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Abstract

This paper presents £,-adaptive controller for controlling uncertain parameters and time-varying unknown
parameters to control the position of a DC servomotor. For the purpose of comparison, the effectiveness of £,-adaptive
controller for position control of studied servomotor has been examined and compared with another adaptive controller;
Model Reference Adaptive Controller (MRAC). Robustness of both r-adaptive controller and model reference
adaptive controller to different input reference signals and different structures of uncertainty were studied. Three
different types of input signals are taken into account; ramp, step and sinusoidal. The £;-adaptive controller ensured
uniformly bounded transient and asymptotic tracking for both system's input and output signals, simultaneously with
asymptotic tracking. Simulations of a DC servomotor with time-varying friction and disturbance are presented to verify

the theoretical findings.

Keywords: £-adaptive controller, DC servomotor position control.

1. Introduction

Research in adaptive control was motivated by
the design of autopilots for highly agile aircraft
that need to operate at wide range of speeds and
altitudes,  experiencing  large  parametric
variations. In the early 1950s, adaptive control
was conceived and proposed as a technology for
automatically adjusting the controller parameters
in the face of changing aircraft dynamics [1, 2].
The initial results in adaptive control were
inspired by system identification, which led to an
architecture consisting of an online parameter
estimator combined with automatic control design
[3]. Two architectures of adaptive control
emerged: the direct method, where only controller
parameters were estimated, and the indirect
method, where process parameters were estimated
and the controller parameters were obtained using

some design procedure. To achieve identifiability,
it was necessary to introduce a condition of
persistency of excitation in order to guarantee that
the parameter estimates converge. The progress in
systems theory led to fundamental theory for
development of stable adaptive control
architectures [4-6]. The basic idea of all the
modifications was to limit the gain of the
adaptation loop and to eliminate its integral
action. Examples of these modifications are the o-
modification and the e-modification. All these
modifications attempted to provide a solution to
the problem of parameter drift [6, 7]. However,
despite the success of such techniques in many
applications, they hold some drawbacks. For
instance, adaptive controllers rely on the need of a
persistency in parameter excitation before
convergence which may lead to a bad transient
behavior. A regressor is often required, involving
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with it a large parameter vector to be estimated.

Moreover, a large adaptation gain may have

undesirable effects, with the risk of parameter

divergence. All of the arguments brought against
adaptive schemes reveal that despite their
numerous advantages, these controllers hold some
drawbacks. For the sake of clarity, one can

summarize some of them here [7, 8, 9]:

1. A wide range of such controllers exhibit
undesirable frequency characteristics and are
often used with restrictive assumptions. It has
been shown that the sinusoidal reference inputs
at certain frequencies and/or sinusoidal output
disturbances at any frequency will significantly
increase the adaptation gain which will
destabilize the control system.

2. The need for the persistency in excitation can
lead to a bad transient behavior.

3. An increase in the adaptation gain drives the
closed-loop system closer to instability, while
a small gain would slow down the
convergence. Any parameter vector to be
adapted must be adequately initialized, and this
choice would depend on the specific
configuration of the system.

Recently, a new variant of adaptive control has
been developed named as r-adaptive control.
This version of adaptive control is utilizing fast
and robust adaptation; it permits a transient
analysis even for time varying uncertainties and is
capable of handling constraints. The £,-adaptive
control is presented as an adaptive approach for
nonlinear time varying systems in the presence of
state constraints [10].

2. Problem Formulation

The following class of systems will be

considered [7, 11, 12];

x(t) = Apx(t) + b (wult) + 8T (®)x(t)a(t))

y(t) = cTx(t) (D)
where x(t) € R" is the system measured state
vector; u(t) € R is the control input, y(t) € R is
the regulated output; b,c € R* are known
constant vectors; A, is a known Hurwitz n X n
matrix (all its eigenvalues have negative real
values that specifying the desired closed-loop
dynamics); w € R is an unknown constant (with
known sign); 6(t) € R® is a vector of time-
varying unknown parameters; and o(t) € R
models input disturbances.
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The objective of the desired controller is to

ensure that y(t) tracks a given bounded
piecewise-continuous reference signal r(t) with
quantifiable performance bounds using full-state
feedback adaptive controller based on the
following assumptions [7, 11-14]

Assumption (I): Uniform boundedness of
unknown parameters

Letting
o(t) € 0O, lo(t)] < Ay ,Vt = 0. ...(2)
where © is a convex compact set, and Ay € R is
a conservative bound of o (t) [7, 11-14].

