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Abstract

Critical buckling and natural frequencies behavior of laminated composite thin plates subjected to in-plane uniform
load is obtained using classical laminated plate theory (CLPT). Analytical investigation is presented using Ritz- method
for eigenvalue problems of buckling load solutions for laminated symmetric and anti-symmetric, angle and cross ply
composite plate with different elastic supports along its edges. Equation of motion of the plate was derived using prin-
ciple of virtual work and solved using modified Fourier displacement function that satisfies general edge conditions.
Various numerical investigation were studied to exhibit a convergence and accuracy of the present solution for consid-
ering some design parameters such as edge conditions, aspect ratio, lamination angle, thickness ratio, orthotropic ratio,
the results obtained gives good agreement with those published by other researchers.

Keywords: Buckling load, different boundary conditions, composite laminated plate, Free vibration, Rayleigh-Ritz

method.

1. Introduction

The composite materials (C.M) reinforced by
fiber are perfect for structural applications where
high stiffness and strength to weight of ratios are
necessary. Composite materials can be adapted to
assemble the especial necessities of strength and
stiffness by varying fiber orientations and lay-up.
The capability to adapt a (C.M) to its work is very
most important advantages of a (C.M) over a
common material. In the past few decades the im-
provement and study of (C.M) in the mechanical,
civil and aerospace structures design has devel-
oped.

The structures might be exposed to dynamic
loads in difficult environmental conditions, So it is
necessary to know the characteristic of vibrations.
The cause of failure of the structure components
when the natural frequencies of structure and the
forcing frequency close to each other's which is

the resonance (when structure damping is consid-
ered), may be occur large torsion \ translation de-
flections and internal stresses. Many researchers
have presented the stability of (C.M) subjected to
buckling loads. [1]. Developed an exact solution
on the base of the first order shear deformation
theory (FSDT) to investigate the buckling behav-
ior of symmetrical simply supported cross ply
rectangular plates subjected to unidirectional line-
arly varying in-plane loads. [2]. Used a semi-
analytical attitude to the buckling analysis of
symmetric laminated plates with general edge
conditions. The multi-term extended Kantorovich
method was used to decrease the partial differen-
tial of the equations of buckling to a solution of
ordinary differential equations. [3]. Using the fi-
nite element method to study buckling and vibra-
tion of composite laminated plates with variable
fiber spacing. [4]. Extended a two variable re-
fined theory to the free vibration analysis of ortho-
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tropic plates using Navier's solution. [5]. Present-
ed a study of buckling and post buckling behavior
of simply supported composite plates subjected to
non-uniform in-plane loading. The analytical solu-
tions for laminated plate based on higher order
shear deformation theory. The multiterm Galerkin
method was used to solve the nonlinear partial
differential equations governing post buckling
behavior of plate. [6]. Investigated the natural fre-
quencies and buckling of layered plates subjected
to combined in-plane loadings with the aim of
furnishing a few guidelines for the modeling and
design of pre-stressed laminated panels. Different
load conditions, stacking sequences, material
properties and boundary conditions are consid-
ered. [7]. Presented a study of bending and free
vibration analysis based on simple first order
shear deformation theory (FSDT). Were the ana-
lytical solved by an exact method (Levy's meth-
od). [8]. Presented an exponential shear defor-
mation theory which extended for buckling and
free vibration analysis. The theory takes into ac-
count of transverse shear effects and parabolic
distribution of the transverse shear strains through
the thickness of the plate. Were the analytical
solved by an exact method (Navier's method). [9].
Studied buckling behavior and free vibration of
composite plates subjected to in plane parabolic,
linear and wuniform distributed loads using
(CLPT). Analytical investigation is shows using
Ritz method for eigenvalues problems of buckling
loads solution for laminated plate. The edges con-
ditions take into account are (SSSS, CCCC,
SCSC, SESF and CFCF). [10].The vibration and
buckling of laminated beams studied by using a
shear deformation and refined theory. The dis-
placement field is estimated by using the Ritz
technique. The functions used in the Ritz tech-
nique are chosen by way of either a hybrid poly-
nomial-trigonometric series or a pure polynomial
series.

