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Abstract 
     

Critical buckling and natural frequencies behavior of laminated composite thin plates subjected to in-plane uniform 

load is obtained using classical laminated plate theory (CLPT). Analytical investigation is presented using Ritz- method 

for eigenvalue problems of buckling load solutions for laminated symmetric and anti-symmetric, angle and cross ply 

composite plate with different elastic supports along its edges. Equation of motion of the plate was derived using prin-

ciple of virtual work and solved using modified Fourier displacement function that satisfies general edge conditions. 

Various numerical investigation were studied to exhibit a convergence and accuracy of the present solution for consid-

ering some design parameters such as edge conditions, aspect ratio, lamination angle, thickness ratio, orthotropic ratio, 

the results obtained gives good agreement with those published by other researchers. 

 
Keywords: Buckling load, different boundary conditions, composite laminated plate, Free vibration, Rayleigh-Ritz 

method.  

 

 

1. Introduction 

 
     The composite materials (C.M) reinforced by 

fiber are perfect for structural applications where 

high stiffness and strength to weight of ratios are 

necessary. Composite materials can be adapted to 

assemble the especial necessities of strength and 

stiffness by varying fiber orientations and lay-up. 

The capability to adapt a (C.M) to its work is very 

most important advantages of a (C.M) over a 

common material. In the past few decades the im-

provement and study of (C.M) in the mechanical, 

civil and aerospace structures design has devel-

oped.  

The structures might be exposed to dynamic 

loads in difficult environmental conditions, so it is 

necessary to know the characteristic of vibrations. 

The cause of failure of the structure components 

when the natural frequencies of structure and the 

forcing frequency close to each other's which is 

the resonance (when structure damping is consid-

ered), may be occur large torsion \ translation de-

flections and internal stresses. Many researchers 

have presented the stability of (C.M) subjected to 

buckling loads. [1]. Developed  an exact solution 
on the base of the first order shear deformation 
theory (FSDT) to investigate the buckling behav-
ior of symmetrical simply supported  cross ply 
rectangular plates subjected to unidirectional line-
arly varying in-plane loads. [2]. Used a semi-
analytical attitude to the buckling analysis of 
symmetric laminated plates with general edge 
conditions. The multi-term extended Kantorovich 
method was used to decrease the partial differen-
tial of the equations of buckling to a solution of 
ordinary differential equations. [3]. Using the fi-
nite element method to study buckling and vibra-
tion of composite laminated plates with variable 
fiber spacing. [4]. Extended   a two variable re-
fined theory to the free vibration analysis of ortho-
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tropic plates using Navier's solution. [5]. Present-

ed a study of buckling and post buckling behavior 

of simply supported composite plates subjected to 

non-uniform in-plane loading. The analytical solu-

tions for laminated plate based on higher order 

shear deformation theory. The multiterm Galerkin 

method was used to solve the nonlinear partial 

differential equations governing post buckling 

behavior of plate. [6]. Investigated the natural fre-

quencies and buckling of layered plates subjected 

to combined in-plane loadings with the aim of 

furnishing a few guidelines for the modeling and 

design of pre-stressed laminated panels. Different 

load conditions, stacking sequences, material 

properties and boundary conditions are consid-

ered. [7]. Presented a study of bending and free 

vibration analysis based on simple first order 

shear deformation theory (FSDT). Were the ana-

lytical solved by an exact method (Levy's meth-

od). [8]. Presented an exponential shear defor-

mation theory which extended for buckling and 

free vibration analysis. The theory takes into ac-

count of transverse shear effects and parabolic 

distribution of the transverse shear strains through 

the thickness of the plate. Were the analytical 

solved by an exact method (Navier's method). [9]. 

