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Abstract 
 
This paper presents an intelligent model reference adaptive control (MRAC) utilizing a self

network (SRWNN) to control nonlinear systems. The proposed SRWNN is an improved 
reported wavelet neural network (WNN). In particular, this improvement was achieved by adopting two modifications 
to the original WNN structure. These modifications include, firstly, the utilization of a specific initialization phas
improve the convergence to the optimal weight values, and secondly, the inclusion of self
wavelons of the wavelet layer. Furthermore, an on
performance of the SRWNN-based MRAC. As the training method, the recently developed modified micro artificial 
immune system (MMAIS) was used to optimize the parameters of the SRWNN. The effectiveness of this control 
approach was demonstrated by controlling several nonlinear dynamica
evaluation tests were conducted, including control performance tests, robustness tests, and generalization tests. From 
these tests, the SRWNN-based MRAC has exhibited its effectiveness 
and generalization ability. In addition, a comparative study was made with other related controllers, namely the original 
WNN, the artificial neural network (ANN), and the modified recurrent network (MRN). The results of these com
tests indicated the superiority of the SRWNN controller over the other related controllers.
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1. Introduction 

 
Adaptive control techniques have gained 

widespread popularity among researchers due to 
their ability in handling different types of complex 
and nonlinear control problems. Model reference 
adaptive control (MRAC) is a major type of 
adaptive control strategies. Owing to its ability to 
guarantee the global asymptotic stability, the 
MRAC scheme has been successfully employed 
to control different linear systems [1-5]. However, 
it is well-known that most real systems are 
inherently nonlinear in nature, and hence,
impractical to describe such systems by linear 
mathematical models. This fact limits the 
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This paper presents an intelligent model reference adaptive control (MRAC) utilizing a self-recurrent wavelet neural 
network (SRWNN) to control nonlinear systems. The proposed SRWNN is an improved version of a previously 
reported wavelet neural network (WNN). In particular, this improvement was achieved by adopting two modifications 
to the original WNN structure. These modifications include, firstly, the utilization of a specific initialization phas
improve the convergence to the optimal weight values, and secondly, the inclusion of self-feedback weights to the 
wavelons of the wavelet layer. Furthermore, an on-line training procedure was proposed to enhance the control 

sed MRAC. As the training method, the recently developed modified micro artificial 
used to optimize the parameters of the SRWNN. The effectiveness of this control 

demonstrated by controlling several nonlinear dynamical systems. For each of these systems, several 
evaluation tests were conducted, including control performance tests, robustness tests, and generalization tests. From 

based MRAC has exhibited its effectiveness regarding accurate control, disturbance rejection, 
and generalization ability. In addition, a comparative study was made with other related controllers, namely the original 
WNN, the artificial neural network (ANN), and the modified recurrent network (MRN). The results of these com
tests indicated the superiority of the SRWNN controller over the other related controllers. 
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Adaptive control techniques have gained 
widespread popularity among researchers due to 
their ability in handling different types of complex 
and nonlinear control problems. Model reference 
adaptive control (MRAC) is a major type of 

es. Owing to its ability to 
guarantee the global asymptotic stability, the 
MRAC scheme has been successfully employed 

5]. However, 
known that most real systems are 

inherently nonlinear in nature, and hence, it is 
impractical to describe such systems by linear 
mathematical models. This fact limits the 

effectiveness of utilizing the conventional MRAC 
scheme to control such nonlinear systems. In 
order to mitigate this difficulty, many researchers 
have utilized the nonlinear function 
approximation capability of artificial neural 
network (ANN) to form a nonlinear ANN
MRAC scheme to control nonlinear systems [6
10]. Despite this widespread utilization of ANN, 
recently a more powerful neural network 
structure, namely the wavelet neural network 
(WNN), has received extensive attention in the 
literature, especially in handling various control 
problems [11-14]. The strength of WNN 
approximation capability is realized by combining 
the theory of wavelets and the ANN 
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framework. Hence, WNNs possess both the 
localization property of wavelet transform 
together with the learning and generalization 
abilities of ANNs. In spite of these desirable 
properties of WNNs, only few efforts have been 
made to employ WNNs in MRAC schemes. For 
instance, Wai and Chang [15] employed a WNN-
based MRAC scheme to control an induction 
motor drive. In addition, the authors used the back 
stepping approach to design another feedback 
control action to get the required performance. In 
this method, to optimize the above structure, 
several learning rates had to be chosen according 
to the controlled system. Therefore, the above 
method is characterized by its difficulty in 
implementation due to the involvement of two 
complex control methods. As another MRAC 
system, Yoo et al. [16] used two SRWNNs, one of 
which acts as an identifier and the other as a 
controller, in a MRAC structure to control 
nonlinear systems. Both of these SRWNNs were 
trained by a gradient descent (GD) method to 
achieve the desired response. However, in 
addition to the complexity of this control 
approach, GD techniques are characterized by 
their slow convergence rates and the inclination to 
get stuck at local minima in the search space [3]. 
In order to avoid these limitations in GD methods, 
more attention has been given to evolutionary 
algorithms, due to their ability in finding the 
global optimal solution of a particular problem. In 
this regard, genetic algorithms (GAs) are regarded 
as the most essential types of evolutionary 
algorithms [17, 18]. However, in recent years, a 
more powerful evolutionary algorithm has 
received considerable attention among 
researchers. This relatively new algorithm is the 
artificial immune system (AIS), which was built 
based on some concepts from the natural immune 
system. Compared to the GA, the AIS algorithm 
has a more efficient mutation operator which 
results in a better diversity of populations [19, 
20]. In this regard, utilizing this promising 
optimization method, Lutfy [21] proposed to use a 
modified micro artificial immune system 
(MMAIS) to train a WNN as the main controller 
in the MRAC scheme. However, in the above 
work, the WNN controller was treated as a black 
box approximator without using an initializing 
phase, which can affect the WNN approximation 
capability. In this context, it is worth noticing that 
the wavelet is a rapidly vanishing function which 
is fully defined by dilation and translation factors 
[22]. Consequently, suitable initialization of these 
factors plays an important role in improving the 
WNN approximation capability. However, despite 