Assumption (II): Uniform boundedness of
rate of parameters' variations

This assumes that 6(t) and o(t) have to be
continuously  differentiable  with  uniformly
bounded derivatives [7, 12, 13]:
6@ < dg <o, o)l <d, <oo, ¥t =0.

..(3)

Assumption (III): Uncertain system input
gain is partially known
This assumes that
w € Qy 2 [wyg, Wyol, ...(4)
where 0 < w;y < w,,( are given known lower and
upper bounds on w.

3. £;-Adaptive Control Architecture

In what follows, the elements of £;-adaptive
controller will be considered. The controller
comprises three main parts; state predictor,
adaptation law and control law [7, 11, 14].

3.1. State Predictor
Let us consider the following state predictor:

() = An2(@®) + b (@Ou(t) + 8T (Ox(6) +

ot, x0=x0

P(t) = c"2(t) ...(5)

which has the same structure as the system in (1);

the only difference is that the unknown
parameters w, 6(t), and a(t) are replaced by their
adaptive estimates @(t), O(t), and &(t),
respectively.

3.2. Adaptation Laws

The adaptive process is governed by the
following projection-based adaptation laws:



8(t) = T Proj (8(t), —" ()Pbx(t) ),

é(O) = éo,

6(t) = T Proj(6(t), —xT (t)Pb),

G(0) = 6y,

&(¢) = T Proj (a(t), —J?T(t)Pbu(t)),

@(0) = @, ...(6)
where %(t) 2 2(t) —x(t), TeRY is the

adaptation rate and P = PT > 0 is the solution of
the algebraic Lyapunov equation AL P + PA,, =
—Q for arbitrary Q = QT > 0.

In the implementation of the projection
operator, one can use the compact set ® as given
in Assumption (1), while one can replace A, and
Qo by A and Q 2 [w;g, wyo] such that [7, 14]

A< D, 0< w; <wp < wy < Wy ..(N

3.3. Control Law

The control signal is generated as the output of
the following (feedback) system:

u(s) = —kD(s) (ﬁ(s) —k, r(s)), .(8)
where r(s) and 7(s) are the Laplace transforms
of r(t) and #(t) 2 d()u(t) + 8T (O)x(t) +
6(t), respectively; k, £ —1/cTA;b; and
k>0 and D(s) are a feedback gain and a

strictly proper transfer function leading to a
strictly proper stable

A kD (s)
C(S) = T+wkD () Vw € QO (9)

with DC gain C(0) = 1. One simple choice is
D(s) = 1/s, which yields a first-order strictly
proper C(s) of the form [7, 11]

C(s) = == ...(10)
letting 6 € © [7, 11-14],
L = max||6]|;
6€0
H(s) 2 (s —A4,,)"'b
G(s) 2 H(s)(1 - C(s)) ...(12)
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The £-adaptive controller is defined via (1), (2),
(4), subjected to the following £,-norm condition:
6l L<1 ...(12)

The £-adaptive control architecture with its main
elements is represented in figure (1). In the case
of constant 6(t), the £,-norm condition can be
simplified. For the specific choice of D(s) =1/
s, it is reduced to;
o [Am + D67
g - _kQT

bw

| ...(13)

A 4 being Hurwitz which all its eigenvalues have

negative real values for all 6 € ® and w € Q,
[7,11].

3.4. Projection Operator

Consider a convex, compact set with a smooth
boundary given by [7, 9]
Q. 2{0ERf(O)<c} 0<c<1, ..14)
where f: R" — R is the following smooth convex
function:
07002,

f(0) = T, ...(15)
where 0 <¢g <1 and 6,,,, is the norm bound
imposed on the parameter vector 8, and &
denotes the convergence tolerance of our choice.
Let the true value of the parameter 6, denoted by
6" belongto Q,,i.e. 8" € Q,.

The special structure of the function f should
be interpreted as: if one solves f(8) < 1, which
defines the boundaries of the outer set, then one
can get that 870 < (1 + &) 624 . &9 Specifies
the maximum tolerance the adaptive parameter is
allowed to exceed compared to its maximum
conservative value. The projection operator is
defined as:

Proj(0,y)

( if f(6)<0,
y if f(6)=0andVfTy <0,

|
4 v vfT
Iky_HV—;H <ﬁ,y) if f(6)=0andVfTy >0,

[l>
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kD(s)

u

¥=4,x+b(ou+6"x+0)

q

n=0ou+60x+ac

]

Control Law

yp=ietx

DC Servomotor
Model

—‘) /)

=4 £ +b(Hu+67x+6)
C

L ¥4

State Predictor

6 =T Proj(6.— X" Pbx)

6 =T Proj(6.—X"Pb) -
&=T Proj(é,— X" Pbu)

Adaptation Laws

Fig. 1. Closed-loop L;-Adaptive System [4].

