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Abstract 

 
This paper presents a vibration suppression control

patch was used as  an actuator element, while the other was used as a sensor. The controller design was designed via the 

balance realization reduction method to elect the reduced order model that is most controllable and observable. 

sliding mode observer was designed to estimate six states from the reduced order model but three states are only used in 

the control law. Estimating a number of states larger than that used is in order to increase the estimation accuracy. 

Moreover, the state  estimation error is proved bounde

states with the sliding mode observer, to 

elements. The control spillover problem was avoided, by deriving an avoi

stability for the proposed vibration  control design. 

attenuation ability of the  proposed optimal control. For 15 mm initial tip 

 able to reduce the tip displacement to about 0.1 

experimental results showed a good performance of the proposed LQR control law and the sliding mode obser

well a good agreement with theoretical results.
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1. Introduction 
 

Active vibration control is a technique that 

used for suppression structural vibrations, using 

this technique to smart structures becomes of 

great  interest and getting much more important. 

 One way of making the structure a smart one is 

 performed by the use of piezoelectric materials

which  can be used as sensors and  actuators

are flexible enough to be placed in  a variety of 

places and have the capacity to work 

ranges of frequencies [1]. Piezoelectric materials 

have simple mechanical properties, small volume, 

light weight, and good ability to perform vibration 
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This paper presents a vibration suppression control design of cantilever beam using two piezoelectric 

an actuator element, while the other was used as a sensor. The controller design was designed via the 

balance realization reduction method to elect the reduced order model that is most controllable and observable. 

estimate six states from the reduced order model but three states are only used in 

the control law. Estimating a number of states larger than that used is in order to increase the estimation accuracy. 

estimation error is proved bounded. An  optimal LQR controller is designed then using the 

states with the sliding mode observer, to  suppress the vibration of a smart cantilever  beam via the piezoelectric 

elements. The control spillover problem was avoided, by deriving an avoidance  condition, to ensure the 

control design.  The numerical simulations were achieved to 

proposed optimal control. For 15 mm initial tip  displacement, the piezoelectric actuator found 

able to reduce the tip displacement to about 0.1  mm after 4s, while it was 1.5 mm in the  open loop case.  The current 

experimental results showed a good performance of the proposed LQR control law and the sliding mode obser

well a good agreement with theoretical results. 

Active vibration, Piezoelectric, Sliding mode observer, Model  reduction, LQR controller

technique that is 

used for suppression structural vibrations, using 

becomes of 

getting much more important. 

smart one is 

by the use of piezoelectric materials, 

actuators. They 

a variety of 

places and have the capacity to work  in wide 

iezoelectric materials 

es, small volume, 

nd good ability to perform vibration 

control [2]. One of the application of piezoelectric 

smart structures is the control and suppression of 

unwanted structural vibrations [3]. 

materials electricity is produced 

called direct effect. Conversely, subjecting these 

materials to an electric field produce

deformation, converse effect.  The piezoelectric 

sensor senses the external disturbances and

generates voltage due to the direct effect, while

piezoelectric actuator produces force, due 

converse effect, that can be used as 

force [4]. 

Modelling continuous mechanical structures

subjected to dynamic loadings is not an easy task. 
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design of cantilever beam using two piezoelectric  patches. One 

an actuator element, while the other was used as a sensor. The controller design was designed via the 

balance realization reduction method to elect the reduced order model that is most controllable and observable.  the 

estimate six states from the reduced order model but three states are only used in 

the control law. Estimating a number of states larger than that used is in order to increase the estimation accuracy. 

optimal LQR controller is designed then using the  estimated 

beam via the piezoelectric 

condition, to ensure the  asymptotic 

The numerical simulations were achieved to  test the vibration 

piezoelectric actuator found 

open loop case.  The current 

experimental results showed a good performance of the proposed LQR control law and the sliding mode observer, as 

reduction, LQR controller. 

control [2]. One of the application of piezoelectric 

smart structures is the control and suppression of 

unwanted structural vibrations [3]. In these 

is produced by pressure, 

onversely, subjecting these 

materials to an electric field produces a 

.  The piezoelectric 

senses the external disturbances and 

direct effect, while 

piezoelectric actuator produces force, due to the 

can be used as a controlling 

continuous mechanical structures 

is not an easy task. 
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Scarce analytical solutions for specific situations 

are available. The discretization of these 

structures is an alternative and basic step for 

further analysis. The finite element methods 

(FEM) is an efficient tool for this purpose [5].  

In the finite element modeling, the structure is 

modeled to retain large number of degrees of 

freedoms. In active vibration control, the use of 

smaller order model has computational 

advantages. Therefore, it is essential to apply 

model reduction techniques  for getting a reduced 

model for designing the control law. One of these 

techniques is based on balance realization method 

[6]. The approach taken for reduction the order of 

a given model based on removal the coordinates, 

that are the least controllable and observable. To 

implement this idea, a measure of the degree of 

controllability and observability is required [7]. 

For closed-loop system, it is not always possible 

to get a control law that cause eigenvalues to have 

the required and desired  values. The system is 

completely controllable if every state variable  can 

be affected in such a way as to cause it to reach a 

particular value  within a finite amount of time by 

some unbounded  control [6]. However, an 

alternative, more useful measure is provided for 

asymptotically stable systems of the form given 

by equations by defining the controllability 

gramian. Gramian matrices can be used for 

checking if a system is controllable and 

observable [6]. 

The control of the vibration of a smart 

structure is usually performed via a controller that 

based on the reduced order model (ROM).  Once 

a ROM based controller is applied to the full order 

system, actuator forces will reduce the vibration 

of the lower modes. However, this will also 

influence the residual modes of the structure, 

producing undesirable vibration due to the un-

modeled dynamics. This phenomenon is known as 

control spillover [9]. Similarly, the sensor will 

sense the deflection from the lower modes as well 

as from the other modes, this is known as 

observation spillover. Spillover effects are 

undesirable and may cause performance 

degradation and even system instability [10]. 

Indeed, one way to avoid a spillover, which 

comes from the state estimation or  observation 

process, is to use an observer for estimating the 

states with minimal error.   