this importance for the initialization process, 
several researchers did not consider a specific 
initialization approach for these parameters [11, 
13, 16, 21, 23].To this end, aiming at enhancing 
the performance of the WNN controller, the 
motivation of the present work was to propose a 
more efficient version of the WNN structure. This 
modified WNN structure encompasses two 
amendments, namely; adopting an initialization 
phase to enhance the convergence to the optimal 
weights and including self-feedback connections 
to the wavelons in the wavelet layer. These 
modifications have contributed in improving the 
approximation capability of the proposed 
controller compared to other related controllers, as 
will be seen in the simulation results of the 
present work. Moreover, an on-line MMAIS-
based adaptive control design is used to further 
enhance the performance of the SRWNN 
controller. To the best of the authors' knowledge, 
this is the first utilization of the MMAIS in an on-
line adaptive control design. The remaining 
content of this paper is arranged as follows: 
Section 2 discusses the utilization of the SRWNN 
controller within the MRAC. The SRWNN 
structure is elucidated in Section 3. Basic 
concepts of the AIS and the MMAIS algorithms 
are given in Section 4. To demonstrate the 
efficiency of the proposed SRWNN-based 
MRAC, several performance tests along with two 
comparative studies are presented in Section 5. 
Finally, the main conclusions are drawn in 
Section 6. 
 
 
2. The SRWNN-based MRAC Structure 

 
The main idea behind the MRAC is to specify 

the desired behavior of the controlled system by a 
reference model. This reference model is simply a 
plant of known dynamical structure whose task is 
to provide the desired output by applying a given 
input signal. Then, by applying a suitable 
optimization method, the main goal of MRAC 
design is to regulate the controller parameters by 
minimizing the difference between the outputs of 
the reference model and the controlled system 
[24]. Utilizing this basic MRAC design approach, 
the SRWNN structure is employed in this work as 
the main controller to constitute a nonlinear 
MRAC scheme. Figure 1 depicts a block diagram 
of the proposed SRWNN-based MRAC scheme. 

 
 
  
 

PDF created with pdfFactory trial version www.pdffactory.com

http://www.pdffactory.com
http://www.pdffactory.com


Omar Farouq Lutfy                                        Al-Khwarizmi Engineering Journal, Vol. 13, No. 2, P.P. 107- 122 (2017) 
 

109 
 

 
 
Fig. 1 Structure of the SRWNN- based MRAC 
system. 
 

 
In particular, the design of the SRWNN 

controller in the framework of MRAC is based on 
the generalized inverse control technique. In other 
words, the SRWNN is trained to work as an 
inverse controller, as illustrated in Fig. 1. In order 
to clarify this design approach, consider the 
following nonlinear autoregressive moving 
average (NARMA) model, which is utilized to 
describe single-input single output (SISO) 
discrete-time nonlinear systems [9, 21, 24]:  (� + 1) = ���(�), �(� − 1), … , �(� − �+ 1), �(�), … , �(� − �+ 1)�                                      …  (1) 
Where �(�) and �(�) are the system output and 
input, respectively, �(. )is a smooth nonlinear 
function, n and m are the system orders, and k 
represents the discrete-time instant. Subsequently, 
In order to deduce the control law, it is assumed 
that Equation (1) above is invertible resulting in 
the following equation:  (�) = ℎ���(� + 1), �(�), �(� − 1), … , �(� −� + 1), �(� − 1), … , �(� −  � + 1)�          …(2) Where,��(� + 1) represents the output of the reference model at time instant (k + 1) and ℎ(. )is the inverse function of f in Equation (1), such that:ℎ(. ) = ���(. ). In order to realize the control law given in Equation (2), a suitable function approximator must be used to approximate the inverse function ℎ(. ). In particular, due to its remarkable nonlinear function approximation capability, the SRWNN is employed in this work to achieve this task. As can be seen from Fig. 1, the training of the SRWNN structure is accomplished by minimizing the error signal between the outputs of the actual system and the reference 

model. More precisely, this error signal is described by the following formula [22]: � = 12 �(�(� + 1) − ���
��� (k +   1))� ,       …  (3) 

Where N represents the number of samples. In 
particular, this error signal is utilized as the 
performance index to be minimized viaan 
appropriate optimization method. In the present 
work, the MMAIS algorithm is employed for this 
task, as illustrated in Fig. 1. 
 
 
3. The SRWNN Structure  

As mentioned before, the proposed 
SRWNN structure, which is shown in Fig. 2, 
is an improved version of the previously 
reported WNN structure [21].  

 

 
 

Fig. 2. Structure of the SRWNN controller. 
 