4. Modeling of DC Motor

In the present work, a separately excited DC
motor was considered, as shown in Figure (2),

R Le L

V. E,

L

Fig. 2. A Separately Excited DC Motor Model.

The equations describing the dynamic behavior of
the DC motor are given by [15]:

Ll = Lo -1 i®-Fe®  ..a7)
T, (t) = K;i, (t) ...(18)
er (1) = Ky 22 = Ky, (6) = K6, (6) ...(19)
T(t) =] =8 (” + B oy (£) + Ty (8) = Ke i (8)
...(20)
where the T;(t) accounts for nonlinear

disturbances which includes the nonlinear friction,
torque disturbances and other nonlinearities of the
system,
Ty(8) = ky0n () + T (6, () + TL(0) ...(21)
. . \2
Tp (6 (8)) = (F — E)sgn(y, (£))e~Om ©/65)
+F.sgn(6,,(t)) ...(22)
where, w,, (t) is the rotational speed, 6,, is the
angular displacement, i,(t) armature circuit
current, T¢(t) is the friction torque, T, (t) is the
load torque, R, armature circuit resistance, B
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}(Tf(ém) +T,)

coefficient of viscous-friction, K, torque
coefficient, / moment of inertia, and L, armature
circuit inductance, k, is the Viscous friction
coefficient, F; is the stribeck friction constant, F,
is the Colomb friction level, sgn(:) is the signum
function, and 6; is the stribeck angular constant
velocity.

For L, K R,= L, can be ignored so the
model in equations (17) to (20) can be simplified
to the following: (For simplicity we will omit the t
and s parameters from the equations)

0=-e, —Ryiy —K,6,, ...(23)
. 1 Kp ,

o = p-¢a —é@m ...(24)
~ B 4 Ko . 1

O =—]—9m+]—tla—]—(T1) ...(25)

By substituting equation (24) into equation (25)
this will lead to:

5 (RyBHKK,
b = — (Fal ks

. K ky
J Rq )0’” T IReCa 7 O -

...(26)

Let x; =6, and x, = 6,,, the state space form
can be written in the following form;

El=o o] 21+ 01 (%

kv)Om—1)TfOm+TL .27

y=I[1 0][2]

If equation (27) had been compared with equation
),
#() = Apx(@®) +b (0 ul®) + 67() x(2) +
at
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By induction, one may easily find that
o(©) = =7 (T;(6n) + 7).

T _ _ _ K
9 _[O kv/j]aw_]Ra ’
b=[0 1]Tandc=1[1 0]

where 4,, = A — bK,, and K,,, = [k; k3] is the
state feedback gain necessary for making the state
matrix A being Hurwitz which all its eigenvalues
have negative real values.

5. Controllability Condition Pole-

Placement

The requirement for applying pole placement
is that the system must be completely state
controllable. The state and input matrix of DC
motor are given, respectively,

0 1
A= _ (RaB+KKy\| and b=[0 1]7
b (e
The controllability matrix is given by [16]

0 1
M=[b Ab]= [1 _(RaB+Kth)] ...(28)
JRa

The controllability matrix is given by [16]
It is evident that the rank of controllability matrix
is equal to 2, which is equal to the system order.
Therefore, the system is completely controllable
and the pole placement could be applied.

Numerically, if the system has the following
values in Table (1), the eigenvalues for this
system is

S1 = 0 and Sy, = —59.202

Since the system is completely state
controllable, one can arbitrary select the desired

poles to be
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s; =—40 and s, = —50
The elements of state feedback gain K,, which
performs pole placement requirements is given by

K, =k k] =[2000 -30.8]
This transformation is achieved by
A, = A - bK,
_ [ 0 1 ]
—2000 -90
Table 1,
System Model Parameters For DC Servomotor.
Parameter value
R, 50
B 0.136 N.m.s
K, 0.245 N.m/A
K, 0.245 V.sfrad
Ji 0.0025 kg.m?/2
L, 0.01
6. Simulink  Modeling of  Adaptive

Controller for DC-servo motor

Based on equation (27), complete Simulink
implementation adaptive controller for DC
servomotor is depicted in Figure (3). The overall
Simulink model consists of different blocks that
combines together to achieve a suitable simulation
of single axis positioning table.