2. Buckling and Pre Stressed Vibration
Analysis of Laminated Plates

The governing equation is derived by using
CPLT [8]

a*tw
D11 2y pon +(2D12 +4D66)a 2oy 2+D22W+
a%w
lo = Yo, NX ax2 .. (1)
Where, stress resultants are expressed in dis-

placement form from below:

47

(Mg My. Myy) = [117 (04, 0y, 0y )z dz =
Zk—l fzk“(ox, oy, ny)z dz (2
h/2
= [0 - (3)

Integratmg Eq. (2), (3) through thickness of the
plate, the stress resultant is associated to the dis-
placement (w) by the relatives:

MX D11 D12 D16 k
MY = D12 D22 D26 ky (4)
Myy Dis D26 Deel (K
—h
Dy = [Qy] fu* 2% dz (5
2

The twisting moments and bending, transversal
shear forces can be written in terms of the dis-
placement function as, [11].

’w %w
My = —D1y G 12? - (6)
d d
My = —D,, ayw Dip > . ()
62
Myy = —2D66 % .. (8)
Qx = —D11 a 7 — (D12 +4De6) 5572 ayz ox -9
Qu=-Dyp 2y 2y3 — (D13 + 4Dge) —a- P 20 - (10)

For a flexibly restricted rectangular plate shown in

Fig.(1), the boundary conditions are :
ow

kxow = QX KXOE = _MX ...eat
x=0 . (11-12)
0
kX1W = _QX Xla_:(v = _MX ... at
x=a . (13-14)
0
kyow = Qy Kyo 5y = —My . at
y=0 ) .. (15-16)
w
y1W - Qy Yla_y = _My .. at
y=b . (17-18)

Where Ky Kyq and kyg Kyq are the transitional
stiffness of spring,Kyo Kyjand Kyg, Ky; are the
rotations stiffness of spring. Eq.(11)-(18) express
for different edge conditions, the classic homoge-
neously edge conditions can be direct obtained by
putting the constants of spring equalize to an very
small or large number.

By substituting Eq. (6-10) in Eq. (11-18), get the
following equations

Kyow = _D11 o — (D1 + 4Dgg) s ayz = - (19)
ow 6 w %w

Kyo == % =Di1-=% oz T D1za—y2 .21
d 92 92

Kx1 a‘: D14 axvzv 12% - (22)

And similarly found other four equations in the
y direction.
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Fig. 1. Elastic restrained edges for a rectangular
plate [12].

As mentioned by many plate and shell re-
searches that exact solution for plate or shell with
general boundary conditions is not available so we
use Ritz method to get approximate solution from
Hamilton's equation:

S[fJU—w+T)=0 .. (23)

Where U is the strain energy, W is potential
energy due to the external forces and T is the ki-
netic energy. & the random variation.

Where

h
LU

U= /3% fo foa(oxsx + oy, + rxyyxy)dx dy dz+
2

Elastic  energy of springs at edges
2

W=lfbfa[N a—W)]dxdy

= pfz NN [atz w] dx dy dz .. (24)

Substltutlng Egs.(2-4),(19- 22) in Eq.(24),yield to:

U-W= ff[Dn (ZY) +D22(Zyw)2+

2w )2 2w d
4Dgq (—aX;”y) + 2Dy, avzvavj]d dy +
1 b
Efo [kxOW +
w2 1:b[
X0 (6_‘),:) . dy+5fo _kxlvv2 +
aw\ 2] 1 caf
Ky1 (a—‘:) | dy + Efoa _kyowz +
aw\ 2] 1 cal
KyO (6_y) 1, dx +5f0 _ky1w2 +
aw\ 2] 1 b ra w2
Ky1 (a_y) | 2o Jo [NX (E) ]dx dy
.. (25)
and
T=%(o2fflow§ dx dy ... (26)

3. Admissible Functions

With Ritz method the allowable functions play
an important part. The products of beam functions

48

are commonly selected like the displacement
function and functions can be consequently like,
[12].

WEXY) = Xmn=1AmnX(X) Y(y) - (27)
WhereX(x), Y(y) are the specific variables for
beams that include a similar edge conditions in the
(y, x) direction, correspondingly.

The beam functions can be in general achieved
like a linear collection of hyperbolic and trigono-
metric functions, which involve some unknown
variables which are exist from the edge condi-
tions. Then, every edge conditions essentially
conduct to a various beam functions. In actual
uses, this is obviously disadvantageous, beside the
damage of computing the specific functions for a
different boundary beam. with a view to avert this
difficulty, an developed the series of Fourier tech-
nique has been suggested for beams with different
boundaries at each ends in which the specific
functions are written in the form of, [13].