 

As depicted in Fig. 2, the SRWNN is a multi-
input single-output network which has an input 
layer, a mother wavelet (wavelon) layer, and an 
output layer. These layers work together to 
generate the final output of the SRWNN structure. 
In the following, the functions of these layers are 
discussed in detail [16, 21]:  
Layer 1: The function of this layer, which is 
called the input layer, is to convey the input 
variables as they are to the next layer. As 
explained in Section 2, the utilization of the 
SRWNN as the controller in the MRAC requires 
the selection of the input variables to be of the 
form:  [��(� + 1), �(�), … , �(� − � +   1), �(�   − 1), … , �(� − � + 1)]    …  (4) 
Therefore, the number of nodes in this layer 
depends on the orders of the controlled system. 
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Layer 2: This layer is referred to as the mother 
wavelet or the wavelon layer. Each node 
(wavelon) in this layer possesses a mother wavelet 
and a self-feedback connection with an adjustable 
parameter. As the mother wavelet, the Mexican 
hat function is employed in this work, and this 
function has the following form: (�) = (1 − ��)�� 2

2
1

x                                     …  (5) 
To compute the wavelon outputs, the wavelet 
y �of each node is obtained from its mother 
wavelet function �according to the following 
expression:  ��(�) = �����,        ���ℎ �� = �� �� ����� + ��(� − 1). ����

��� � ��              …  (6) 

where dj and tj demarcate dilation and translation 
factors of the SRWNN, respectively, Ni is the 
number of input nodes, xi denotes the ith input 
variable, vji is the link connection from node i in 
the input layer to wavelon j in the mother wavelet 

layer, )1( -kjy represents the memory term, 
whose task is to store the previous state of the jth 

wavelon, and jq is the link value of the self-
feedback connection belonging to the jth wavelon. 
Specifically, this weight value is responsible for 
deciding the rate of information storage. Finally, 
the jth wavelon's output is calculated by making 
use of the Mexican hat function as expressed in 
the following: ���� = �1 − ������� �− 12 ����                         …  (7) 
It is worth to highlight that as an advantage of the 
SRWNN over the WNN, the self-feedback 
connections in the wavelon layer have the ability 
to reserve the previous network information. In 
other words, the current network state contributes 
in producing the network output for the next 
sample of time. This feature enhances the overall 
approximation ability of the SRWNN compared 
to the conventional WNN, as will be 
demonstrated in the simulation results of this 
work.     
Layer 3: This layer, known as the output layer, 
has only one node. The task of this node is to 
generate the SRWNN output, using the following 
equation: � = � ����(�) + � ����

���
��
��� �� + �                 …  (8) 

where, as can be observed from Fig. 2, Nw and Ni 
denote the number of nodes in the wavelon layer 
and the input layer, respectively, cj is the weight 
connecting wavelon j and the output node, a i is the 
weight connecting node i in the input layer and 
the output node, and b represents a bias 
connection to the output node. Since the SRWNN 
structure described above is utilized as a 
controller in this work, the SRWNN output in 
Equation (8), y, represents the control action 
applied to the controlled system at a given sample 
of time. 
 
3.1. Initialization of the SRWNN 

Parameters 

In conventional ANN, the network parameters 
are randomly initialized to small values and the 
whole network functions as a black box 
approximator. This initialization process may lead 
to getting stuck at local minima and decrease the 
network convergence rate [25]. However, unlike 
ANNs, the WNN structure consists of dilation and 
translation factors which affect the shape of the 
wavelet. More precisely, a wavelet is a waveform 
defined by suitable dilation and translation 
parameters which determine the waveform 
effectiveness during only a limited duration. 
Therefore, a random initialization for dilation and 
translation parameters may generate ineffective 
wavelons which negatively affect the network 
convergence rate. For example, a very small value 
for the dilation factor may result in a wavelet with 
too local property that makes it inappropriate for 
the training data under consideration. On the other 
hand, if the translation factor is not initialized 
properly, the wavelet may materialize outside the 
domain of the training samples. Nevertheless, 
despite this influence for dilation and translation 
factors, several researchers did not consider a 
specific initialization process for these parameters 
[11, 13, 16, 21, 23].  

In this work, in order to handle this issue, 
dilation and translation factors are initialized 
according to the available information from the 
dataset according to the following procedure [22, 
25]. 
Let the variables a and b be the minimum and the 
maximum values that the input variables can take, 
respectively. Then, the translation and the dilation 
factors are initialized as follows: �� = 12 (� + �)                                                    …  (9) 
and �� = 0.2(� − �)                                                … (10) 

PDF created with pdfFactory trial version www.pdffactory.com

http://www.pdffactory.com
http://www.pdffactory.com


Omar Farouq Lutfy                                        Al-Khwarizmi Engineering Journal, Vol. 13, No. 2, P.P. 107- 122 (2017) 
 

111 
 

where tj and dj are translation and dilation factors 
of wavelon j in the wavelet layer and j = 1, 2, …, 
Nw. As stated before, this initialization process 
takes into account the input domain defined by the 
training samples, and hence, it ensures the 
coverage of the whole input domain by the initial 
wavelets. On the other hand, initial value selection 
for the remaining SRWNN parameters is less 
crucial; therefore, they are initialized to small 
random values. As can be noticed, the above 
initialization procedure is very simple, yet it has 
considerably improved the approximation 
capability of the SRWNN. 
         
3.2. Training of the SRWNN   

 
In the framework of MRAC, training of the 

SRWNN controller dictates finding the optimal 
values for the SRWNN parameters by minimizing 
the error between the outputs of the reference 
model and the controlled system. As discussed in 
Section 3, the SRWNN consists of different 
adjustable parameters, which can be summarized 
by the following set 
S = [cj dj tj vji a i b ��],                                       …  (11) 

Where the adjustable parameters in the above 
equation were defined in Section 3. These 
parameters are optimized by the MMAIS 
algorithm in this work, as discussed in the 
following section.  
 