Numerous control strategies have been 

suggested to suppress the vibration of flexible 

structures for the flexible systems. Some of these 

studies are state feedback control, linear quadratic 

regulator (LQR) approach [11], �� control, �∞ 

control [12] and sliding mode control [13]. The 

theory of optimal control is concerned with 

operating a dynamic system at minimum cost. The 

case, where the system dynamics are described by 

a set of linear differential equations and the cost is 

described by a quadratic function, is called the 

LQR problem. The settings of a regulating 

controller governing a controlled system are 

found by using a mathematical algorithm that 

minimizes a cost function with weighting factors. 

The cost function is a sum of the deviations of key 

measurements from their desired values. Often the 

magnitude of the control action itself is included 

in this sum so as to bound the energy spent by the 

control action [11]. The LQR is the most 

commonly used controller in smart structures [14-

17]. 

State measurement is required for the 

controller; an observer is usually designed to 

estimate the states. Observers are dynamic 

systems that can be used to estimate the 

unavailable state variables of a plant.  Luenberger 

observer [18], used a dynamical linear system to 

generate estimates of the plant states. In some 

cases, some of the inputs to the system are 

unknown. This led to the development of the 

unknown input observer. For the smart beam, 

which modeled by FEM with a reduced number of 

states, the remaining states which are acting on 

the reduced model can be regarded as unknown 

inputs.  

Sliding mode theory is a robust control 

approach in treating disturbances and modeling 

uncertainties through the concepts of sliding 

surface design and equivalent control [13]. Based 

on the equivalent control, the sliding mode control 

theory can be used as an observer to estimate the 

system states. The sliding mode observer (SMO) 

are able to  ensure finite-time convergence of the 

output estimation error even in the presence of the 

unknown  inputs.  Additionally, they can be used 

to reconstruct unknown inputs using equivalent 

control methods [19]. The method V-function, 

[20], has been used to formulate sliding mode 

observers design  which lead the state estimation 

errors approach to zero asymptotically with 

matched uncertainties. The main advantage of 

using sliding-mode observers is that, while in 

sliding, they are insensitive to the matched 

unknown inputs. Moreover, they can be used to 

reconstruct unknown inputs, which could be a 

combination of system disturbances [21]. Many 

researchers were interested in designing sliding 

mode observers for uncertain dynamical  systems; 

such as Utkin et al. [22], Walcot et al. [23], Zak et 

al.  [24], Edwards et al.  [19], and Slotine et al. 

[25].  
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This paper focuses on designing an optimal 

LQR controller by using sliding mode observer to 

attenuate the vibration of a smart cantilever beam. 

Piezoelectric elements are used as an actuator and 

a sensor. The utilized model for control design 

purpose is the reduced order model that is 

obtained according to the balance realization 

method.  Based on the equivalent control, the 

SMO is designed with estimation error related to 

the ROM. To avoid control spillover, an 

avoidance condition, using complete system 

dynamics, was derived. 

 

 

2. Modeling of Smart Cantilever Beam  
 

Figure (1) depicting the smart cantilever beam 

considered in this work. The beam is bonded with 

a pair of piezoelectric patches, working as a 

sensor and an actuator, at the indicated position. 

The piezoelectric material used in this work is the 

Lead-Zirconate-Titanate (PZT). Using Euler-

Bernoulli beam equation, the partial differential 

equation of the beam can be written as [26]; 

 �� �����,
���� �	�����,
��
� � 0				                  …(1) 

 

where �� � �� ��⁄ 	, 	���, �� is the deflection 

along the �-axis, � is the Young's modulus, � is 

the moment of inertia, � is the cross sectional 

area, and � is the density. Equation (1) can be 

solved by using the assumed mode approach, 

which yields finite dimensional ordinary 

differential equation set.  

 

 
 

Fig. 1. Flexible smart cantilever beam. 

 

 

The dynamic equation of the smart structure is 

obtained by using both regular beam element and 

piezoelectric beam elements. The mass and 

stiffness matrices of the smart structure include 

the mass and stiffness of the sensor/actuator [27]. 

The smart beam, shown in Figure (1), is modelled 

in state space form using the FEM, the beam is 

divided into six equal finite elements. The sensor 

and actuator were integrated on the top and 

bottom surfaces at the second element from the 

fixed end of the beam.     

A beam element is considered with two nodes 

at its end. Each node is considered to have two 

degrees of freedom (DOF),  i.e.  translation  (in �- 

direction) and rotation. The mass and stiffness 

matrix are derived using shape functions for the 

beam element. The inertia force appears in the 

governing differential equation of the beam, 

Equation (1), involves a fourth order derivative 

w.r.t. �, and a second order derivative w.r.t. time 

(acceleration). The solution of this equation is 

assumed as a cubic polynomial function [28]. 

  ���� � 	�� �	��	� � ��	�� �	��	��	          …(2) 

 

where ����	is displacement function which 

satisfies the fourth order partial differential 

equation, here x is the local coordinate of the 

element. The constants  ��  to  ��  be obtained by 

using the boundary conditions at both the nodal 

points (fixed end and free end). And it can be 

represented in a matrix form as, [29] 

 

���� ��� � !�	  =	�
1 0 0 00 1 0 01 	# #� #�	0 1 2# 3#�!	 ��

�������� �!          …(4) 

 

where ��	,  �	, 	��	, and	 �	 are the degree of 

freedom at node 1 and 2, respectively, and # is the 

length of the element.  

 

Accordingly, the mass matrix is given as, [29] 

 )* � �*	�* + ,	,	-.�	/0		 �
1020/0��3 	45

56 156 22#* 54 :13#*22#* 4#*� 13#* :3#*�54 13#* 156 :22#*:13#* :3#*� :22#* 4#*� ;<
<=     …(4) 

 

where )* is the mass matrix of regular beam, , is 

the shape function. Also for the strain energy the 

stiffeness matrix is given by [29]: 

 >* � 	�*	�* + 	,�	,�-		.�	/0 �
												?0	@0/	A � 12 6# :12 6#6# 4#� :6# 2#�:12 :6# 12 :6#6# 2#� :6# 4#� !          …(5) 

  

where >* is the stiffeness matrix of regular beam, 

Eventually the equation of motion according to 

the Lagrangian equation is [30]:   

X 

Z 

Y 
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)* 	BC � >*B � D*                    …(6)   

or 

1020��3 			45
56 156 22#* 54 :13#*22#* 4#*� 13#* :3#*�54 13#* 156 :22#*:13#* :3#*� :22#* 4#*� ;<

<= 45
56��C � C��C � C� ;<

<=� +    

	?0	@0/	A 45
56 12 6#* :12 6#*6#* 4#*� :6#* 2#*�:12 :6#* 12 :6#*6#* 2#*� :6#* 4#*� ;<

<=	���� ��� � !� � 	 � E�)�E�)�
!    