Studied buckling behavior and free vibration of 

composite plates subjected to in plane parabolic, 

linear and uniform distributed loads using 

(CLPT). Analytical investigation is shows using 

Ritz method for eigenvalues problems of buckling 

loads solution for laminated plate. The edges con-

ditions take into account are (SSSS, CCCC, 

SCSC, SFSF and CFCF). [10].The vibration and 

buckling of laminated beams studied by using a 

shear deformation and refined theory. The dis-

placement field is estimated by using the Ritz 

technique. The functions used in the Ritz tech-

nique are chosen by way of either a hybrid poly-

nomial-trigonometric series or a pure polynomial 

series. 

 

 

2. Buckling and Pre Stressed Vibration 

Analysis of Laminated Plates 

 
The governing equation is derived by using 

CPLT, [8]: D�� ������ + �2D�
 + 4D�� ������ ��� + D

 ������ +
I� ������ = N� ������                                               ... (1) 

Where, stress resultants are expressed in dis-

placement form from below:  

�M�. M�. M��� = � �σ� ‚ σ�‚ σ���z dz �/
!�/
 =∑ � �σ� ‚ σ�‚ σ���z dz#$%&#$'()�                          ... (2) I� = � ρ dz �/
!�/
                                              ... (3) 

Integrating Eq. (2), (3) through thickness of the 

plate, the stress resultant is associated to the dis-

placement (w) by the relatives: 

 + M�M�M��, = -D�� D�
 D��D�
 D

 D
�D�� D
� D��. + k�k�k��,             ... (4) 

D01 = 2Q4 015 � z
 dz67�7�                                       ... (5) 

The twisting moments and bending, transversal 

shear forces can be written in terms of the dis-

placement function as, [11]. M� = −D�� ������ − D�
 ������                              ... (6)   

M� = −D

 ������ − D�
 ������                              ... (7) 

M�� = −2D�� ����� ��                                        ... (8) 

Q� = −D�� �9���9 − �D�
 + 4D�� �9���� ��          ... (9) 

Q� = −D

 �9���9 − �D�
 + 4D�� �9���� ��        ... (10)  

For a flexibly restricted rectangular plate shown in 

Fig.(1), the boundary conditions are :    

 k�:w = Q�               K�: ���� = −M�          ….. at 

x=0                                                          ... (11-12)   k��w = −Q�                 K�� ���� = −M�      ….. at 

x=a                                                          ... (13-14) k�:w = Q�               K�: ���� = −M�       ….. at 

y=0                                                         ... (15-16) k��w = −Q�                 K�� ���� = −M�    ….. at 

y=b                                                         ...  (17-18) 

Where k�: k�� and k�:  k�� are the transitional 

stiffness of spring,K�: K��and K�:, K�� are the 

rotations  stiffness of spring. Eq.(11)-(18) express 

for different edge conditions, the classic homoge-

neously edge conditions can be direct obtained by 

putting the constants of spring equalize to an very 

small or large number.     

By substituting Eq. (6-10) in Eq. (11-18), get the 

following equations: k�:w = −D�� �9���9 − �D�
 + 4D�� �9���� ��   ...  (19)  

k��w = D�� �9���9 + �D�
 + 4D�� �9���� ��      ...  (20) 

K�: ���� = D�� ������ + D�
 ������                        ...  (21) 

K�� ���� = D�� ������ + D�
 ������                        ...  (22) 

And similarly found other four equations in the 

y direction. 
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Fig. 1. Elastic restrained edges for a rectangular 

plate [12]. 

 

 

As mentioned by many plate and shell re-
searches that exact solution for plate or shell with 
general boundary conditions is not available so we 
use Ritz method to get approximate solution from 
Hamilton's equation:  δ ∭�U − W + T = 0                                  ... (23) 

Where U  is the strain energy, W is potential 
energy due to the external forces and T is the ki-
netic energy. δ the random variation. 
Where  U = � � � �σ�ε� + σ�ε� + τ��γ���dx dy dzJ:K:

7�67� + 

Elastic energy of springs at edges                    W = �
 � � LN� M���� N
O dx dyJ:K:  

T = ρ � � � P������  wQ dx dy dzJ:K:
7�67�                 ... (24) 

Substituting Eqs.(2- 4),(19-22) in Eq.(24),yield to: U − W = �
 � � LD�� M������ N
 + D