 
4. Artificial Immune System  
 

The underlying principle behind artificial 
immune system (AIS) is based on the information 
processing capability of the biological immune 
system which is a parallel, highly evolved, and 
distributed adaptive system. As a result, the AIS 
algorithm possesses powerful exploration and 
exploitation operators. In particular, compared to 
other evolutionary techniques, the AIS algorithm 
has more efficient mutation operators, and 
moreover, it can achieve better diversity of 
populations which leads to faster convergence 
rates [19, 20]. In order to understand the basic 
operators of the AIS algorithm and relate them to 
their biological counterparts, the main functions 
of the biological immune system are discussed 
below.  

    
4.1. Biological Immune System  
 

The biological immune system is a powerful 
defense network whose responsibility is to detect 

the incursion of foreign antigens and destroy them 
to protect the human body from these disease-
causing substances. For this purpose, the 
biological immune system employs an enormous 
variety of antibodies, which are produced by the B 
cells, to counteract the effect of these harmful 
antigens [26]. More specifically, each antibody 
type has the ability to identify a specific antigen 
type using a correlation measure between the 
antibody and the antigen. This correlation 
measure is called the affinity value [27]. Based on 
this affinity value, once an external antigen is 
recognized, the B cells with high affinity to that 
antigen will explosively generate antibodies 
(cloned cells) to fight the antigen in a process 
known as the cloning operator. Moreover, these 
cloned cells undergo certain somatic 
hypermutation to make sure that the cloned cells 
will differ from their parent cell to adapt the 
immune system against other possible variations 
of the stimulating antigen [20]. To globally 
enhance the population of cells, the cells that are 
seldom stimulated by the attacking antigen are 
removed and replaced by other recruited cells. 
Then, after eliminating the antigen, mature B cells 
are repressed gradually to certain regular level 
except some cells which become memory cells. 
These memory B cells facilitate the immune 
system response when the same or similar antigen 
attacks again, since all the information on the 
attacking antigen are already stored in the 
memory cells [26, 28, 29]. 

  
4.2. Micro-AIS  

 
Utilizing certain concepts from the biological 

immune system described above, several 
variations of the AIS algorithm have been 
effectively employed to solve various 
optimization problems [27, 30, 31]. However, the 
cloning operator in the traditional AIS algorithm 
has a drawback represented by the increase in the 
population size which entails a long execution 
time and substantial memory exploitation. To 
alleviate this problem, the authors in [32] 
suggested another version of the AIS algorithm, 
which was called the Micro-AIS algorithm, based 
on utilizing a reduced population size. The 
assumption behind the Micro-AIS was that 
decreasing the antibody number in a population 
results in a decrease in the number of cost 
function evaluations, which consequently 
increases the convergence speed and reduces the 
memory usage. However, in the original Micro-
AIS algorithm, the mutation operator did not offer 
the necessary variable variations for solving a 
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particular problem. Thus, to enhance the 
searching capability of the original method, a 
MMAIS algorithm was presented in [21] by 
improving the mutation operator of the original 
method. Due to its effectiveness in several 
applications [21, 33, 34], the MMAIS algorithm is 
exploited in this work to optimize the parameters 
of the proposed SRWNN controller based on the 
MRAC strategy, as will be elucidated in the 
following section. 

 
4.3. Procedure of Applying the MMAIS 

Algorithm to Train the SRWNN 
Controller 

    
The following procedure illustrates the 

application of the MMAIS algorithm to train the 
SRWNN controller in the framework of MRAC 
strategy. 
Step 1: Initialize the maximum number of 
iterations and the probability of mutation, Pm. 
Step 2: Produce a starting (initial) population. 
This population consists of five antibodies which 
are randomly generated within preselected ranges. 
Each of these antibodies represents a single 
SRWNN controller which is defined by the 
adjustable parameters given in Equation (11). 
These five antibodies enter a nominal 
convergence loop, with 10 iterations, as described 
below. 
Step 3: Set the counter of the nominal 
convergence loop to 1, and do the following: 
Step 3-1: For each antibody in the current 
population, compute the objective function using 
the performance index defined in Equation (3). 
Next, for each antibody, find the affinity value 
according to the following equation:            ������� = 1��������� �������� + �        …  (12) 

Where ε is a small constant which is used to evade 
the division by zero. 
Step 3-2: Sort descending the antibodies based on 
their affinity values. As a result, the antibody with 
the largest affinity value, which is called BestAb, 
becomes the first one.  
Step 3-3: Generate a specific number of clones 
from the current five antibodies utilizing the 
following expression: �� = ��� − (� − 1)��

���                                   …  (13) 

Where ��the number of clones to be produced, n 
isis the number of antibodies in the current 
population, and I is the antibody index. Thus, by 
using Equation (13), a five-antibody population 

produces a 15-clone population. In particular, 
BestAb produces five clones; the second antibody 
produces four clones; and so on until the fifth 
antibody is encountered which produces one 
clone. 
Step 3-4: Perform the maturation of clones using 
the mutation operator. First, determine the 
mutation probability of each group of clones 
generated from a given antibody. This probability 
is computed according to the antibody affinity 
value and then it is uniformly reduced with 
iterations. Therefore, the clones related to BestAb 
are mutated less than other groups of clones. More 
specifically, the mutation probability is 
determined according to the following equation: �����������(�) =   ���(�)∑ ���(�)����                   …  (14) 