W(X) = Ym=0am COSAzmX + P(x)
(Aam =20),  o0=x<a .. (28)

P (x) is the function in Eq. (28) considers an arbi-
trarily continued function that, in any case of edge
conditions, is constantly selected to satisfy the
equations as following:

PIII(o) — W”,(O) — (XO Plll(a) — Wlll(a) —

o ... (29-30)
P'(0) =W'(0) =By, and  P'(a) =W'(a) =
B1. .. (31-32)

P (x) is here inserted to take care of the latent
discontinuities of the function of displacement and
its derivative at end points. Accurately, previously
it is known that the smoothest a periodical func-
tion, the quicker its Fourier extension conver-
gence. Thus, adding of the P (x) will have two
instantaneous interests: (1) the series of Fourier
extension is presently agreed with any edge condi-
tions, and (2) the solution of the series of Fourier
its accurateness of convergences.

Yet, P (x) have just been realized as a continu-
ously function that satisfy Eq. (29) - (32), the
function P (x) format is not a worry with regard to
the convergences of the series solution. Therefore,
it can be chosen in any required formula. Like a
substantiation, supposes the P (x) is a the function
of polynomial,

P = Zhoo Ca B (3)- - (33)
Where P,(X) is the Legendre function of order

n, C, is the coefficient of extension.

It is clarifies that P (x) desires to be minimum a 4

polynomial to jointly satisfy Eq.(29) - (32). Sub-

stituting Eq. (33) into Eq. (29) - (32) results yield

to:
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C3P3""(0) + C,P,"(0) = a®a. . (34)
C3P;"" (1) + C4Py" (1) = a3ay. .. (35)
C1P{(0) + C;P;(0) + C3P3(0) + C4P(0) = ?zgg)
CiPI(1) + CuP;(1) + C3P5(1) + CoP4(1) = 3217-)
By using the above equations, the coefficients,
C4.C5.Cz and C, are straight acquired in terms of
the edge constants, otg. ®t1. - then ;. As the co-
efficient C, doesn't really seem in Eq. (34) -(37),
it can be a random number theoretically. For ex-
ample, C, is presently chosen to content
JyPx)dx=0 .. (38)
The last appearance for the P(x) can be shown as

and
(0"
( —(15x* — 60ax® + 60a%x? — 8a*) /360a]
_ (15x* — 30a%x? + 7a*)/360a
B { (6ax — 2a% — 3x2)/6a }
\ (3x%2 —a?)/6a
.. (41)

The results in Eq. (39) - (41) are already de-
rived from an additional simple but little common
approach, [12].

So as to obtain the unknown of edge constants,
0. &1 Bo- and B;. substitution of Eq. (28) and eq.
(39) into the edge conditions Eq. (19)-(22) that
results in

P(x) =(,(x)Ta - (39) =Y o H:'Qamam . (42)
Where
o= {(Xo. . Bo. BI}T . (40)
Where
[ 8kxoa3 7kxoa3 —kxoa —kxoa
1+ 360D, 360D, 3Dy, 6
7ky a3 14 8ky 2’ —kyqa —kyqa
360D, 360Dy, 3Dyq 6
H, = a a Kyo | 1 1 ... (43)
3 6 D11 a a
a a -1 Kx1 1
s 3 " b, a
and 4. Eigen Value Problem
Ky Ky
Qam = {(_1) D_O (_1)mD_1 . . . .
i 1 Orthotropic plate are consider, the material di-
Nm (D™An } T - (44) rections of width identify with the plate directions.

It must be reminded that a matrix Ha becomes
single to a totally free Beam, [14],

. By using of Egs. (39) and (42), Eq. (28) becomes
as:

W) = S0 amPh () . (43)
Where
(P?n(x) = COSAgmX + Za(X)Hz:1Qam ... (46)

Mathematically, Eq. (45) mention that every of
the functions of the beam can be observed as a
function in the functional space spanned by the
base functions {@3(x):m =0.1.2..........}. So,
Eq.(27) can be consequently rewritten as:

W(x.y) = X nco Am@h @R (©) . (47)
Where:
P2 (y) = cosApny + & ()Hp ' Qun .. (48)

The terms for {,(y). Hyand Qp, can be, corre-
spondingly, obtained from Eqgs. (41), (43) and (44)
by easily changing the x- regarding parameters by
the y- regarding.