 M������ N
 +J:K:4D�� M ����� ��N
 + 2D�
 ������ ������ O dx dy +
�
 � Lk�:w
 +K:K�: M���� N
O�): dy + �
 � Lk��w
 +K:
K�� M���� N
O�)J dy + �
 � Lk�:w
 +J:
K�: M���� N
O�): dx + �
 � Lk��w
 +J:
K�� M���� N
O�)K dx − �
 � � LN� M���� N
OJ: dx dyK:   

                                                                     ... (25) 
and T = �
  ω
 ∬ I� w�
  dx dy                            ... (26) 

 

 

3. Admissible Functions  
 

With Ritz method the allowable functions play 
an important part. The products of beam functions 

are commonly selected like the displacement 
function and functions can be consequently like, 
[12]. w�x y = ∑ AUVX�x Y�yU V)�                   ... (27) WhereX�x, Y�y are the specific variables for 
beams that include a similar edge conditions in the 
(y, x) direction, correspondingly. 

The beam functions can be in general achieved 
like a linear collection of hyperbolic and trigono-
metric functions, which involve some unknown 
variables which are exist from the edge condi-
tions. Then, every edge conditions essentially 
conduct to a various beam functions. In actual 
uses, this is obviously disadvantageous, beside the 
damage of computing the specific functions for a 
different boundary beam. with a view to avert this 
difficulty, an developed the series of Fourier tech-
nique has been suggested for beams with different 
boundaries at each ends in which the specific 
functions are written in the form of, [13]. w�x = ∑ aU cos λJUx + P�x   aU):     

 MλJU = UbJ N,        0c x c a                        ... (28) 

P (x) is the function in Eq. (28) considers an arbi-
trarily continued function that, in any case of edge 
conditions, is constantly selected to satisfy the 
equations as following: Pddd�0 = Wddd�0 = α:.           Pddd�a = Wddd�a =α�.                                                           ...  (29-30) Pd�0 = Wd�0 = β:.     and      Pd�a = Wd�a =β�.                                                                ... (31-32)      

P (x) is here inserted to take care of the latent 
discontinuities of the function of displacement and 
its derivative at end points. Accurately, previously 
it is known that the smoothest a periodical func-
tion, the quicker its Fourier extension conver-
gence. Thus, adding of the P (x) will have two 
instantaneous interests: (1) the series of Fourier 
extension is presently agreed with any edge condi-
tions, and (2) the solution of the series of Fourier 
its accurateness of convergences. 

Yet, P (x) have just been realized as a continu-
ously function that satisfy Eq. (29) - (32), the 
function P (x) format is not a worry with regard to 
the convergences of the series solution. Therefore, 
it can be chosen in any required formula. Like a 
substantiation, supposes the P (x) is a the function 
of polynomial,  P�x = ∑ CV PV M�JN .hV):                               ... (33) 

Where  PV�x is the Legendre function of order 
n , CV is the coefficient of extension. 
It is clarifies that P (x) desires to be minimum a 4th 
polynomial to jointly satisfy Eq.(29) - (32). Sub-
stituting Eq. (33) into Eq. (29) - (32) results yield 
to:  



Widad I. Majeed                                         Al-Khwarizmi Engineering Journal, Vol. 15, No. 1, P.P. 46- 55 (2019)  

 

49 

 

CiPiddd�0 + ChPhddd�0 = aiα:.                   ...  (34) CiPiddd�1 + ChPhddd�1 = aiα�.                   ...  (35) C�P�d�0 + C
P
d�0 + CiPid�0 + ChPhd�0 = aβ:. 
                                                                      ... (36) C�P�d�1 + C
P
d�1 + CiPid�1 + ChPhd�1 = aβ�.  
                                                                      ... (37) 

By using the above equations, the coefficients, C�. C
. Ci and Ch  are straight acquired in terms of 

the edge constants, α:. α�. β:. then β�. As the co-

efficient C: doesn't really seem in Eq. (34) -(37), 

it can be a  random number theoretically. For ex-

ample, C: is presently chosen to content � P�x dx = 0J:                                             ... (38) 