Wherei is the antibody index and n is the 
number of antibodies in the old population. 
Moreover, to reduce the mutation probability 
within the nominal convergence loop, the 
following expression is utilized: �� �� ≥ ���� _��������(�)���������                        …  (15) , �ℎ�� ����� �ℎ� �������� �������� 
Where iteration in the above equation is the 
current nominal convergence loop iteration. Next, 
perform the mutation operator using the following 
expression: (����. ����)(���������. �����_��)                                 …  (16) 
 

where x' and x are the mutated decision variable 
and the decision variable to be mutated, 
respectively, rand is a random number generated 
within the range [0, 1], iteration is the current 
nominal convergence loop iteration, and group_Nc 
represents the number of clones for each antibody 
group. Regarding the five BestAB clones, the 
variable range in Equation (16) represents a 
random number generated between lower and 
upper bounds of the decision variables. For the 
remaining clones, other than the first five clones, 
range is the equivalent decision variable from 
BestAb and the mutation operator is performed 
using Equation (16).      
Step 3-5: For each clone in the new population, 
calculate the objective function and the affinity 
value using Equations (3) and (12), respectively.   
Step 3-6: Sort the 15 clones of the new population 
based on their affinity values in a descending 
order.  
Step 3-7: From the sorted 15 clones, constitute a 
new population of five clones. In particular, as an 
elitism strategy, the first two clones are copied 
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into the new population. The other three clones 
are chosen randomly from the population of the 
15 clones.  
Step 3-8: If the counter of the nominal 
convergence loop has reached to its maximum 
limit, go to Step 4. If not, set counter = conter + 1 
and go back to Step 3-1. 
Step 4: After completing the nominal 
convergence loop, a new population of five 
antibodies is constituted by selecting the best two 
antibodies along with three other randomly 
generated ones. This new population enters the 
nominal convergence loop, specifically, Step 3 
above. The whole algorithm, including Steps 3 
and 4, continues until the stopping criterion is 
satisfied. Particularly, the stopping criterion in the 
present work is defined by reaching the maximum 
iteration number.  
As an off-line design approach, the objective of 
the above training procedure is to optimize the 
SRWNN parameters defined in Equation (11). 
However, to realize adaptive control, the best 
controller found by the off-line design approach is 
further tuned by the MMAIS algorithm using the 
on-line training procedure described below. 

 
4.4. On-line Training Procedure 

 
In the on-line design stage, the MMAIS 

algorithm starts with an initial population of five 
antibodies which include the best controller found 
from the off-line design stage along with other 
related controllers. As the on-line adapted 
parameters, only the weights between the wavelon 
and the output layers are allowed to be adjusted 
by the optimization algorithm. At each time step, 
the MMAIS algorithm selects the best controller, 
from a set of several candidate controllers, to 
control the plant. The general idea of the proposed 
on-line design approach was adopted from [35]. 
The following procedure illustrates the on-line 
training steps used in this work.  af�inity = 1

│J│                                                  …  (18) 

Step 1: As the starting population in the on-
line design stage, constitute an initial population 
of five antibodies in which the first two antibodies 
represent the exact copies of the off-line designed 
controller. The remaining three antibodies are 
initialized by randomly generating the weights 
between the wavelon and the output layers. In this 
way, the best controller obtained from the off-line 
design stage is effectively utilized to provide 
useful information for the adaptive design stage.  
Step 2: Set the simulation time, k, to zero. 

Step 3: Collect the current reference input, r(k), 
the current system output, y(k), and the current 
reference model output, ym(k).  
Step 4: Calculate the next reference model output, 
ym(k+1), using the desired reference model 
equation. 
Step 5: For each antibody in the current 
population, which consists of five antibodies, 
calculate the objective function using the 
following performance index: � = �(� + 1) − ��(� + 1)                            …  (17) 

Where y(k+1) is the system output at sample 
(k+1). After that, the affinity value of each 
antibody is found according to the following 
equation: ������� = 1│�│                                                …  (18) 

Step 6: The antibody with the largest affinity 
value is chosen as the controller for the current 
sampling time. However, due to the random 
operators in the MMAIS algorithm, the selected 
controller might not be the best solution for the 
current sampling time. To alleviate this difficulty, 
the error produced by the on-line designed 
controller is compared with that of the off-line 
designed one at a given sampling time. Based on 
this error, which is defined by Equation (17), if 
the on-line designed controller achieves less error 
value, it is used to control the plant at the next 
sampling time. Otherwise, the off-line designed 
controller is selected as the controller for the next 
sampling time. From several simulation tests, this 
strategy has resulted in the best on-line controller 
performance as will be seen from the simulation 
results of the next section.  
Step 7: Produce the next population of the 
MMAIS algorithm using the procedure described 
in Section 4.3, in particular Steps 3-1 to 3-8. 
However, instead of Equations (3) and (12), 
Equations (17) and (18) are used to evaluate the 
performance of each antibody. After completing 
the nominal convergence loop, a new population 
of five antibodies is generated.  
Step 8: If the simulation time, k, has reached to 
its maximum value, the algorithm is terminated. 
Otherwise, set k = k +1 and go back to Step 3. 
         
    
5. Simulation Results 

    
This section is dedicated to assess the 

performance of the proposed SRWNN-based 
MRAC in terms of control accuracy, robustness 
ability, and generalization to various input signals. 
In addition, a comparative study with other 
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controllers within the framework of MRAC is 
conducted in this section. Utilizing the MMAIS 
algorithm, the initial learning and the on-line 
design procedure discussed in Sections 4.3 and 
4.4, respectively, were employed to control all the 
considered plants. As the main parameters in the 
MMAIS algorithm, the mutation probability and 
the maximum number of iterations were set to 0.3 
and 500, respectively. Moreover, for all the 
controlled plants, only six wavelons (with self-
feedback connections) were used to constitute the 
wavelon layer in the SRWNN structure. These 
settings for the optimization algorithm and the 
SRWNN structure were adequate to attain the 
required control performance. As mentioned 
before, the main contribution of this work is 
represented by the performance improvement 
achieved by the SRWNN compared to the original 
WNN structure, as will be seen in Section 5.5. 
Furthermore, unlike the training method of the 
original WNN controller, an on-line training 
procedure is adopted in this work to further 
enhance the control performance and to realize an 
effective adaptive control strategy.   