49

Uniaxial in-plane compressive force Ny along the
both sides of edge (x) is subjected.

To calculate the critical buckling load; the natural
frequency w is set to zero, to find the natural fre-
quency without the action of buckling load; Ny is
set to zero, and to calculate the natural frequency
under buckling load action; ; Ny is left as a known
after finding the critical buckling load N Previ-
ously. Performing the required mathematical pro-
cesses (differentiations and then integrations) of
Eq.(25) and(26) and then putting the mechanical
energy in the following equation:

oE
A~ 0 ... (49)

Eq. (48) gives homogenous equations as follow1;
f(Amn-Ner) = 0 for buckling problem
f(App- @) = 0 for vibration problem
f(Apn Nyx- @) = 0 for vibration under bucklin... (50)
Eq. (50) solving as an Eigen-value problem

which 18 written as below:
A1q
: =0
A(m=xn).1 a(m*n).(m*n) Amn

dig d1.(m#*n)
Where a;; are the coefficients of the nonzero

.. (51)
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unknownsA,,,,. Finding the determinant of the
first term of Eq.(51) and equating it to zero will
lead to get the natural frequencies w and critical
buckling load N.,. When M and N are more than
1, The N -and w are determined by solving ei-
genvalue problem. For different edge conditions
and M &N more than 1, the solution becomes
more difficult and needs computer programming
to determineN,,. In this study MATLAP R2015a
is used to solve the eigenvalue problem to find the
natural frequency under buckling action. For nu-
merical study, ANSYS APDL programming is
used.

5. Results and Discussion

MATLAP (versionl5) programming is used to
investigate and solved the buckling load and natu-
ral frequency under buckling of composite lami-
nated plate (CLP) with elastic edge condition. The
plates are described by a four-letter symbol for
example SCSC denotes a plate with simply sup-
ported edge at y=b, y=0, clamped at x=a, x=0. To
see the validly of the derived equations and per-
formance of computer programming for buckling
and vibration analysis of (CLP), orthotropic plate
numerical results are compared with those found
by Firas Hamzah Taya, 2014 [9]. And 1. Shufrin,
O. Rabinovitch, M. Eisenberger, 2008 [2].Table
(1, 2) shows a good agreement results for different
edge conditions. It show that the clamped plate
along two or four edges can hold buckling load
more than plate with simply supported boundary
conditions, especially in table (1) for the case
where the plate is FSFS. In the case where the
plate is simply supports or mixed with free edges,
it is weak to hold large load compared with
clamped plates. While show results for laminated
composite plate with different edge conditions,
stacking sequence, aspect ratio and modulus ratio
give good agreement when compared with J. N.
Reddy, 2003[15] and I. Shufrin, O. Rabinovitch,
M. Eisenberger, 2008[2]. As shown in Table (3, 4,
5). Table (6) present the results of anti-symmetric

Table 1,

cross and angle ply with different aspect and
modulus ratio and give a good agreement when
compared with results obtained by J. N. Reddy,
2003. Table (7) shows the results of the natural
frequency of laminated plate under buckling for
different load ratio and compered with the results
obtained by Firas Hamzah Taya, 2014, give very
close results. It shows that the natural frequency is
less than that found without loading because the
stiffness reduction. In table (8,9,11) show the re-
sults of the natural frequency under buckling for
different load ratio and compared with the results
obtained by numerical program ANSYS, also in
table (10) show the natural frequency under load
ratio (d=0.5) with effect of aspect , modulus ratio
and Fig.2. shows the mode shapes of the case.

6. Conclusions

Buckling of rectangular laminated plate with
general elastic restraints along the edges is ob-
tained by using modified Fourier function; also
free vibration of this plate under in plane loading
is investigated using Rayleigh—Ritz method. The
results are compared with the results obtained by
other researchers; the comparison showed good
agreement between them. The effect of edge con-
ditions, aspect ratio, lamination system, angle of
lamination and load correction factor on buckling
and vibration characteristics are studied. From the
result it is concluded that, the buckling load de-
creases rapidly with increasing aspect ratio till it is
about 1.5, after that takes constancy or close val-
ues for higher aspect ratio. The edge conditions
affect the critical buckling load and fundamental
natural frequency. Clamped edges conditions offer
high stiffness, results in high critical buckling load
and natural frequency. Clamped edges make the
plate holds larger load than simply supported edg-
es. The natural frequency changes reversely with
buckling load ratio. Therefore, this investigation
has actually showed that this function can be used
to get buckling and vibration characteristics of
laminated plate with various boundary conditions.