Signals block contains the main reference
signals and for the different types of inputs. It also
comprises the uncertainties resulting from load
and friction forces. The elements of the signals
block can be illustrated in Figure (4).
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Adaptaion [wh] y——l wh
- " Freaor
- Clock Reshape3 7o Fila?
Fig. 3. Overall Simulink Blocks DC Servomotor
Uncertainties Reference Inputs
[0 -Fthily] b G’% !
q Signal 1
theta Gain1  ——
Ramp_Signal1
11 p_g R Vel
X
B
wiw2 } Manual Switch
i T(Th Dof) .
X Add1
Eriction Medel
Step1
Sine Wave
H r

Fig. 4. Signals Block.

Sine Wave1

The contents of L;-adaptive controller block are simulated in Figure (5).

r

>

Matrix

1

Multiply

sigh

Im 1=

Fig. 5. Adaptive Controller Block Contents
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The Simulink block shown in Figure (6) gives the single axis positioning table.
components which simulate the model of the
;Iy””x bt
UT II lezl?ttri)‘( xc;_ -
o | Multiply X

b{wu+qg'x+sig)

G5 [
Fig. 6. Modeling of Single Axis Positioning Table.

Adaptation block implements the adaptation
techniques used in the present work. It also
includes projection block to perform the task of
projection operator. This operator used to keep the

system parameters bound in a known defined
region. The contents of the adaptation block are
shown in Figure (7).

dghiat
Watrix
piutip y ro
— | Theta Pr integral 1)
ah
Projection Operator
dsighidt
I Matrix
Muttiply ¥ prol
Theta Pr Integral »{ 2 )
sigh
" Projection Operator
D e
» dwhidt
Matrix
I Muttiply ¥ prol
Theta Pr Integral YEED]
wh
Projection Operator2

Fig. 7. Simulink Simulation of Adaptation Algorithm with Projection Operator.

The elements of predictor block responsible for
predicting both parameters and errors are depicted

in Figure (8).

Matrix
Multiply

Math
Function

Product

b(uh+gh'x)

Constant

Amxh

Fig. 8. Contents of Predictor Block.
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7. Simulated Results Also,
_ K

For simulati two different =k, 0 =10 ~k/l

or simulation purposes, two differen a -

. . _ Substituting the values of friction model
a;chlt_ecturesn;)rf Fdaﬁélv&%oxgol m?rre t?ken. LJ}; parameters, the uncertainty bound and the value
acap |ye control and ' ce types o of parameter w can be given by

inputs: ramp, sinusoidal, and step inputs were o(t) € A = [~1.2,2.1996] (N.mm)

used to compare between the two architectures. In ® =19 6_(N szl.k’ r.nm A) gT' _ [0’ —08]
design of r;-adaptive controller, the filter of the T; sh.ow fhe ?6bus;meés of_ the £ -;;1 daptive
controller is selected as D(s) = K/s and the radap

parameter of gain K and adaptation gain I' have E(r)]rggr?gintr:su;ndczsigtsurbcgnc::fvrvee:f: :ist\égll:rfs'cab?;
been set to K = 100 and I' = 10* using trial-and-

),
error procedure. . . _
The system model parameters are listed in The following normalized friction parameters

. . have been considered for simulation;
Table (1) above. The uncertainty o(t) considered k, = 0.002 N.s/mm, F. = 0.0002 N.mm,
in this system has the following form,

1 _ F, = 0.003N.mm, 6,=0.0002 rad/s
o(t) = —7(7} (6.®) + 1, (t))

Table 2,
Cases for Disturbance Amplitude and Frequency.
Parameter Case 1 Case 2 Case 3 Case 4
0.002 sin(t) sin(t) 0.002sin(10t) sin(10¢t)

t R R R .

o(t) + T (6,.(®) +T; (6,(0) +7; (6,.(0) +7; (6,.(0)

The following normalized friction parameters position responses and the control signals based
have been considered for simulation; on the four cases are shown in figures (13)-(16).
k, = 0.002 N.s/mm, F. = 0.0002 N.mm, One can easily see that the response based on £;-
F, = 0.003 N.mm, 6= 0.0002 rad/s adaptive controller could give better performance

in terms of transient characteristics than those
based on MRAC. Table (4) lists the summary of
steady state errors resulting from both controllers
for all four cases. It can be concluded that steady
state error based on £;-adaptive controller for all
considered cases has nearly zero value. On the
other hand MRAC gives considerably large steady
state error for all studied cases.