 The last appearance for the P(x) can be shown as  

P(x) =ζJ�xlm4                                             ... (39) 

Where  m4 = nα:. α�. β:. β�ol                                   ... (40) 

and ζJ�xl

=
⎩⎪⎨
⎪⎧−�15xh − 60axi + 60a
x
 − 8ah/360a�15xh − 30a
x
 + 7ah/360a �6ax − 2a
 − 3x
/6a�3x
 − a
/6a ⎭⎪⎬

⎪⎫
 

                                                                    ... (41) 

The results in Eq. (39) - (41) are already de-

rived from an additional simple but little common 

approach, [12]. 

So as to obtain the unknown of edge constants, α:. α�. β:. and β�. substitution of Eq. (28) and eq. 

(39) into the edge conditions Eq. (19)-(22) that 

results in  m4 = ∑ HJ!�QJUaUaU):                                  ... (42) 

Where  

HJ =
⎣⎢
⎢⎢
⎢⎢
⎢⎡ 1 + �(��J9i�:�&&             �(��J9i�:�&&            !(��Ji�&&             !(��J��(�&J9i�:�&&               1 + �(�&J9i�:�&&          !(�&Ji�&&           !(�&J�                    Ji                                J�             ����&& + �J                   !�J                       J�                                Ji                 !�J                  ��&�&& + �J           ⎦⎥

⎥⎥
⎥⎥
⎥⎤
                                               … (43) 

 

and QJU = ��−1 (���&&      �−1U (�&�&&      −λJU
     �−1UλJU
  � l                                    ... (44) 

It must be reminded that a matrix Ha becomes 

single to a totally free Beam, [14], 

. By using of Eqs. (39) and (42), Eq. (28) becomes 

as: w�x = ∑ aUφUJ �xaU):                               ... (45) 

Where φUJ �x = cos λJUx + ζJ�xHJ!�QJU         ...  (46) 

Mathematically, Eq. (45) mention that every of 

the functions of the beam can be observed as a 

function in the functional space spanned by the 

base functions {φUJ �x: m = 0. 1. 2. … … … o. So, 

Eq.(27) can be consequently rewritten as:  w�x. y = ∑ AUφUJ �xφVK�yaU.V):              ... (47) 

Where: φVK�y = cos λKVy + ζK�yHK!�QKV             ... (48) 

The terms for ζK�y. HKand QKV  can be, corre-

spondingly, obtained from Eqs. (41), (43) and (44) 

by easily changing the x- regarding parameters by 

the y- regarding. 
 

 

 

 

 

4. Eigen Value Problem 
 

Orthotropic plate are consider, the material di-

rections of width identify with the plate directions. 

Uniaxial in-plane compressive force N� along the 

both sides of edge (x) is subjected.  

To calculate the critical buckling load; the natural 

frequency ω is set to zero, to find the natural fre-

quency without the action of buckling load; N� is 

set to zero, and to calculate the natural frequency 

under buckling load action; ; N� is left as a known 

after finding the critical buckling load N�� Previ-

ously. Performing the required mathematical pro-

cesses (differentiations and then integrations) of 

Eq.(25) and(26) and  then putting the mechanical 

energy in the following equation: ������ = 0                                      ... (49)  

 Eq. (48) gives homogenous equations as follow1; f�AUV. N�� = 0    for buckling problem   f�AUV. ω = 0    for vibration  problem   f�AUV.N��. ω = 0  for vibration under bucklin... (50) 

 Eq. (50) solving as an Eigen-value problem 

which is written as below:  

- a�.� ⋯ a�.�U∗V⋮ ⋱ ⋮a�U∗V.� ⋯ a�U∗V.�U∗V. ¢ A��⋮AUV£ = 0     ... (51)  

Where ¤¥¦ are the coefficients of the nonzero 
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unknowns§¨©. Finding the determinant of the 

first term of  Eq.(51) and equating it to zero will 

lead to get the natural frequencies ª and critical 

buckling load «¬ . When M and N are more than 

1, The «¬and ª are determined by solving ei-

genvalue problem. For different edge conditions 

and M &N more than 1, the solution becomes 

more difficult and needs computer programming 

to determine«¬. In this study MATLAP R2015a 

is used to solve the eigenvalue problem to find the 

natural frequency under buckling action. For nu-

merical study, ANSYS APDL programming is 

used.  