  
5.1. Control Performance Tests 

 
To show the applicability of the proposed 

SRWNN-based MRAC to control various 
dynamical systems, three different nonlinear 
systems were adopted. These systems include a 
nonlinear non-minimum phase system, a water 
bath temperature control system, and a nonlinear 
minimum phase system. 
Plant 1:This plant represents a nonlinear non-
minimum phase system which is described by the 
following discrete-time equation [9]: (� + 1) = �(�)�(� − 1)1 + ��(�) + ��(� − 1) + �(�)+ 1.5(� − 1)                       …  (19) 

As the reference model for the above system, 
the following equation is used: ��(� + 1) = 0.6��(�) + �(�)                    …  (20) 
 

The SRWNN-based MRAC, shown in Fig. 1, 
is required to track the following reference signal: (k) = 0.5sin �2πk150� + 1.2sin �2πk250�          …  (21) 

Figure 3 (a) illustrates the result of controlling 
Plant 1, while Fig. 3 (b) shows the on-line 
adaptation made to the six weights connecting the 
wavelon and the output layers in the SRWNN 
structure.  

 
a 

 
b 

Fig. 3. Plant 1 (a) outputs of the reference model 
and the controlled plant (b) on-line  adaptation of 
the six weights in the SRWNN structure. 

 
From Fig. 3 (a), it is obvious that the proposed 

control approach has achieved an accurate control 
performance by following the desired reference 
model output. On the other hand, Fig. 3 (b) 
demonstrates the on-line adaptation ability of the 
MMAIS algorithm in finding the optimal value 
for the six weights at each sampling time. 
Furthermore, it is worth mentioning that the initial 
learning for the SRWNN controller has resulted in 
a value of 0.1 for the performance index of 
Equation (3) after 500 iterations, while the on-line 
training procedure has further reduced the above 
value to 0.015, which indicates the effectiveness 
of the on-line training procedure. 

 

Plant 2: As the second nonlinear controlled plant, 
the water bath temperature control system is 
considered. This system is governed by the 
following discrete-time equation [36, 37]: �(� + 1) = �(��)y(k) + �(��)1 + ��.��(�)�� �(�)+ [1 − �(��)]��             …  (21) 
where y(k) is the output temperature of the  

system in Co , u(k) is the system control input, 
which is limited by the following bounds0 ≤u(k) ≤ 5 V, Y0 is the room temperature in Co

y m
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,a(T�) = e∗�� , andb(T�) = �� (1 − e���). As for 
the parameters of this system, the following 
settings were used: 

CY o25,40,1067973.8,1000151.1 0
34 ==´=´= -- gba

 and T� = 30 s . These values have been adopted 
from a real water bath system [37]. The desired 
reference signal, which represents the desired 

water temperature in Co , is given by the following 
signal: 

 
 
 
 
 
 

                                                                    …  (23) 
The desired system output is specified by the 

following first-order reference model equation 
[38]:  y�(k + 1) = 0.6y�(k) + 0.4r(k)               …  (24) 

The actual system output, the reference model 
output, and the resulting control signal are 
exhibited in Fig. 4 (a), while the on-line 
adaptation achieved on the six network weights is 
depicted in Fig. 4 (b). 
 

 
a 

 
b 

 

Fig. 4. Plant 2 (a) outputs of the reference model 
and the controlled plant (b) on-line. 

 

As it is evident from Fig. 4 (a), the actual system 
output has accurately followed the reference model 
output. Figure 4 (b) clearly shows the on-line 
adaptation ability of the MMAIS algorithm at each 
sampling time. The initial learning for the controller 
after 500 iterations has achieved a performance index 
of 53.965, while the on-line training has further 
reduced this value to 21.393, signifying the efficiency 
of the on-line algorithm. Bearing in mind the control 
signal limitation within a specific rang [0,5], it can be 
concluded that the proposed controller has achieved the 
desired performance even with the existence of such 
constraints. 
 

Plant 3:This is a nonlinear plant expressed by the 
following difference equation [24]: �(� + 1) = �(�) + �(� − 1)1 + ��(�) + 2��(� − 1) + �(�)  …  (25) 

The desired system behavior is given by the 
following reference model equation: ��(� + 1) = 0.5��(�) + 0.3��(� − 1)+ �(�)                                   …  (26) 
While the reference signal is as follows:  �(�) = 0.5[sin(10��) + sin (25��+ 0.5)]                                 …  (27) 

Figure 5 (a) shows Plant 3 output together with the 
reference model output, and Fig. 5 (b) illustrates the 
on-line adaptation of the six network weights. 

 

 
a 

 
b 

Fig. 5. Plant 3 (a) outputs of the reference model 
and the controlled plant (b) on-line adaptation of 
the six weights in the SRWNN structure 
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From Fig. 5 (a), it can be seen that the 
SRWNN-based MRAC has done well in tracking 
the desired reference model output. The ability of 
the optimization method in adapting the network 
weights can be observed in Fig. 5 (b). As with 
Plants 1 and 2, the on-line training algorithm has 
achieved a smaller performance index value of 
0.027, compared to the initial learning value of 
0.057.  

