العصبية الاصطناعية. تقنيات مختلفة التطبيق وأفكار للتصميم سيتم مناقشتها لاحقاً, مثلاً الحصول على
الدالة الفاعلة والمناسبة وتقنية التقليم العددية. كذلك, العمل على تحسين خوارزمية التعلم للتقليل من كلفة بناء

الكلية وتحسين أداء الشبكة العصبية. وأخيراً, بناء دائرة متكاملة لها الخلية العصبية وبالتالي تقليل الكلفة
 07السرعة العالية لتميز أشكال الأرقام الإنكليزية من خلال شبكة عصبية اصطناعية لها أربعة طبقات من خلال)

 . Xilinx FPGA(عقدة)خلية عصبية(على رقاقة واحدة باستخدام تقنية