 

 

5. Results and Discussion  

 
MATLAP (version15) programming is used to 

investigate and solved the buckling load and natu-

ral frequency under buckling of composite lami-

nated plate (CLP) with elastic edge condition. The 

plates are described by a four-letter symbol for 

example SCSC denotes a plate with simply sup-

ported edge at y=b, y=0, clamped at x=a, x=0. To 

see  the validly of the derived equations and per-

formance of computer programming for buckling 

and vibration analysis of (CLP), orthotropic plate 

numerical results  are compared with those found 

by Firas Hamzah Taya, 2014 [9]. And I. Shufrin, 

O. Rabinovitch, M. Eisenberger, 2008 [2].Table 

(1, 2) shows a good agreement results for different 

edge conditions. It show that the clamped plate 

along two or four edges can hold buckling load 

more than plate with simply supported boundary 

conditions, especially in table (1) for the case 

where the plate is FSFS. In the case where the 

plate is simply supports or mixed with free edges, 

it is weak to hold large load compared with 

clamped plates. While show results for laminated 

composite plate with different edge conditions, 

stacking sequence, aspect ratio and modulus ratio 

give good agreement when compared with J. N. 

Reddy, 2003[15] and I. Shufrin, O. Rabinovitch, 

M. Eisenberger, 2008[2]. As shown in Table (3, 4, 

5). Table (6) present the results of anti-symmetric 

cross and angle ply with different aspect and 

modulus ratio and give a good agreement when 

compared with results obtained by J. N. Reddy, 

2003.  Table (7) shows the results of the natural 

frequency of laminated plate under buckling for 

different load ratio and compered with the results 

obtained by Firas Hamzah Taya, 2014, give very 

close results. It shows that the natural frequency is 

less than that found without loading because the 

stiffness reduction. In table (8,9,11) show the re-

sults of the natural frequency under buckling for 

different load ratio and compared with the results 

obtained by numerical program ANSYS, also in 

table (10) show the natural frequency under load 

ratio (d=0.5) with effect of aspect , modulus ratio 

and Fig.2. shows the mode shapes of the case. 

 

 

6. Conclusions 

 
Buckling of rectangular laminated plate with 

general elastic restraints along the edges is ob-

tained by using modified Fourier function; also 

free vibration of this plate under in plane loading 

is investigated using Rayleigh–Ritz method. The 

results are compared with the results obtained by 

other researchers; the comparison showed good 

agreement between them. The effect of edge con-

ditions, aspect ratio, lamination system, angle of 

lamination and load correction factor on buckling 

and vibration characteristics are studied. From the 

result it is concluded that, the buckling load de-

creases rapidly with increasing aspect ratio till it is 

about 1.5, after that takes constancy or close val-

ues for higher aspect ratio. The edge conditions 

affect the critical buckling load and fundamental 

natural frequency. Clamped edges conditions offer 

high stiffness, results in high critical buckling load 

and natural frequency. Clamped edges make the 

plate holds larger load than simply supported edg-

es. The natural frequency changes reversely with 

buckling load ratio. Therefore, this investigation 

has actually showed that this function can be used 

to get buckling and vibration characteristics of 

laminated plate with various boundary conditions. 