Non-dimensional buckling load(N = N,.b%/E,h3), for [0 90 0] plates of different Boundary conditions,

(El/EZ = 10, Glz = 0.6E2,V12 = 025,(1 = b)

References Type of boundary conditions

SSSS CCCC SCSC FSFS FCFC
Present work 11.550 40.38 35.900 8.049 32.544
Firas[9] 11.491 40.507 36.255 7.991 32.982
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Table 2,

Non-dimensional buckling load (N = N, 12(1 — v;,V,,)/E; h®), for [30 -30 30] plates of different boundary
conditions, (EI/EZ = 2. 45, G12 = 0.48E2'V12 =0.23 a=b).

References

Type of boundary conditions

SSSS CCCC CSCS SCSC
Present work 25.77 66.81 47.33 39.32
I. Shufrin[2] 26.67 65.26 49.18 40.93
Discrepancy % 34 2.3 3.9 4
Table 3,

Non-dimensional buckling load(N = N_,.b%/D,,m?), for [0 90 90 0] plates (SSSS) of different aspect, modulus
I‘atio, ( Glz = 0 5E2,V12 = 0 25)

References a/b E,/E,=5 10 20 25 40
Present work 13.94 18.225 22 23.1 25
Reddy[16] 0.5 13.9 18.126 21.87 22.87 24.59
Present work 5.66 6.353 7 7.13 7.5
Reddy 1 5.65 6.347 6.96 7.12 7.4
Present work 5.238 5.28 5.317 5.326 5.34
Reddy 1.5 5.233 5.27 5.31 5.318 5.33
Table 4,

Non-dimensional buckling load(N = N_,.b?/D,,m?), for [0 90],, laminated plates (CCCF) of different aspect,
modulus ratio, (G4, = 0.5E,,v,, = 0.25).

E,/E, References a/b=1 1.5 2
Present work 6.7 3.48 2.47
3 I. Shufrin 6.4 33 2.34
Discrepancy% 4.7 5 5
Present work 8.08 3.96 2.6
10 I. Shufrin 7.84 3.78 2.48
Discrepancy% 29 4 4
Table 5,

Non-dimensional buckling load(N = N,.b%/D,,m?), for [0 90],, laminated plates (CSCS) of different aspect,
modulus ratio, (G4, = 0.5E,,v4, = 0.25).

E,

a; _

L, References /p=1 1.5 2
Present work 6.671 6.379 6.12

3 I. Shufrin 6.659 6.295 5.84
Discrepancy% 0.179 1.3 4.5

10 Present work 6.584 6.096 5.71
I. Shufrin 6.557 6.056 5.46
Discrepancy% 0.41 0.656 4.3

Table 6,

Non-dimensional buckling load(N = N_.b?/E,h?), for anti-symmetric laminated plates (SSSS) with effect of
different modulus ratio, (G4, = 0.5E,,v{; = 0.25).

Ply

Orientations References Ey / E2=10 25 40
Present work 11.174 23.523 35.874
[090], Reddy 10.864 22.622 34.381
Discrepancy % 2.7 3.8 4.1
Present work 18.2 42.81 67.38
[45 — 45], Reddy 17.637 41.16 64.68
Discrepancy% 3 3.8 4

51
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Table 7,
Dimensionless natural frequency((B =w,a’/p./E,/ h), for [0 90 0] plates under buckling of different load rati-
oS, (EI/EZ = 10, G12 = 0.6E2,V12 =0. 25,a = b)

D References SSSS CCCC CSCS SFSF CFCF

0 Present work 10.656 22.255 21.065 8.892 20.106

Firas 10.649 22.323 21.119 8.886 20.143

095 P.resent work 9.228 19.27 18.243 7.701 17.413

’ Firas 9.223 19.33 18.29 7.443 17.444

Present work 7.535 15.736 14.895 6.287 14.217

0.5 Firas 7.53 15785 14.933 5.973 14.243

075 Present work 5.328 11.127 10.532 4.446 10.053

’ Firas 5.324 11.161 10.559 3.995 10.071
Table 8,

Dimensionless natural frequency((T) = w,a’\/p./E>/ h), for [0 90 90 0] plates under buckling of different load
I‘atios, (EI/EZ = 40, Glz = 0 5E2,V12 = 0 25, a= b)

d References SSSS CCCC SCSC SFSF
Present work 18.817 41.216 38.668 6.916
0 Ansys 18.703 40.662 38.099 6.914
Present work 16.296 35.695 33.488 6.916
0.25 Ansys 16.196 35.434 33.169 6.902
Present work 13.306 29.145 27.343 5.812
0.5 Ansys 13.224 29.14 27.244 5.813
Present work 9.408 20.609 19.335 4.11
0.75 Ansys 9.351 20.777 19.394 4.115
Table 9,