 
5.2. Robustness Tests  

 
These tests aim at investigating the robustness 

ability of the proposed SRWNN-based MRAC by 
conducting a disturbance rejection test on each 
plant considered in the previous section. For 
Plants 1 and 3, a bounded disturbance of 50% 
from the controlled system output was applied for 
10 samples at different periods of the simulation 
time. In particular, the disturbance was applied at 
the intervals 171161 ££ k , 371361 ££ k , and 

771761 ££ k , for Plant 1, and at the intervals 
3930 ££ k  and 6960 ££ k , for Plant 3. For 

the water bath temperature control system, a 

disturbance of -3 Co was applied at the 50th 
sample. It is interesting to notice that all of these 
disturbances were applied during only the 
controller testing phase of each plant. This means 
that the SRWNN controller was not trained to 
handle these disturbances. Nonetheless, the 
SRWNN controller managed to cope with the 
unexpected effects of these disturbances by 
maintaining the desired output response for all the 
plants. Figures 6 (a), (b), and (c) show the results 
of these tests for Plants 1, 2, and 3, respectively.  

 
a 

 
b 

 
c 

Fig. 6. Outputs of the reference model and the 
controlled plant when a disturbance is applied at 
the output of (a) Plant 1 (b) Plant 2 (c) Plant 3 
objective functions against generations. 

 
 

It is noteworthy that the large disturbance 
amplitude, specifically the 50% of system outputs 
for Plants 1 and 3, indicates that the SRWNN 
controller possesses the ability to counteract large 
disturbances even when such disturbances are not 
encountered during the controller training phase. 

       
5.3 Parameter Variation Test 

 
This test is conducted to evaluate the controller 

ability in handling inherent changes in the system 
parameters. To perform this test, certain variations 
are made on a parameter in the water bath 
temperature control system at different time 
samples. More specifically, an increase of 10% in 
the original value of b(Ts) in Equation (22) was 
considered at sample numbers 30, 50, and 70. As 
was done in the previous section for disturbance 
rejection tests, the parameter variations were 
made only during the controller testing phase, 
which means that the controller was not trained to 
face these dynamic changes in the system. Figure 
7 illustrates the outputs of both the system and the 
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reference model along with the control action of 
the controller.  �(�) = 0.5[sin(15��)+ sin(35�� + 0.5)]          … (29) 

 

 
 
Fig. 7. Outputs of the reference model and the 
controlled plant when a parameter variation test is 
applied on Plant 2  objective functions against 
generations. 
 

 
As can be clearly seen from Fig. 7, the 

SRWNN controller has done well in tracking the 
desired reference model output even with the 
existence of an unexpected time-variant parameter 
in the system model. The control signal in Fig. 7 
indicates the adaptation made on the controller 
behavior to deal with such nonlinear time-variant 
system.  
 
5.4 Generalization Tests 
 

The objective of these tests is to demonstrate 
the ability of the SRWNN controller in handling 
reference signals different from those used in the 
controller training stage. This controller feature is 
known as the generalization ability. The tests 
were conducted on Plants 1 and 3 by using the 
same training signals of Equations (21) and (27) 
for Plants 1 and 3, respectively. While, for the 
testing stage, the following signals were used: �(�) = 0.5��� �2��25 � + 1.2��� �2��100�     …  (28) 

Equations (28) and (29) represent the testing 
signals for Plants 1 and 3, respectively. The 
results of these tests are shown in Fig. 8, where it 
is clear that the SRWNN controller has 
appropriately generalized its learning to handle 
input signals which were not encountered 
throughout the controller training phase for Plant 
1, Fig. 8 (a), and for Plant 3, Fig. 8 (b). 
 
 
 

 
 
 
 
 
 
 
 
 
 
 

a 
 

 
b 

 
Fig. 8. Outputs of the reference model and the 
controlled plant resulted from the generalization 
tests applied on (a) Plant 1 (b) Plant 3 objective 
functions against generations. 
 
 
5.5. A Comparative Study with other 

Related Controllers  
 

In this section, the performance of the 
proposed SRWNN controller is compared against 
those of other related controllers in terms of 
control accuracy and processing time. 
Specifically, the controllers under consideration 
include the original WNN controller, the ANN 
controller, and the modified recurrent network 
(MRN) controller. These controllers are used 
within the same MRAC structure shown in Fig. 1. 
For a fair comparison, the same MMAIS 
algorithm was employed to train each of the 
above controllers using the off-line procedure 
described in Section 4.3. The structure of the 
original WNN controller [21] is similar to that of 
the SRWNN discussed in Section 3, with the 
exception of the wavelons' self-feedback 
connections and the initialization phase in the 
SRWNN structure. On the other hand, the ANN 
structure consists of an input layer, a hidden layer 
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with hyperbolic tangent as the neurons' activation 
functions, and an output layer. Finally, the 
structure of the MRN, which was proposed in 
[39], has an input layer, a hidden layer, a context 
layer, and an output layer. The context layer has 
the same number of nodes as the hidden layer. 
Each node in the context layer receives two 
inputs, the first of which represents a self-

feedback connection with an adjustable weight, b
, while the second input is the previous output of 
the corresponding hidden node multiplied by an 

adjustable weight, x . As the hidden nodes' 
activation functions, the hyperbolic tangent 
functions were used. In fact, the MRN is an 
improved version of the modified Elman network 
[40]. It is worth to highlight that only 6 neurons 
were used in each hidden layer of the networks 
mentioned above. Plants 1 and 3 used before are 
considered in this comparative study, along with 
the following time-delay nonlinear plant [21]: (� + 1) = 1.2(1 − ���.�)�(�)1 + ��(�) + �(� − 1)    … (30) 

The MMAIS is classified as a stochastic 
algorithm, since it employs several random 
operators. As a result, the performance of a final 
optimized controller might vary for different 
simulation runs. Hence, to achieve a reliable 
comparative study, 10 runs were conducted for 
each plant and the average result was taken. Table 
1 summarizes the results of this comparative 
study. As can be concluded from Table 1, the 
proposed SRWNN-based MRAC has attained the 
best results with respect to the other controllers. In 
terms of control accuracy, the SRWNN controller 

has achieved the least values for the performance 
indices for all the plants. Regarding processing 
time, the SRWNN controller took the shortest 
times except for Plants 1 and 2 controlled by the 
original WNN controller. However, this slight 
increase in processing time for the SRWNN, 
which was the result of including the self-
feedback weights, can be ignored in light of the 
superior results of the proposed controller 
compared to the original WNN controller. 
 