       …(7) 

 

where  E�	, E�,  )�, )�  are the forces  and  the 

bending moments acting on nodes 1 and 2 

respectively Figure (1). When  PZT  patches  are  

assumed  as  Euler-Bernoulli  beam elements the 

elemental mass and stiffness matrices  of PZT 

beam element can be computed in similar fashion 

as [31]: 

   

)F � 1G2G/G��3 	
455
56 156 22#F 54 :13#F22#F 4#F� 13#F :3#F�54 13#F 156 :22#F:13#F :3#F� :22#F 4#F� ;<<

<=
          

                                                                       …(8) 

>F � ?G	@G/	A 455
56 12 6#F :12 6#F6#F 4#F� :6#F 2#F�:12 :6#F 12 :6#F6#F 2#F� :6#F 4#F� ;<<

<=
      …(9)   

 

In which  ��	 � 	�*	�* 	� 2�F	�F    is  the  flexural  

rigidity  and  �� � H��*�*	 � 2�F�F	)  is  the  

mass  per  unit  length, �F  is  the  thickness  of  

PZT  patches, and  �F � *	
IA�� � H�J K
IL
0� M�. So  

the  element  mass and stiffness matrices are: 

 

)N � �	�	#*420 	45
56 156 22#* 54 :13#*22#* 4#*� 13#* :3#*�54 13#* 156 :22#*:13#* :3#*� :22#* 4#*� ;<

<= 
                                                                      …(10) 

>N � ?	@	/G	A 455
56 12 6#* :12 6#*6#* 4#*� :6#F 2#*�:12 :6#* 12 :6#*6#* 2#*� :6#* 4#*� ;<<

<=
       … (11) 

 

 

 

 

 

2.1. Sensor and Actuator Equations   
      

The sensor equation is derived from the direct 

piezoelectric equation, which is used to calculate 

the total charge created by the strain in the 

structure. The output charge can be transformed 

into the sensor current	O��� [32]: O	��� � 	P	Q��	H + 	,�-BR 	.�	�SL/0�S            …(12) 
 

where, z = 

0� � �J and ,T is the second spatial 

derivative of the shape function, Q�� is the 

piezoelectric stress constant. 

The output current of the piezoelectric sensor 

measures the moment rate of the flexible beam. 

This current is converted into the open circuit 

sensor voltage UV��� using a signal-conditioning 

device with the gain GX. Thus [30]:   

UV��� � [	0		 : Z[P	Q��	H			0			Z[ 	P	Q��	H		] 45
56�R � R��R � R� ;<

<=  
 � ]�	[		0		 : 1		0		1] 45

56�R � R��R � R� ;<
<= � ^-BR       …(13) 

 

where  ][ 	� 	Z[	P	Q��	H and  ^ is a constant 

vector depends on the type of sensor, its 

characteristics and its location on the beam.  

The actuator equation is derived from the 

converse piezoelectric equation. The strain 

developed _� by the electric field �̀  on the 

actuator layer is given by [33]:  

 _ � .�̀                …(14) 

 

where,  �̀ � aI�
�
I   is the electric field, and  UJ��� 
is the input voltage applied to the piezoelectric 

actuator in the thickness direction	�J. Then the 

stress bJ that developed by the actuator is given 

by: [34] 

 bJ � 	�F	.�� Kcd	�e�
I M        ...(15) 

 

where �F is the Young’s modulus of the 

piezoelectric and .�� is piezoelectric strain 

constant.  

The bending moment of the piezoelectric 

element is given by:       

 .)J 	� 	�F	�F 	f��f��               …(16) 
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The resultant moment )J acting on the beam 

element due to the applied voltage UJ is 

determined by integrating the stress in Equation 

(15) throughout the structure thickness as: 

 )J �	�F	.��P	UJ���      …(17) 

 

The control force D[
g/ produced by the 

actuator that is applied on the beam element is 

obtained as [30]:  

 D[
g/ � �F.��H	P	[	:1	0	1	0	]-	UJ���	         …(18)  

 

Alternatively, D[
g/ can be expressed as: 

 D[
g/ � ℎ	UJ	���	         …(19) 

 ℎ � �F	.��	H	P	[	:1	0	1	0	]i	           …(20) 

 

 

3. Dynamic Equation of Smart Structure 

 

The  element  mass and stiffness matrices, 

Equation (10) and Equation (11),  can be 

assembled using the standard FEM procedure, to 

obtain the global mass and stiffness matrices of 

the entire beam. The beam is divided into six 

finite elements with two piezo-patches placed at 

the specified location. The equation of motion of 

the smart structure is given by [28]:  

 )	B	C � >B � DN�
 � D[
g/ � D	     …(21)  

 

where ),  >, DN�
, D[
g/ and D are the global mass 

matrix, stiffness matrix, external force vator, the 

controlling force vector (from the actuator), and 

the total force coefficient vector, respectively.  

The generalized structural modal damping 

matrix j is introduced into Equation (21) by 

using[35, 36]:  

 j	 � k)	 � l>	    …(22) 

 

where k and l are the frictional damping constant 

and the structural damping constant respectively. 

When applying the cantilever beam boundary 

condition, the system equation of motion for the 

six element cantilever beam is: 

 )		B	C � 	jBR � >B � 	D	 	        …(23) 

    

For free vibration condition  DN�
 equal to zero, 

so the remaining applied force on the system is 

the controlling force D[
g/ exerted by the 

controller. 