Dimensionless natural frequency((B = wya%\p./E;/ h), for [45 — 45], plates under buckling of different
load ratios, (EI/EZ = 10, 612 =0. 5E2,V12 =0. 25, a= b)

D References SSSS CCCC SCSC SFSF
0 Present work 1.409 21.632 17914 5.252
Ansys 13.111 21.165 17.533 4.671
095 Present work 11.613 18.734 15.514 4.548
’ Ansys 11.395 18.378 15.258 4.072
Present work 9.482 15.296 12.667 3.713
0.5 Ansys 9.341 15.05 12.529 3.35
075 Present work 6.704 10.816 8.957 2.626
) Ansys 6.634 10.678 8.917 2.39
Table 10,

Dimensionless natural frequency((B =w,a’\/p./E, /h), [30 -30 30] plates of different boundary conditions,
(El/EZ = 2 45, Glz = 0 48E2’V12 = 0 23 a=b).

D References SSSS CCCC SCSC

0 Present work 7.311 13.02 9.949

Ansys 7.237 13.04 9.913

095 Present work 6.332 11.289 8.619

’ Ansys 6.272 11.359 8.595
Present work 5.171 9.223 7.04

0.5 Ansys 5.124 9.334 7.027
Present work 3.657 6.526 4.98

0.75 Ansys 3.625 6.653 4978

52
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Fig. 2. Mode shape for free vibration of (SSSS) for [30 -30 30] laminated square plate a-first b-second c-third d-

fourth modes.

Tablell,

Dimensionless natural frequency(@ = w,a?,/p./E,/h), for [0 90 90 0] (SSSS) plates with effect of aspect and
modulus ratios, (G1, = 0.5E,,v1, = 0.25) (natural frequency without load) d=0.5.

References a/b E,/E,=10 25 40
Present work 6.275 9.654 12.125
05 (8.875) (13.652) (17.147)
Ansys ' 6.275 9.63 12.066
y (8.875) (13.62) (17.064)
Present work 7.426 10.774 13.306
. (10.502) (15.237) (18.817)
Ansys 7.411 10.731 13.22
y (10.48) (15.176) (18.702)
Present work 10.157 13.964 16.938
15 (14.364) (19.748) (23.954)
Ansvs ' 10.161 13.964 16.934
y (14.367) (19.747) (23.948)
Nomenclature A expansion or Rayleigh—
Ritz coefficient
Symbol Discretion Units D;; flexural rigidity
A Length of a plate M M,N numbers of expansion
B width of a plate M terms used in x- and y
H Plate thickness M direction, respectively
A vector of the expansion My, My,  Moment result per unit N.m/m
or Rayleigh-Ritz coef- My, length
ficients Q- Qy Transverse shear force N
Apn expansion or Rayleigh— result
Ritz coefficients K.o, Ky,  rotational stiffness at Rad.N/m

53



Widad 1. Majeed

Al-Khwarizmi Engineering Journal, Vol. 15, No. 1, P.P. 46- 55 (2019)

x =0 and
a, respectively

Ky, Ky, rotational stiffness at Rad.N/m
y =0and
b, respectively

k.o, ky1  translational stiffness N/m
atx=0
and a, respectively

kyo, ky,  translational stiffness N/m
aty=0
and b, respectively

P(x) a simple polynomial
function

X,¥,Z Cartesian coordinate M
system

II Total potential energy N.m
of the System

U Strain energy of defor- N.m
mation

V. the elastic potential en- N.m
ergy

W(x) flexural displacement of M
a beam

W(x,y) flexural displacement of M
a plate

X(x), beam characteristic

Y() function

ay, a, W’”(a) , WIII(o)

Bo, PB1 w'(0), W' (a)

@ (x)  admissible functions in
x direction
@2(y)  admissible functions in

y direction

S,C,F Simply- clamped- free
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