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Abstract  
 

Free vibration behavior was developed under the ratio of critical buckling temperature of laminated composite thin 

plates with the general elastic boundary condition. The equations of motion were found based on classical laminated plate 

theory (CLPT) while the solution functions consists of trigonometric function and a continuous function that is added to 

guarantee the sufficient smoother of the so-named remaining displacement function at the boundaries, in this research, a 

modified Fourier series were used, a generalized procedure solution was developed using Ritz method combined with the 

imaginary spring technique. The influences of many design parameters such as angles of layers, aspect ratio, thickness 

ratio, and ratio of initial in- plane thermal load in addition to different boundary conditions on the natural frequencies of 

laminated plate is analyzed. In general, the changes of fundamental natural frequency is inversely proportional with the 

ratio of thermal buckling load, also most parameters aspect ratio effect on the natural frequency about 35 – 40%. The 

present results were compared with those obtained by other researchers, and show good agreement. 

 

Keywords: Thermal Buckling, laminated composite plate, general boundary condition, ritz method. 

 

 

1. Introduction 

 
Composite materials are widely employed in 

many engineering disciplines applications in 

mechanical and civil engineering. Many have been 

researching free vibration analysis under initial 

thermal load of laminated composite thin and thick 

plates, but the research has been focused on some 

problems that include a few forms of boundary 

conditions because the rectangular plates have 55 

forms of boundary condition therefore the solution 

procedure becomes very tedious when use of mode 

shapes as the basis functions, that’s why the former 

researchers have been used at opposite edges of 

one pair of simply supported and clamped, so with 

general boundary conditions one may have to apply 

convergent methods like Rayleigh-Ritz, the chosen 

of suitable admissible functions is of high 

significance when applying the method of 

Rayleigh-Ritz due to precision of the results, many 

investigations are worked about thermal buckling 

of laminated plate by using classical laminated 

plate theory but no one studied effect of general 

boundary conditions analytically.  

Random free vibrations under the thermal 

loading of laminated composite plates with all 

boundary conditions was studied at [1], the 

randomness in lamina coefficients of thermal 

expansion and material properties are taking into 

consideration. Based on higher-order shear 

deformation theory the system equations have been 

derived, incorporating rotary inertia effects. For 

handling the random Eigen value problem, the 

finite element method is applied. The research 

transacted for together numerical and experimental 

examinations of the free vibration behavior under 

different moisture and temperature of composite 

laminated plates presented at [9]. The governing 

equations have been found based on first-order 
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shear deformation theory (FSDT) for the behavior 

structural of the composite laminated plates. 

Quantitative results are shown to present the 

parameters’ influence of woven fiber laminate of 

(material, geometry, and lamination) on the free 

vibration of composite plates for varying moisture 

and temperature concentrations. The vibration and 

buckling of initially thermal stressed composite 

plates with material properties dependent on 

temperature was presented at [3]. Using the 

variation method, the governing equations have 

been found including the transverse shear 

deformation influences. The influences of different 

parameters on the vibration and buckling behaviors 

of laminated plates are investigated with respect to 

the material properties that are dependent on 

temperature. The distribution temperature is 

supposed to be linear and uniform on the plate in 

the transverse direction. [15] Focused on the 

Vibro-acoustic response and buckling of the 

clamped laminated composite plate induced by a 

harmonic concentrated force in the thermal 

environment. For acoustic response and vibration, 

the analytical solution has been derived for a fully 

clamped boundary condition. Meantime, the 

buckling temperatures and natural frequencies of 

the plate in the uniform temperature environment 

are also established by utilizing the first-order 

shear deformation theory (FOSDT) and classical 

laminate theory (CLT). [5] Presented the influence 

of hydrothermal conditions such as moisture and 

temperature on buckling load and free vibration 

frequency of laminated composite plates. To 

determine the critical load of the plate, the finite 

strip method based on first-order shear deformation 

theory (FOSDT) was applied to estimate the 

displacement field of each strip in the finite strip 

formulation. Linear shape functions and the 

Hermitian method were applied for in-plane and 

out–of–plane transverse direction and the 

trigonometric shape functions were applied in the 

longitudinal direction. The effect of a variable in 

material properties under different moisture and 

temperature on natural frequency and buckling 

capacity was estimated of plates with various 

biaxial loading and end conditions, as well as, the 

influence of the layer's delamination on natural 

frequency and buckling load of the plate was 

researched in various cases. [10] Presented the 

modal analysis of composite laminated structures 

subjected to thermal effect. A green–Lagrange 

nonlinear finite element (FE) model has been 

advanced according to the TSDT (third-order shear 

deformation theory) for the analysis. 