 3.1 State Space Model of the Smart Beam 
 

 Model reduction in modern control theory 

needs a state space form for the mathematical 

model of a plant. Consequently, the mathematical 

model of smart flexible cantilever beam can be 

written in state space form as follows [37]; let 

 B � mB�B�n=m����n � � , BR  =oBR�BR�p=o�R��R�p=m����n,  and 

BC � o�R��R�p,  
then the smart cantilever beam state space model 

is;                                                        )	 o�R��R�p � j	 m����n � >	 m����n � 	D[
g/      …(24) 

 

which yields to 

��R��R��R��R�! � m 0 �:)q�	> :)q�jn �
��������! �																																										m 0)q�ℎ	n 	r���          …(25) 

 

And in a matrix form 

 �R � ����� � sr���      …(26) 

where � � ���������! , � � m 0 �:)q�	> :)q�	jn	,	 
s � m 0)q�ℎ	n	 and r��� � UJ���. 
 

with appropriate zero and identity matrices 

dimensions. The sensor voltage is taken as the 

output of the system and the output equation is 

obtained as:  
 	���� � UV��� � ^-BR � ^- m����n           ...(27) 

 

Thus, the sensor output equation in state space 

form is given by: 

���� � [0				^-	] ���������!  or,  ���� � t����     …(28) 

 

where t � [0				^-	]. Eventually, the single input 

single output state space model of the smart beam 

is given by Equations (26) and (28): ��R � ��	��� 	� sr���� � t����																			u     …(29) 

with 
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�� � 	 m 0 �:)q�	> :)q�	jn��∗��s � 	 m 0)q�ℎ	n��∗�																									t � 	 [0				^-	]�∗��																									 wxy
xz

       …(30) 

 

 

3.2. Model Reduction 

 
Using the FEM the structure is modeled to 

retain large (but finite) number of DOF. In active 

vibration control, the use of smaller order model 

has computational advantages. Therefore, it is 

necessary to apply a model reduction technique to 

the state space representation [6]. In this work the 

24
th
 order system model, obtained from the FEM 

modelling, is reduced to the three order using a 

model reduction technique based on balance 

realization. 

In this approach the state coordinate basis is 

selected such that the controllability and 

observability grammians are diagonal matrix and 

equal , normally with the diagonal entries of σ in 

descending order the state space representation is 

then called balanced realization [6].  

To implement this idea, a measure of the 

degree of controllability and observability is 

needed. However, an alternative, more useful 

measure is provided for asymptotically stable 

systems of the form given by equations by 

defining the controllability grammian, denoted by {|, as [6]: 

 	{|� � + Q2
∞3 ss-Q2}
.�	      …(31) 

                                  

And the observability grammian, denoted by {~, 

as [6]: 

 {~� � + Q2}
∞3 t-tQ2
.�      …(32) 

 

where the matrices �, s, and t are defined in 

Equation (30). The properties of these matrices 

provide useful information about the 

controllability and observability of the closed-

loop system. If the system is controllable (or 

observable), the matrix {| (or {~) is nonsingular 

[38]. These grammians characterize the degree of 

controllability and observability by quantifying 

just how far away from being singular the 

matrices {| and {~ are [6]. 

Applying the idea of singular values as a 

measure of rank deficiency to the controllability 

and observability grammians yields a systematic 

model reduction method. The matrices {| and  {~ are real and symmetric and hence are similar 

to a diagonal matrix. There  is  equivalent  system  

for  which  these  two  grammians  are  both equal 

and diagonal. Such a system is called balanced 

system, and {| and  {~  must satisfy the 

following two Liapunov-type equations: [39] 

 ��	{|� �{|�	�- � :ss-�- 	{~� �{~�	� � :t-t�               …(33) 

 

Now to transform the system to a balance 

realization form, the determination of a 

transformation matrix ��  that will transform the 

system in Equation (29) to: 

 ��R ′ � �′�′ � s′r� � t′�′ � jr u		      …(34) 

 

is required, where �′ � ��q���� 	, s′ ���q�s			and t′ � t�� . The controllability and 

observability grammians matrices are diagonal 

and equal  

 

  {�| � {�~ � � � .O���b�, b�, …… . , b�� 
 

where  {�| 		and		{�~ are the controllability and 

observability grammians for system after applying 

the transformation � and the numbers b� are the 

singular values of the grammians and are ordered 

such that   b� > b�L�	, O � 1,2,… . . , � 

Therefore, the pair ��′, s′� could be 

uncontrollable pair since some of b� could be 

equal to zero. Indeed, there exist a subsystem, i.e. 

a reduced order model, which is still controllable 

and observable.   

Choosing the matrix ��  in the form 

 �� � Zq��Σ
��       ...(35) 

 

the grammians {[�	and	{~� will transformed to 

become equal and transform the system in 

Equation (29) to a balanced realization form. 

Namely, {�|= {�� =Σ      …(36) 

 

where  Σ can be written in terms of two set of the 

singular values b��� and b��� as  

∑ � ob��� 00 b���p        …(37)   

 In this representation  b��� describes the “strong” 

sub-systems to be retained and b��� the “weak” 

sub-systems to be deleted. Conformally 

partitioning the matrices as 
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� �′ �	 o��� ������ ���ps′ �	 os�s�p														t′ �	 [t� t�]						wxy
xz	                                   …(38)         

 

and truncating the model, retaining  ��g � ���,   sg � s� and tg � t� as the reduced system, and 

deleting the “weak“ internal subsystems [6]. 

 

 

4. LQR State Feedback Control Design 

 
The LQR is an optimal control approach to 

determine control signals that will cause a process 

to satisfy some physical constraints, and at the 

same time (maximize or minimize) a chosen 

performance index or cost function [11]. To 

design an LQR control, to the reduced order 

model of the smart beam, the Reduced Model 

(RM) and the Residual Model (RSM) [9] are 

presented here as follows; according to the 

balance realization the linear state model for the 

cantilever beam, as given in Equation (34) are 

rewritten as follow; [29] 

 ��Rg � ��g�g � ����� � s�r�R� � ��g�g � ����� � s�r� � tg�g � t���																 �                 …(39) 

 

where �g ∈ ℛg , is the reduced model states, �� ∈ ℛ�qg is the residual model states, and  

� � � ��gg×g ���g×��qg���g��qg�×g �����qg�×��qg��,  
 s � � s�g×�s���qg�×��, 
 t � �tg�×g t��×��qg��  
 

The pair ���g , s�� is the controllable pair and ���g , tg� is the observable pair with highest 

controllability and observability grammian. From 

Equation (39), the reduced model of  the 

transformed model, which given in Equation (34), 

is 
 �Rg � ��g�g � s�r          …(40) 

Note that � represents also the number of the 

states that will be used in the control design. 