 

Table 1, 

 Non-dimensional buckling load�®4 = ®¯°±² ³²´µ⁄ , for [0 90 0] plates of different Boundary conditions, 

(³· ³²⁄ = ·¸, º·² = ¸. »³², ¼·² = ¸. ²½, ¾ = ±.  
References 

Type of boundary conditions 

SSSS CCCC SCSC FSFS FCFC  

Present work 11.550 40.38 35.900 8.049 32.544 

Firas[9] 11.491 40.507 36.255 7.991 32.982 
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Table 2, 

Non-dimensional buckling load (®4 = ®¯° ·²�· − ¼·²¼²· ³·⁄ ´µ), for [30 -30 30] plates of different boundary 

conditions, (³· ³² = ². ¿½,⁄ º·² = ¸. ¿À³²,¼·² = ¸. ²µ a=b). 

References 
Type of boundary conditions 

SSSS CCCC CSCS SCSC 

Present work 25.77 66.81 47.33 39.32 

I. Shufrin[2] 26.67 65.26 49.18 40.93 

Discrepancy% 3.4 2.3 3.9 4 

 

Table 3, 

Non-dimensional buckling load�®4 = ®¯°±² Á²²Â²⁄ , for [0 90 90 0] plates (SSSS) of different aspect, modulus 

ratio, ( º·² = ¸. ½³², ¼·² = ¸. ²½. 
References a/b ³· ³²⁄ =5 10 20 25 40 

Present work  

0.5 

13.94 18.225 22 23.1 25 

Reddy[16] 13.9 18.126 21.87 22.87 24.59 

Present work  

1 

5.66 6.353 7 7.13 7.5 

Reddy 5.65 6.347 6.96 7.12 7.4 

Present work  
1.5 

5.238 5.28 5.317 5.326 5.34 

Reddy 5.233 5.27 5.31 5.318 5.33 

 
Table 4, 

Non-dimensional buckling load�®4 = ®¯°±² Á²²Â²⁄ , for Ã¸ Ä¸Å²Æ laminated plates (CCCF) of different aspect, 

modulus ratio, ( º·² = ¸. ½³², ¼·² = ¸. ²½. ³· ³²⁄  References ¾ ±⁄ =1 1.5 2 

3 

Present work 6.7 3.48 2.47 

I. Shufrin 6.4 3.3 2.34 

Discrepancy% 4.7 5 5 

10 

Present work 8.08 3.96 2.6 

I. Shufrin 7.84 3.78 2.48 

Discrepancy% 2.9 4 4 

 

Table 5, 
Non-dimensional buckling load�®4 = ®¯°±² Á²²Â²⁄ , for Ã¸ Ä¸Å²Æ laminated plates (CSCS) of different aspect, 

modulus ratio, ( º·² = ¸. ½³², ¼·² = ¸. ²½. ³·³² References ¾ ±Ç =1 1.5 2 

3 

Present work 6.671 6.379 6.12 

I. Shufrin 6.659 6.295 5.84 

Discrepancy% 0.179 1.3 4.5 

10 
Present work 6.584 6.096 5.71 

I. Shufrin 6.557 6.056 5.46 

 Discrepancy% 0.41 0.656 4.3 

 

Table 6, 
Non-dimensional buckling load�®4 = ®¯°±² ³²´µ⁄ , for anti-symmetric laminated plates (SSSS) with effect of 

different modulus ratio, ( º·² = ¸. ½³², ¼·² = ¸. ²½.  
Ply 

Orientations 
References 

³· ³²Ç =10 25 40 

Ã0 90Åh 

Present work 11.174 23.523 35.874 

Reddy 10.864 22.622 34.381 

Discrepancy% 2.7 3.8 4.1 

Ã45 − 45Åh 

Present work 18.2 42.81 67.38 

Reddy 17.637 41.16 64.68 

Discrepancy% 3 3.8 4 
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Table 7, 

Dimensionless natural frequency�É4 = ÉÊ¾²ËÌ¯ ³²⁄ ´⁄ �, for [0 90 0] plates under buckling of different load rati-

os, (³· ³²⁄ = ·¸, º·² = ¸. »³², ¼·² = ¸. ²½, ¾ = ±. 
D References SSSS CCCC CSCS SFSF CFCF 