Most of the research mentioned above has dealt 

with the composite plates within specific boundary 

condition, but in this research, we will deal with the 

general boundary condition of composite plates. 

The present work investigates the free vibration 

analysis under effect of critical buckling 

temperature of laminated composite thin plate with 

general boundary condition, based on classical 

laminated plate theory and using Rayleigh–Ritz 

method, the displacement function as Fourier 

cosine series, plus, an arbitrary continuous function 

proposed by [15] for first time, so the effect of 

angle-ply orientation, boundary conditions, aspect 

ratio, and different composite materials properties 

are examined. 

 

 

2. Theoretical Analysis 

2.1 Classical Laminated Plate Theory         
 

Governing differential equation of laminated 

thin plate based on classical laminated plate theory 

(CLPT), for natural vibration under thermal 

buckling load is written as; [4]. 

D�� ∂�w∂x� + �2D�
 + 4D�� ∂�w∂x
 ∂y
 + D

 ∂�w∂x�
+ 4D
� ∂�w∂x ∂y� + 4D�� ∂�w∂x� ∂y + N�� ∂
w∂x

+ N�� ∂
w∂y
 + 2N��� ∂
w∂x ∂y +  I� ∂�w∂t
= 0                                                                     … �2.1 

{N�} =   ! "A$ {α}& ∆T dz +,
+,-.

/
&0�

                … �2.2 

Where: Dij are bending stiffness, {α} is a 

vector of thermal expansion coefficient, [A] is the 

Extension stiffness matrix, 1 is the frequency of 

the lamina vibrations. Introducing the moment of 

the inertia �23 per unit area of the laminate at point 

(x, y); 

23 = ! 4
56

758
9: =  4;

<
=0�

�:; − :;7�          … �2.3 

Where L: the total number of layers constructed the 

plate, 

k: denotes the layer number, 

h: the thickness of the lamina, :;, and  :;7� : distances from the reference plane 

of the lamina to the two surfaces of the @A5 ply. 

 

In this study, uniform temperature distribution is 

taken into consideration. 
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2.2 Total Mechanical Energy 

 
The definition of the total mechanical energy is 

the aggregation of its kinetic energy and potential 

energy of a particles being applied on by only 

conservatively by constant forces [11].  B =   C − BD  =  EFGHIJGI                        … �2.4                         
Where E: Total mechanical energy of a system, 

Ec: Total kinetic energy of the system, 

Π: Total strain energy of the system.   
  

Potential energy of purely bending plate under in 

plane thermal load is [14]; C
= 12 ! ! KL�� MN
1NO
 P
 + L

 MN
1NQ
 P
R

�
S

�
+ L�� M2N
1NONQP
 + 2 ML�
 N
1NO
 N
1NQ
 PT 9O 9Q
+ 12 ! U@V�1
 + WV� XN1NO Y
ZV0� 9QS

�
+ 12 ! U@V�1
 + WV� XN1NQ Y
ZV0R  9QS

�
 

+ 12 ! U@[�1
 + W[� XN1NQ Y
Z[0� 9OR
�

+ 12 ! U@[�1
 + W[� XN1NQ Y
Z[0S 9O 
R

�
 

− 12 ! ! U\V] XN1NO Y
 + \[] XN1NQ Y
R
�

S
�

+ 2\V[] M N
1NONQPZ  9O 9Q                       … �2.5 

∆E=0 or E= Constant                                  … �2.6                                                                                                                            

BD = 12 `
 a 2313
9O 9Q                              … �2.7 

 

2.3 Boundary Conditions 

 
The twisting and bending shear forces can be 

expressed in displacement function as; [4]. 

cV = −L�� N
1NO
 − L�
 N
1NQ
                          … �2.8 

c[ = −L

 N
1NQ
 − L�
 N
1NO
                         … �2.9 

cV[ = −2L�� N
1NONQ                                    … �2.10 

fV = −L�� N�1NO� − �L�
 + 4L�� N�1NQ
NO … �2.11 

f[ = −L

 N�1NQ� − �L�
 + 4L�� N�1NO
NQ … �2.12 

For rectangular plate restrained elastically, the 

boundary conditions are: 

@V�1 = fV                          WV� N1NO = −cV JI O = 0                                                         … �2.13 

@V�1 = −fV                      WV� N1NO = cV JI O = J                                                        … �2.14 

@[�1 = f[                        W[� N1NQ = −c[ 

JI Q = 0                                                          … �2.15 

@[�1 = −f[                     W[� N1NQ = c[ 

JI Q = g                                                         … �2.16 
 

 
 

Fig. 1. A rectangular plate elastically restrained 

along edges, [15]. 