In the second step the performance index �, is 

defined for the linear regulator problem as [6];  
 

� � ��+ ��g-�	�g 	� r-�	r�∞
 .�,     …(41) 

 

where � and � are symmetric positive definite 

weighting matrices. The larger the matrix �, the 

more emphasis is placed by optimal control on 

returning the system to zero, since the value of x 

corresponding to the minimum of the quadratic 

form �g-�	�g is � � 0. On the other hand, 

increasing � has the effect of reducing the 

amount, or magnitude, of the control effort 

allowed [6].   

The optiumal control law that will minimize � 
is given by [40]. 

 r��� � :�q�	s������ � :>�������          …(42) 

 

where  � is the solution to the algebraic Riccati 

Equation [15]. 

 ���� : 	�s��q�	s�-� � ��g- 	� � ���g � 0 ...(43) 

 

The linear controller, as in Equation (42), that 

grantted asymptotic stabilty of the reduce model, 

may also cause the instability for the system 

dynamic. This type of instability is named as the 

control spillover.  

 

 

4.1 Control Spillover Problem and 

Avoidance Condition.  

 
Spillover phenomenon occurs because  that the 

unmodeled dynamics, which are not included in 

reduced order model, is excited by the control 

input as in the case of the reduced model. As a 

result the complete system model may have 

positive eigenvalue that leads to system 

instability. In order to avoid the control spillover, 

an avoidnace condition is derived as follows; let 

the matrix	∆ be defined as;  

 Δ � o���g : s�>� ������g : s�>� ���p             …(44) 

 

which represents the whole model matrix after 

applying the proposed LQR control. In order to 

avoid control spillover the matrix Δ must be 

Hurwitz with its minimum absolute real 

eigenvalue is larger than  theabsolute  real 

eigenvalue of the matrix � Equation (29).  

Namely, if ��| represent the real term to 

eigenvalue of Δ and ��~ represent the real term to 

eigenvalue of 	A then the avoidance condition is; 
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�| � min�£�→�¥��|¥ > min�£�→�¥��~¥ � �~ 

 

When difference between �| and �~is large,the 

vibration is attenuated effectively since the 

eigenvalue placed at �~ is the dominant one 

which shaped the cantilever beam response. 

 

 

5. Sliding Mode Observer 

 
For a large scale system, like the vibration 

control problem, the control spillover is not the 

only source for instability. There is another source 

of instability comes from imperfect or unprecise 

estimation for the states that are required for 

feeding back in the control law [13]. In fact the 

only way to avoid spillover that comes from the 

state estimation or observation process is to use an 

observer that estimates the states with minimal 

error. In the present work the Sliding Mode 

Observer (SMO) is used to estimate the states 

which it required in the control law Equation (42). 

The  advantage  of  using  SMO  is  to ensure that 

the difference between the system and observer 

outputs convergence to zero in a finite-time even 

in the presence of the unknown inputs.   

Additionally, the SMO can be used also to 

reconstruct unknown inputs using equivalent 

control method [21]. In the present work, the 

unknown input represents the residual term ������� for the �g dynamics Equation (39) and 

the corresponding reduced order model in 

Equation (40). 

For the linear time invariant system; Equation 

(39) 

 ��Rg � ��g�g � s�r � j¦	� � tg�g																									 u        …(45)   

     

where the unknown input ¦ � �� ∈ ℛ�qg and j � ��� ∈ ℛg×�qg. Now decompose �g to  �g � [�� ��]- and tg to tg � [t� t�], then 

the output �  is: 

 

 � � tg�g � t��� � t���	        …(46) 

 

where �� ∈ ℛgq�, 	�� ∈ ℛ�,						t� ∈ ℛ�×�gq�� t� ∈ ℛ�, where one of the attached piezoelectric 

patches is used as a sensor, and   det	�t�� ≠ 0. 

Note that � represents the number of the estimated  

states  which it selected later equal to six. 

Accordingly Equation (45), in terms of �� and ��, 

can be written as 

  

��R� � ����� � ����� � s�r � j�¦�R� � ����� � ����� � s�r � j�¦u         …(47) 

 

where s� ∈ ℛ�gq��×�, s� ∈ ℛ�, j� ∈ ℛ�gq��×�qg 

and j� ∈ ℛ�×�qg. Equation (47) can be written in 

terms of  �� and � as follows;  

 ��R� � �ª���� � �ª��� � s«�r � j¬�¦�R � �ª���� � �ª��� � s«�r � j¬�¦ �       …(48) 

 

where �� is replaced by, 

 

 �� � t�q��� : t����        …(49) 

 

and,  �ª�� � ��� : ���t�q�t�,  �ª�� � ���t�q�,   �ª�� � t���� � t���� : �t���� � t�����t�q�t� �ª�� � �t���� � t�����t�q�  s«� � s�, s«� � t�s� � t�s� j¬� � j�,,  j¬� � t�j� � t�j�,  

 

Since |t�| ≠ 0, the transformation matrix between ���, ��� and ���, ��, 
 m��� n � ®� m����n � o��gq�� �̄gq��×�t� t� p m����n   …(50) 

 

is nonsingular. 

To this end the proposed SMO to the system 

dynamic model, as given in Equation (48), is as 

follows; 

 ��°R� � �ª���°� � �ª���° � s«�r : ±²�°R � �ª���°� � �ª���° � s«�r : ²	 �      …(51) 

 

The error dynamics between the observer 

Equation (51) and the system Equation (48) is 

governed by 

  �QR� � �ª��Q� � �ª��Q³ : ±² :j¬�¦QR³ � �ª��Q� � �ª��Q³ : ² : j¬�¦		�       …(52) 

 

where Q� � �°� : ��and Q³ � �° : �.  