5.6.  A Comparative Study on the Optimization 

Methods 

As stated earlier, it has been shown that the 
AIS algorithm is superior to the GA with regard to 
maintaining good population diversity due to the 
efficient mutation operator employed by the AIS 
algorithm [19, 20]. In this context, it is essential to 
compare the performances of both the MMAIS 
and the GA in training the proposed controller, 
and this section is dedicated for this purpose. As 
the controlled systems, the same plants considered 
in the previous section are used in this 
comparative study. Similar to the comparison 
procedure followed in Section 5.5, 10 runs were 
conducted for each plant and the average result 
was considered in order to attain a reliable 
comparative study. Table 2 exhibits the 
comparison results. Obviously, Table 2 signifies 
the advantage of the MMAIS algorithm over the 
GA. In particular, the MMAIS algorithm has 
accomplished the least values for the performance 
indices and took the shortest processing times for 
all the plants compared to the GA. 

Table 1, 
Comparison results of the WNN, the ANN, the MRN, and the proposed SRWNN. 

 
 
 

 

MRAC type Criterion                                Controlled plant 
Plant 1 Plant 2 Plant 3 

WNN-based 
MRAC 

Average Performance Index 0.636 1.261 0.386  
Average Time (sec.) 57.775 57.709  9.603  

ANN-based 
MRAC 

Average Performance Index 1.625 2.258 0.085 

Average Time (sec.) 71.341 75.574 12.085 
MRN-based 
MRAC 

Average Performance Index 0.843 2.758 0.155 
Average Time (sec.) 103.482 110.048 16.740 

Proposed 
SRWNN-based 
MRAC 

Average Performance Index 0.052 0.913 0.039 
Average Time (sec.) 58.928 62.028 9.327 
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Table 2, 
Results of comparing the performances of the GA and the MMAIS in training the proposed SRWNN-based 
MRAC 

 
 
6. Conclusions  

 
In this paper, a SRWNN-based MRAC scheme 

is proposed to control nonlinear dynamical 
systems. As an improved version of a previously 
reported WNN structure, a SRWNN structure is 
put forward by adopting a specific initialization 
phase and utilizing self-feedback weights in the 
wavelon layer. In addition, an on-line training 
procedure is followed to further enhance the 
control accuracy of the SRWNN controller. To 
train the above controller, the newly developed 
MMAIS algorithm is employed to optimize the 
SRWNN parameters. Several nonlinear dynamical 
systems are used to show the effectiveness of the 
proposed control approach via an extensive 
evaluation tests, including control performance 
tests, robustness tests, parameter variation test, 
and generalization tests. All these tests have 
indicated the effectiveness of the SRWNN-based 
MRAC. Furthermore, a comparative study with 
other related controllers has shown the superiority 
of the proposed controller. Finally, as compared to 
the GA, the MMAIS algorithm has achieved 
better results with regard to control accuracy and 
processing time. 
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ـةالخلاص  
 

الشبكة . اللاخطیة الأنظمةمودیل مرجعي ذكي باستخدام شبكة عصبیة مویجیة ذاتیة التكرار للسیطرة على  اذ ایقدم ھذا البحث نظام سیطرة متكیف
وھذان . ھذا التحسین تم انجازه بتبني تعدیلین على ھیكل الشبكة الاصلي، وبالتحدید. المقترحة ھي نسخة محسنة لشبكة عصبیة مویجیة منشورة سابقا

العائدة لمویجات  الإشارةذاتیة  أوزانتضمین وثانیا ، المثلى الأوزانلتحسین الاقتراب نحو قیم  الأوزاناستخدام مرحلة محددة لتولید  أولاالتعدیلات یتضمنان 
تم استخدام نظام المناعة الصناعي ، طریقة تعلیمبوصفھا و. نظام السیطرة المقترح أداءتم اقتراح طریقة تعلیم انیة لتحسین ، ذلك فضلا عن. الطبقة المویجیة

وقد تم عرض كفائة الطریقة المستخدة بالسیطرة على عدة انظمة دینامیكیة . تخدمةالدقیق المعدل والذي طور حدیثا لایجاد القیم المثلى لمعاملات الشبكة المس
. التعمیم وقد تم اعتماد عدة اختبارات تقییم لكل نظام مسیطر علیھ وھذه الاختبارات تتضمن اختبارات اداء السیطرة و اختبارات المتانة واختبارات. لاخطیة

تم اجراء ، بالاضافة لھذه الإختبارات. كفائتھ من حیث دقة السیطرة و رفض المؤثرات الخارجیة وقابلیة التعمیمومن ھذه الاختبارات اظھر النظام المقترح 
وقد . و الشبكة العصبیة الصناعیة والشبكة التكراریة المعدلة الأصلیةدراسة مقارنة مع مسیطرات اخرى ذات صلة وبالتحدید الشبكة العصبیة المویجیة 

 .الأخرىدراسة تفوق المسیطر المقترح على المسیطرات اظھرت نتائج ھذه ال
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