7.1. Results Based on Ramp Input

For case(1)-case(4) of table (2), the position
responses and the control signals are shown in
figures (9)-(12). The figures show that £;-adaptive
controller gives a better tracking performance for
the ramp input rather than MRAC.

Moreover, the control signals based on MRAC

suffer from distortion along tracking period. The 7.3. Results based on sinusoidal input
steady-state errors for £;-adaptive controller and
MRAC responses are shown in Table (3). In what follows, the simulation is made for

sinusoidal type of input. Table (2) is considered
for the uncertainty structures. The procedure
followed earlier will be repeated here for all cases
of Table (2). It is clear from the figures (17)-(20)
both controllers as the system is subjected to a that £,-adaptive controller is better than MRAC in

: . . terms of position tracking. Again the control
unit step. For the present scenarios, a step input of - o
0.005 rad height is fed to the system. This step signals based on MRAC suffer from distortion

input is inverted after 1.5 sec. such that a square aéont% ttr?CkmﬁJ perlodt.h It ;:an q be tsien from btablg
wave input is repeated for every 3 sec. The (5) that for all cases the steady state errors base

performance of both controllers for the situations on L-adaptive controller are lower than those
listed in Table (2) will again considered here. The based on MRAC.

7.2. Results based on step input

It is interesting to examine the effectiveness of
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Table 3,
Steady-State Errors for Different Cases of Ramp Input.

Steady state error (rad)

Case 1 Case 2 Case 3 Case 4
L,-controller 0.0086 0.0065 0.0089 0.108
MRAC 0.2248 0.2068 0.2247 0.2128

Table 4,
Steady-State Errors for Different Cases of Step Input.

Steady state error (rad)

Case 1l Case 2 Case 3 Case 4
£-controller 0.01 0.0073 0.01 0.0071
MRAC 0.23 0.2058 0.23 0.2129

x 10
5] T 135 T T T T T
B Lot — s SRR Reference input || : L1 Cantrol signal
L1 Response MRAC Control signal
AR /A S pama) —— MRAC Response |{ e B R R o
ol S N\
T AR i A B SIS .
[ I R Z
o !
| R )\ e
B renrmend e (S TRDMRNN N .\ NP s -
-4
5 AR AO— L S T N—_—
i i H i H A 1 i i i i
0 05 1 15 2 25 3 u} 05 1 15 2 25 3
Time (sec) Time (sec)
(a) Ramp Responses (b) Control Signals

Fig. 9. Transient Responses and Control Signals Based on £,-Adaptive Controller and MRAC for Ramp Input
(case 1).

x10°

Reference input 15 T T " r
L1 Response
MRAC Response H

L1 Control signal
MRAC Control signal

Paosition (rad)
[=]

6 i I

” : :

o] 05 1 1.‘5 2I 2.;5 3 0 05 1 1.i5 2I 2.;5 3
Time (sec) Time (sec)
(a) Ramp Responses (b) Control Signals

Fig. 10. Transient Responses and Control Signals Based on £;-Adaptive Controller and MRAC for Ramp Input
(case 2).
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Position {rad)

T T
Reference input
L1 Response
MRAC Rsponse

H i
15 2
Time (sec)

(a) Ramp Responses

L
2:5; 3

L1 Response
MRAC Response

i i L
15 2 25 g

Time (sec)

(b) Control Signals

i
0.5 1

Fig. 11. Transient Responses and Control Signals Based on £,-Adaptive Controller and MRAC for Ramp Input

(case 3).
X 10°
Reference input
L1 Response
4k

Paosition (rad)

MRAC Response

i
u} 05 1

i i
15 2
Time (Sec)

(a) Ramp Responses

i
25 3

Va (V)

T T
L1 Control signal
MRAC Control signal

i i i
15 2 25 3

Time (sec)

i
05

(b) Control Signals

Fig. 12. Transient Responses and Control Signals Based on L;-Adaptive Controller and MRAC for Ramp Input
(case 4).