To examine the stability of the error dynamics, 

the equivalent control is utilized as follows; first 

the output error Q³ is guaranteed to reach zero 

value in a finite time if ² is selected as a 

discontinuous function of Q³ ² � �ª��Q³ � ´ ∗ µ���Q³�          …(53) 

 



Shibly A. AL-Samarraie                   Al-Khwarizmi Engineering Journal, Vol. 13, No. 1, P.P. 50- 65(2017) 

 

58 

 

where µ���Q³� is the signum function defined as 

follows; 
 µ��¶Q³· � ¸			1	OD	Q³ > 0:1	OD	Q³ < 0�        …(54) 

 

and ´ is the discontinuous gain that must satisfy 

the following condition 

 ´ > ¥�ª��Q� : j¬�¦	¥	           …(55) 

 

If  ´  satisfies the inequality  (55), then the sliding 

motion will ocuure on the sliding surface Q³ � 0 

after a finite time. By taking the initial condition 

for observer design as; 

 ��°�, �°�
£3 � �0, ��0��               …(56) 

 

and with  ² as in Equation (53), we have Q³ �0, QR³ � 0	 from the first instant, i.e.	∀� ≥ 0. The 

error dynamic stability based on the equivalent 

control is examined here as follows; 

¼QR� � �ª��Q� � �ª��Q³ : ±² : j¬�¦QR³ � �ª��Q� � �ª��Q³ : ² : j¬�¦		�N½ �	¼QR� � �ª��Q� : ±²N½ : j¬�¦0 � �ª��Q� : ²N½ : j¬�¦	 � , 

which yields  

¼QR� � �ª��Q� � �ª��Q³ : ±² : j¬�¦QR³ � �ª��Q� � �ª��Q³ : ² : j¬�¦		�N½ � 

¼ QR� � ¶�ª�� : ±�ª��·Q� � ¶±j¬� : j¬�·¦²N½ � �ª��Q� :j¬�¦																																					�   ...(57) 

where ²N½ is computed at Q³ � QR³ � 0.  

 

From Equation (57) the unknown input term ¶±j¬� :j¬�·¦ in the estimation error dynamics 

will prevent the error Q� from decaying 

exponantionaly to zero where it represents  the 

error source in the observation process. In fact, 

this term is the source of observer spillover that 

may cause instability in system response. 

Minimizing the error in the observation process is 

not an easy task since it influenced by the size of 

the reduced order model and the selected ±  

matrix as stated by the following proposition. 

Proposition (1) the estimation error for the                  

sliding mode observer as proposed in Equation 

(57) will converge to a region around the origin 

bounded by  

‖Q�‖ � 2¿¶±j¬� : j¬�·-�¿‖¦‖                  …(58)                  

Proof:  Consider the following candidate 

Lyapunov function 	U � Q�-�Q� 

where � is a positive definite matrix. The time 

derivative of U is UR � Q�-�-QR� � QR�-�Q� 

    � Q�-�-À¶�ª�� : ±�ª��·Q� � ¶±j¬� : j¬�·¦Á �								ÂQ�-¶�ª�� : ±�ª��·- � ¦-¶±j¬� : j¬�·-Ã�Q�  

 � Q�- Â�-¶�ª�� : ±�ª��· � ¶�ª�� : ±�ª��·-�Ã Q� �																																								2¦-¶±j¬� : j¬�·-�Q� 

    � :Q�-Q� � 2¦-¶±j¬� : j¬�·-�Q� 					≤ :Q�-Q� � 2¿¦-¶±j¬� : j¬�·-�Q�¿ 					≤ :Q�-Q� � 2‖¦‖¿¶±j¬� : j¬�·-�¿‖Q�‖ � :‖Q�‖� � 2‖¦‖¿¶±j¬� : j¬�·-�¿‖Q�‖ 

  					� :Â‖Q�‖ : 2‖¦‖¿¶±j¬� : j¬�·-�¿Ã‖Q�‖  

where �-¶�ª�� : ±�ª��· � ¶�ª�� : ±�ª��·-� � :� 
is the Lyapunov equation. From the inequality 

above the condition UR ≤ 0  is satisfied in the 

compact set defined by 

‖Q�‖ > 2¿¶±j¬� : j¬�·-�¿‖¦‖ 

 

which means that the steady stat error is bounded 

by ‖Q�‖ � 2¿¶±j¬� : j¬�·-�¿‖¦‖ 

Where 

 ¿¶±j¬� : j¬�·-�¿ � mÅÆJ� K�-¶±j¬� :																																														j¬��¶±j¬� :j¬�·-�·n�/�.                    

Remark (1): in order to minimize the state 

estimation error we must select the ±  matrix such 

that the norm ¿¶±j¬� :j¬�·-�¿ is minimal and, 

in the same time, the matrix ¶�ª�� : ±�ª��· is 

Hurwitz as mentioned above. This task cannot 

easily be handled by try and error but we try in 

this work to select a suitable ± such that we get an 

appropriate estimation accuracy. 
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6. Simulation Results and Discussion
 

The simulation results for a cantilever beam, 

which is subjected to an initial tip deflection, are 

presented in this section where the MATLAB 

software is used to simulate the cantilever beam 

system. The physical and ge

specifications for the beam are given in Table (1).

Three steps are performed in the present work 

toward designing an active vibration control to the 

cantilever beam. In the first step, the natural 

frequencies for derived mathematical model of th

beam Equation (30) are calculated and compared 

with the natural frequencies obtained from the 

ANSYS program. The results are presented in 

Table (2) which show a good agreement. This 

proves that the derived model represents

system dynamics at least with respect to the 

dominant natural frequencies. 

Also the balance realization and order reduction 

process for the system model had been performed 

to reduce its states from twenty-four states to 

three states, without affecting its dominant mode.

This is demonstrated in Figure (2) in the Bode 

plot. 

 
Table 1, 

Physical and geometrical specification for 

flexible cantilever beam and the piezoelectric

Physical 

Specification 

Cantilever 

Beam 
Piezoelectric

Length L=276 mm la =46 mm

Width b =33 mm b= 33 mm

Thickness tb =1 mm ta = 0.762 mm

Young 

modulus 

Eb =193.06 

Gpa 
Ep = 68 Gpa

Density 
ρb =8030 

Kg/m
3
 

ρp = 7700 Kg/m

Damping 

coefficients 

α = 0.8  &  

β = 6.8E-5 
 

 

 
Table 2.  