0 
Present work 10.656 22.255 21.065 8.892 20.106 

Firas 10.649 22.323 21.119 8.886 20.143 

0.25 
Present work 9.228 19.27 18.243 7.701 17.413 

Firas 9.223 19.33 18.29 7.443 17.444 

 

0.5 

Present work 7.535 15.736 14.895 6.287 14.217 

Firas 7.53 15785 14.933 5.973 14.243 

0.75 
Present work 5.328 11.127 10.532 4.446 10.053 

Firas 5.324 11.161 10.559 3.995 10.071 

 

Table 8, 

 Dimensionless natural frequency�É4 = ÉÊ¾²ËÌ¯ ³²⁄ ´⁄ �, for [0 90 90 0]  plates under buckling of different load 

ratios, (³· ³²⁄ = ¿¸, º·² = ¸. ½³², ¼·² = ¸. ²½, ¾ = ±. 
d References SSSS CCCC SCSC SFSF 

 

0 

Present work 18.817 41.216 38.668 6.916 

Ansys 18.703 40.662 38.099 6.914 

 

0.25 

Present work 16.296 35.695 33.488 6.916 

Ansys 16.196 35.434 33.169 6.902 

 

0.5 

Present work 13.306 29.145 27.343 5.812 

Ansys 13.224 29.14 27.244 5.813 

 

0.75 

Present work 9.408 20.609 19.335 4.11 

Ansys 9.351 20.777 19.394 4.115 

 
Table 9, 

Dimensionless natural frequency�É4 = ÉÊ¾²ËÌ¯ ³²⁄ ´⁄ �, for    Ã¿½ − ¿½Å¿ plates under buckling of different 

load ratios, (³· ³²⁄ = ·¸, º·² = ¸. ½³², ¼·² = ¸. ²½, ¾ = ±. 
D References SSSS CCCC SCSC SFSF 

0 
Present work 13.409 21.632 17.914 5.252 

Ansys 13.111 21.165 17.533 4.671 

0.25 
Present work 11.613 18.734 15.514 4.548 

Ansys 11.395 18.378 15.258 4.072 

 

0.5 

Present work 9.482 15.296 12.667 3.713 

Ansys 9.341 15.05 12.529 3.35 

0.75 
Present work 6.704 10.816 8.957 2.626 

Ansys 6.634 10.678 8.917 2.39 

 

Table 10, 

Dimensionless natural frequency�É4 = ÉÊ¾²ËÌ¯ ³²⁄ ´⁄ �, [30 -30 30] plates of different boundary conditions, 

(³· ³² = ². ¿½,⁄ º·² = ¸. ¿À³²,¼·² = ¸. ²µ a=b). 

 

D References SSSS CCCC SCSC 

0 
Present work 7.311 13.02 9.949 

Ansys 7.237 13.04 9.913 

0.25 
Present work 6.332 11.289 8.619 

Ansys 6.272 11.359 8.595 

 

0.5 

Present work 5.171 9.223 7.04 

Ansys 5.124 9.334 7.027 

0.75 
Present work 3.657 6.526 4.98 

Ansys 3.625 6.653 4.978 



Widad I. Majeed                                         Al-Khwarizmi Engineering Journal, Vol. 15, No. 1, P.P. 46- 55 (2019)  

 

53 

 

 
 

 
 

 
 

 
 

Fig. 2. Mode shape for free vibration of (SSSS) for [30 -30 30] laminated square plate a-first  b-second  c-third  d-

fourth modes. 

 
Table11, 

Dimensionless natural frequency�É4 = ÉÊ¾²ËÌ¯ ³²⁄ ´⁄ �, for    [0 90 90 0] (SSSS) plates with effect of aspect and 

modulus ratios, (º·² = ¸. ½³², ¼·² = ¸. ²½ (natural frequency without load) d=0.5. 