Position (rad)
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L1 Response
MRAC Response

i
1] 05

i i
15 2
Time (Sec)

(a) Step Responses

!
25 3

Va (V)

12 T
L1 Control signal

10 MRAC Control signal
8 i
53| LIV SN SN SRR . NN 4
o IRUURTTI - SERRDNI. SREOIORREIN:: RREDRINPRRNE. NNURRESINRUIN . HRUR, 4
il rdbrara s R L TERRRREE 4

z |
) A Sy G,

: I
5 i i i i H
o 05 1 15 2 25 3
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(b) Control Signals

Fig. 13. Transient Responses and Control Signals Based on £,-Adaptive Controller and MRAC for Step Input
(case 1).
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Position (rad)

Fig. 14.
(case 2).

Positon (rad)

Fig.15. Transient Responses and Control Signals Based on L1-Adaptive Controller and MRAC for Step Input

(case 3).

Position (rad)

Fig. 16. Transient Responses and Control Signals Based on £,-Adaptive Controller and MRAC for Step Input

(case 4)

x10°
B T
Reference input
5 L1 Response L
MRAC Response
s
3l
2
1)
0
” ; i : :
u} 05 1 15 25
Time (sec)

(a) Step Responses

Transient Responses and Control Signals Based on

x 10

x10°
Reference input
L1 Response Ll
MRAC Response
i i ; i ;
o 05 1 15 2 25 3
Time (sec)

(a) Step Responses

Reference input
L1 Response

MRAC Response 1

H i
15 2

Time (sec)

H
25

(a) Step Responses

12 T T T
3 L1 Control signal
0 ISR S T MRAC Control signal
ol 5 : s : |
[ <
=) :
= .
41 2 B
o S W— {TTNS. AN S, _
O e T R R
r
2 i i H i H
[u} 05 1 15 2 25 3
Time (sec)

(b) Control signals

L;-Adaptive Controller and MRAC for Step Input

12 T
L1 Control signal
10k MRAC Control signal
8F 4
Bl 4
=
=
1} 4
2F- 4
| -
) AT D 2
5
" ; ; ; a ;
o 05 1 15 2 25 3
Time (sec)

(b) Control Signals

12 T
L1 Contral signal

10k MRAC Co?trol signal

8F 4

B B
e
=

4 <

2 4

0 a7 )

é v r
- ; ; ; i ;
[u] 05 1 15 2 25 3
Time (sec)

(b) Control Signals



Mohammed Ali S. Mohammed  Al-Khwarizmi Engineering Journal, Vol. 12, No. 2, P.P. 100- 114 (2016)

x10°
6 T T 1 T T
: Reference input : L1 Control signal
— i | =L1 Response 08 3 % MRAC Control signal
4+ / N\ MRAC Response H i : : 5

0.4

Va (V)
o

Paosition (rad)
(=)

T0)| SRR S b NG T

Al Y S S S e S
: 0.8 4
59 o5 1 15 2 25 4’ TS : 1‘5 5 o
Jimeifgec) Time (sec) :
(a) Sinusoidal Responses (b) Control Signals

Fig. 17. Transient Responses and Control Signals Based on £,-Adaptive Controller and MRAC for Sinusoidal
Input (case 1).

L1 Contral signal
0.8 LN ’ MRAC Control signal
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Fig. 18. Transient Responses and Control Signals Based on £;-Adaptive Controller and MRAC for Sinusoidal
Input (case 2).
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Fig. 19. Transient Responses and Control Signals Based on £,-Adaptive Controller and MRAC for Sinusoidal
Input (case 3).
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Fig. 20. Transient Responses and Control Signals Based on £,-Adaptive Controller and MRAC for Sinusoidal
Input (case 4).

Table 5,

Steady-State Errors for Different Cases of Sinusoidal Input.

Steady state error (rad)

Case 1 Case 2 Case 3 Case 4
L -controller 0.0265 0.0247 0.0266 0.023
MRAC 0.2749 0.2273 0.2419 0.24
8. Conclusions of Technology, Computer and Control
Systems Department, Mechatronics
1. For ramp exciting input, the results showed Engineering, Nov. 201?:- _
that £;-adaptive controller has better tracking [2] pP. C. Gregory, "Air research and
performance than MRAC. For some Development ~ Command  Plans  and
uncertainty structure, the MRAC control Programs”, in Proceedings of the Self-

9.

signals give distorted response.

. For step exciting input, £;-adaptive controller

could track and gives better transient

characteristics than MRAC.

. For sinusoidal inputs, £;-adaptive controller

gives satisfactory tracking performance for all
structures of uncertainties. However, for some
uncertainty structure, the MRAC control
signals give distorted response.

. For all types of inputs and for all structures of

uncertainties, the £,-adaptive controller gives
less steady state errors (nearly zero) than the
MRAC.
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