Natural frequency results of the system 

Natural 

Frequency  

MATLAB 

(Hz) 

ANSYS 

(Hz) 
%

f1 11.878 11.421 3.

f2 61.376 61.148 0.37

f3 181.06 180.1 0.5
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Simulation Results and Discussion 

The simulation results for a cantilever beam, 

subjected to an initial tip deflection, are 

presented in this section where the MATLAB 14 

the cantilever beam 

system. The physical and geometrical 

specifications for the beam are given in Table (1). 

Three steps are performed in the present work 

toward designing an active vibration control to the 

cantilever beam. In the first step, the natural 

mathematical model of the 

) are calculated and compared 

with the natural frequencies obtained from the 

ANSYS program. The results are presented in 

Table (2) which show a good agreement. This 

represents the 

th respect to the 

Also the balance realization and order reduction 

process for the system model had been performed 

four states to 

three states, without affecting its dominant mode. 

in the Bode 

and geometrical specification for the 

flexible cantilever beam and the piezoelectric.  

Piezoelectric 

46 mm 

= 33 mm 

0.762 mm 

68 Gpa 

= 7700 Kg/m
3
 

 

%Error 

3.847 

0.371 

0.530 

 

Fig. 2. Bode plot.

 

 

In the second step, the sliding mode observer is 

designed to the reduced order model. The 

dimension of the RM for the SMO is selected in 

this work equal to six while the LQR control will 

use only three of them. The idea behind this step 

is that the estimation error is decreased by using 

larger dimension to the reduced order model than 

that used in the control law.  

The estimated output using the SMO states 

(� � tg�g, �g is the estimated six states) is 

compared with actual output in 

the discontinuous term injected 

Equation (53) with ´ � 130000
output is chatters around the actual piezoelectric 

output. This is more clarified in Figure

the error between the actual output and the 

estimated output Equations (

plotted. The chattering effect can be removed by 

replacing the signum function Eq

a continuous approximate function (the arc tan 

function). The  signum function 

 

 µ��¶Q³· È �É ∗ tanq��	� ∗ Q³� ,	
 

Replacing µ���Q³� by the approximation given 

above will prevent chattering and give smooth 

values for the estimated states shown in Fig

to 6).  

By using only three of the estimated states, the 

designed control law based on the 

is applied to the cantilever beam dynamic and the 

system is simulated for 15 mm initial tip 

displacement. The  system eigenvalues after using 

the proposed LQR control are found in Table (3). 

Table (4) shows that by using reduced model of 

dimension three, four or six that can be selected 

according to the singular values, the control LQR 

change the value of the minimum absolute 

eigenvalue to the same value. So the best choice 

of the reduce model dimension is three.
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By using only three of the estimated states, the 

designed control law based on the LQR approach 

is applied to the cantilever beam dynamic and the 

system is simulated for 15 mm initial tip 

displacement. The  system eigenvalues after using 

the proposed LQR control are found in Table (3). 

(4) shows that by using reduced model of 

sion three, four or six that can be selected 

according to the singular values, the control LQR 

change the value of the minimum absolute 

eigenvalue to the same value. So the best choice 

of the reduce model dimension is three. 
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Fig. 3. The actual and the SMO sensor output. 

 

 
 

Fig. 4. The error between the actual and the 

estimated sensor output. 

 

 
 

Fig. 5. The error between the actual and the 

estimated sensor output (with removing chattering). 

 

 
 

Fig. 6. The actual piezoelectric sensor output and 

the SMO output (with removing chattering). 

 

 
Table 3, 

Open and closed loop system eigenvalues.  

System Eigenvalues 

(open loop) 

New System Eigenvalues 

(closed loop) 

-0.58936 + 74.626i -1.5686 + 74.863i 

-0.58936 -  74.626i -1.5686 - 74.863i 

 

The first set of numerical simulation to the 

control system and the SMO uses a 0.00001 

second as a period of integration and with the 

approximate signum function in the observer 

design as defined above. In Figure (7) the 

controlled tip displacement with the actual system 

output is compared, the ability of the controller in 

stabilizing the tip displacement is clarified in this 

figure where it required about 3 second only. In 

addition, the control input voltage to the 

piezoelectric element is plotted in Figure (8), 

where, as can be seen, the control input is 

saturated to the maximum value 200V which is 

the maximum design value to the piezoelectric 

voltage. 

Table 4,   

Open and closed loop minimum absolute 

eigenvalues.  

 

 

In order to approach the real situation, the time 

period for the observer is taken equal to 0.0001 

second (i.e., the change in the estimated six states 

happened after each 0.0001 second), while 0.0025 

second is the chosen time period where the 

control input changes. Consequently, the second 

set of numerical simulation is based on these time 

numerical values for both; the observer simulation 

period of time and for the time period required for 

the control input voltage to change while the time 

period for the control system simulation is still 

equal to 0.0001 second. Figure (9) plots the actual 

output and the estimated output with time. The 

effectiveness of the SMO can be detected from 

this figure where the idea is to force the estimated 

output to follow the actual one in a short time. 

After that, the estimated states will be used in the 

control law Equation (42) which will attenuate the 

beam vibration. The tip displacement of the open 

and closed loop are plotted with time in Figure 

(10), additionally, the control input voltage is 

shown in Figure (11), where, as can be seen, the 

vibration suppression ability is nearly the same as 

in the first set of simulation. This enhance the 

applicability of the proposed controller. 

 

Reduced 

Model  
Q 

ÊË 

(Open 

loop) 

ÊÌ 

(Closed 

Loop) 

Max 

Control 

Input 

Voltage 

3 
20* [ 50  50 

1 ] 

0.5893 

1.5686 320 

4 
20* [ 50  50  

1  1 ] 
1.2979 340 

6 
20* [ 50 50 

1 1 1 1 ] 
1.3073 350 
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Fig. 7. Tip Displacement for open and closed loop 

control system. 

 

 
 

Fig. 8. The control input voltage to the piezoelectric 

actuator. 

 

 
Fig. 9. The actual and the SMO sensor output. 

 

 
Fig. 10. Tip Displacement for open and closed loop 

control system. 

 

 
 

Fig. 11.  The control input voltage to the 

piezoelectric actuator. 