References a/b ³· ³²⁄ =10 25 40 

Present work 

0.5 

6.275 

(8.875) 

9.654 

(13.652) 

12.125 

(17.147) 

Ansys 
6.275 

(8.875) 

9.63 

(13.62) 

12.066 

(17.064) 

Present work 

1 

7.426 

(10.502) 

10.774 

(15.237) 

13.306 

(18.817) 

Ansys 
7.411 

(10.48) 

10.731 

(15.176) 

13.22 

(18.702) 

Present work 

1.5 

10.157 

(14.364) 

13.964 

(19.748) 

16.938 

(23.954) 

Ansys 
10.161 

(14.367) 

13.964 

(19.747) 

16.934 

(23.948) 

 

 

Nomenclature 

 

Symbol Discretion Units 
A Length of a plate M 

B width of a plate M 

H Plate thickness M 

A vector of the expansion 

or Rayleigh–Ritz coef-

ficients 

 

§¨© expansion or Rayleigh–

Ritz coefficients 

 

¤¨ expansion or Rayleigh–

Ritz coefficient 

 

Í¥¦ flexural rigidity  

M,N numbers of expansion 

terms used in x- and y 

direction, respectively 

 

ÎÏ, ÎÐ,  ÎÏÐ          

Moment result per unit 

length 

N.m/m 

ÑÏ . ÑÒ Transverse shear force 

result 

N 

ÓÏ:, ÓÏ� rotational stiffness at  Rad.N/m 
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x = 0 and 

a, respectively ÓÐ:, ÓÐ� rotational stiffness at  

y = 0 and 

b, respectively 

Rad.N/m 

ÔÏ:, ÔÏ� translational stiffness  

at x = 0 

and a, respectively 

N/m 

ÔÐ:, ÔÐ� translational stiffness  

at y = 0 

and b, respectively 

N/m 

P(x) a simple polynomial 

function 

 

x,y,z Cartesian coordinate 

system 

M 

Π Total potential energy 

of the System 

N.m 

U Strain energy of defor-

mation 

N.m 

Õ¬ the elastic potential en-

ergy 

N.m 

W(x) flexural displacement of 

a beam 

M 

W(x,y) flexural displacement of 

a plate 

M 

Ö�×, Ø�Ù 

beam characteristic 

function 

 

Ú:,           Ú� Ûddd�¤ , Ûddd�0  Ü:,     Ü� Ûd�0, Ûd�¤  ÝÞ̈ �× admissible functions in 

x direction 

 

Ý©ß�Ù admissible functions in 

y direction 

 

S , C ,F Simply- clamped- free   
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  الخلاصة 

  
الصفيحة بأستخدام نظرية  ىمنتظمة ضمن مستو طبقات المعرضة لاحمالالزاز والانبعاج للصفائح الرقيقة المركبة المكونة من تتمت دراسة الاه
.في الجانب النظري التحليلي تم أشتقاق معادلات الحركة بأستخدام طريقة رتز للحصول على مجموعة معادلات متجانسة  (CLPT) الصفائح الكلاسيكسة

الدوال المستخدمة وطبقات متعامدة وغير متعامدة الزوايا .من  ةمكون ةلحل مسألة حمل الانبعاج لصفائح متناظره وغير منتاظر eigenvalueوحلها كمسألة 
ولعل الاهم من ذلك، ان هذه الدراسة  في هذا البحث يمكن ان تمثل بدوال مثلثية ودوال عشوائية مستمرة وذلك لضمان سلاسة المطلوبة لعمل الدالة الرئيسية.

مثلة عددية لاثبات أبولة التي يمكن تطبيقها لشروط اسناد الحافات المختلفة. لقد تم دراسة عدة ققد طورت أسلوب عام لاشتقاق مجموعة كاملة من الدوال الم
مع الأخذ بنظر الاعتبار تغيير في بعض معايير التصميم مثل شروط الحدود نسبة الارتفاع وزاوية التصفيح ونسبة السماكة ونسبة  وتقاربهادقة نتائج الحل 

ً ة النتائج مع باحثين اخرين واعطت تقاربحيث تم مقارن orthotropy ـال   .جداً  اً جيد ا

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 