 

 

 

7. Experimental Setup and Results 

 
The beam used in the current analysis was a 

stainless steel of length 276 mm, width 33 mm, 

and thickness 1 mm. Two piezoelectric (PZT) 

patches (type QP20W), of dimensions 46×33 mm 

and thickness 0.762 mm, were used  as sensor and 

actuator, as depicted in Figure (1). The parameters 

of the flexible beam and PZT patches are given in 

Table (1). 

The control objective is to show the 

effectiveness of the designed LQR controller, via 

the sliding mode observer, to suppress the 

vibration of the smart cantilever beam by means 

of piezoelectric elements. To achieve this control 

objective an experiment is set up. The 

experimental set up is depicted in Figure (12), 

which consists of a stainless beam, two PZT 

patches (bonded on two sides of the beam at the 

location indicated), accelerometer (ADXL335), 

two data acquisition systems (NI-PCI 6036 and 

NI-USB 6259), high voltage power amplifier 

(Trek- 601B-3), and a PC to control the system 

via LabVIEW program.  

The beam is initially excited by 15mm tip 

displacement, as the beam vibrate, the stress 

induced in the PZT patches will generate voltages 

proportional to these stresses, in this case one PZT 

patches is working as a sensor. As the voltage 

signal sent to the data acquisition, type NI-6036E, 

the LabVIEW program, designed for this purpose 

using sliding mode observer, will use these 

signals to observe the states of the system and 

then fed-back to the controller. The control 

signals are sent to the data acquisition and then to 

high voltage power amplifier, type Trek-601B-3 

to apply this action to the other PZT element, in 

this case the other PZT is used as an actuator. As 

a result, the vibration in the beam will be 

suppressed. The controller system sent signals 

between ±5 Volt, then these signals are amplified 

40 times, by power amplifier, therefore the control 

signals are bounded within ±200 Volt. 

The tip point displacement of the beam was 

measured by using the accelerometer, as shown in 

Figure (12). The measured signals are sent to the 

data acquisition type NI-6259, and then to the PC 

computer to the control algorithm programmed in 

the LabVIEW software. The acceleration signals 

were converted to displacement by double 

integral, and then plotted with time. 
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Power amplifier 

Trek-601B-3

NI-PCI 6036

Data Acquisition
NI-USB 6259

Data Acquisition

Piezoelectric Actuator

Piezoelectric Sensor

Beam

Accelerometer

 
(a) 

 

  
(b) 

 

Fig. 12. Experimental set up of the flexible beam 

system; (a) Schematic diagram, (b) Hardware set 

up. 

 

 
The controlled and uncontrolled tip 

displacement are plotted in Figure (13). It can be 

seen that the current control action is having the 

ability to suppress the tip displacement within 3 

second. The PZT patch sensor output (the actual 

output) and the sliding mode observer output are 

given in Figure (14), while the voltage inputs to 

PZT patch actuator is shown in Figure (15). 

Finally, a good agreement are clear between the 

experimental results see Figures (13 to 15) and the 

results obtained from the numerical simulations 

Figures (9 to 11). 

 

 
 

Fig. 13. Experimental tip displacement for open 

loop and closed loop control system. 

 

 
 

Fig. 14. The actual piezoelectric output and the 

SMO output. 

 
 

Fig. 15. Experimental input voltage. 
 

 

8. Conclusions 
 

In this paper, the state space model is obtained 

using the finite element approach and the modal 

analysis resulting after appropriate modal 

reduction. During the theoretical calculations, the 

24
th
 order system model obtained from the finite 

element model is reduced to the three order using 

a model reduction technique based on balance 

realization without affecting its dominant modes.  

As a basic requirement to the control design, 

the sliding mode observer is designed to estimates 

six states of the reduced model. In spite of the 

presence of the unknown inputs, which due to the 

residual model in the observer dynamics, the 

SMO forces the output, which is determined from 

the estimated states, to follow the actual output. 

This is taken place after approximately two 

seconds. After that, the reduced model states are 

estimated with bounded error.  

To overcome the chattering problem in 

observer dynamics the signum function is 

replaced with the approximation given by the 

arctan function with appropriate parameters. As a 

result, the chattering is prevented and the 

estimated states values become more smooth.  

Using the estimated states, an LQR approach 

was designed based on the reduced order model.  

The control spillover was avoided by satisfying 

the avoidance condition where the minimum 

absolute real eigenvalue is three times to that for 
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the matrix  �	Equation (30). With the proposed 

LQR control and the SMO, the results show that 

for 15 mm initial tip displacement, the 

piezoelectric actuator reduces the tip displacement 

to about 0.1 mm during 3 s.  

The performance of the designed controller is 

examined experimentally where the results are 

shown very satisfactory and very close to the 

theoretical analysis. 

 
 

Notation 

 A* Cross-section area of the beam element 

(mm
2
). �^ 

Cross-section area of the piezoelectric 

element, (mm2). � State matrix. H Width of the beam (mm). s Input matrix. � Constant which equal to Í?@	12 t Output matrix. .�� Piezoelectric constant. Q�� Piezoelectric stress/charge constant. �* Young modulus of the beam (Gpa). �F Young modulus of the piezoelectric (Gpa). DN�
 External force (,). D[
g/ Control force (,). E�, E� 
Force acting at the node (,). Z[ Signal condition device. ℎ Constant vector. O��� Sensor current. Î* 
Stiffness matrix of the beam element   

(,/)). ÎF 
Stiffness matrix of the piezoelectric element 

(	,/)). #* Length of the beam element (mm). ± Length of beam (mm). )* Mass matrix of the beam element. )F Mass matrix of the piezoelectric element. , Shape function. B Vector displacement. 

Velocity vector. BC  Acceleration vector. 			�~ Minimum absolute real eigenvalue  			�| Minimum absolute real eigenvalue  �J Thickness of the actuator, (mm). �* Thickness of the beam,(mm). ® Kinetic energy ( ,.)). r Control input (volt)  � Strain energy (,.)). UJ Actuator voltage (volt). UV Sensor voltage (volt). 

���, ��Displacement function. � Degree of freedom. k	, l Damping coefficient. Ï Strain. �* Density of the beam ( >�/Ð�). �F Density of the piezoelectric patch               

(>�/Ð�).
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