 

 

Where, W[�, W[� JG9 WV�, WV� are the stiffness 

of the rotational spring, @[�‚ @[� JG9 @V�‚ @V� are 

the stiffness of the transitional spring, JI Q =0 JG9 g�O = 0 JG9 J respectively. Eqs. (13) - 

(16) shows a set of different B.Cs from which, the 

free boundary condition can be found by setting the 

spring constant to zero while setting the spring 

constant to infinity the clamped condition can be 

obtained (in actual calculation as a large number) 

and the simply supported can be obtained by 

setting the spring constant larger than zero and 

smaller than ∞ (0 < K < ∞), see (Fig. 1). From Eq. 

(8)-(16), the boundary conditions can be finally 

expressed as; 

@V�1 = −L�� N�1NO� − �L�
 + 4L�� N�1NQ
NO  
                                                                           … �2.17 

@V�1 = L�� N�1NO� + �L�
 + 4L�� N�1NQ
NO  
                                                                         … �2.18 

WV� N1NO = L�� N
1NO
 + L�
 N
1NQ
                  … �2.19 

WV� N1NO = −L�� N
1NO
 + L�
 N
1NQ
              … �2.20 
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2.4 Admissible Functions 
 

The permissible functions take a significant role 

in the Rayleigh-Ritz technique. The beam 

functions products are orderly selected as the 

permissible functions and the displacement 

function can be written as; [15] 1�O‚Q = ∑ klmnl�O om�Q   �2.21l‚m0�               

Where  nl�O , or om�Q , is the characteristic 

beams functions contain the same B.Cs in the x-

direction and y-direction, sequentially.  

As a linear collection of trigonometric and 

hyperbolic functions, the functions of the beam can 

be broadly acquired, they contain a few unknown 

parameters and from which the boundary 

conditions are obtained. Accordingly, then, all 

boundary conditions essentially derived to various 

forms of beam functions. In veritable employment, 

this is plainly inappropriate, for a various boundary 

beam. An advanced method of Fourier series has 

been suggested for beams with a qualitative 

boundary at ends so as to avoid this obstacle, in 

which the characteristic functions are express in the 

term of; [19]. 

1�O =  Jl cos sRlO + t�O   u
l0�

vsRl
= wxJ y ‚0 ≤ O ≤ J.        … �2.22 

Where p(x) can be a count a qualitative continuous 

function that, whatever of B.Cs, is permanently 

elected to accept the subsequent equations [9]: {|||�0 = }|||�0 = ~�                               … �2.23 {|||�J = }|||�J = ~�                              … �2.24  {|�0 = }|�0 = ��                                    … �2.25 {|�J = }|�J = ��                                  … �2.26 
Still, as a continuous function that accepts Eq. 

(2.23)-(2.26), P(x) formula doesn’t consider the 

convergence of the series of the solution. So, the 

P(x) function can be an option in different desired 

shape. As shown, postulate that P(x) is a 

polynomial function, 

{�O =  Em {m vOJy                                  … �2.27�
m0�

 

Where {m�O is the Legendre function Em is the 

expansion constant of order n, the above 

expression for the function P(x) can be express as; P�x  = �R�O]��                                            … �2.28 

Where �� = {~�‚~�‚��‚��}]                                     … . �2.29 

And  

�R�O] =
⎩⎪⎪
⎨
⎪⎪⎧− ���V�7��RV����R�V�7�R�����R���V�7��R�V���R�����R��RV7
R�7�V���R��V�7R���R ⎭⎪⎪

⎬
⎪⎪⎫

…�2.30 

The results in Eq. (2.28)-(2.30) are obtained from 

much more direct but general approaches, [15]. 

So as to find the unknown constants of boundary,  ~�‚~�‚��‚ and ��, substitution of Eq. (2.22) and 

(2.28) into the boundary conditions Eq. (2.17)-

(2.20) results in:  

�� =  �R7�fRlJl
u

l0�
                                   … �2.31 

Where �R

=

⎣⎢
⎢⎢
⎢⎢
⎢⎢
⎡1 + 8@V�J�

360L��7@V�J�
360L��  J3 

 J6 

7@V�J�
360L��

1 + 8@V�J�
360L��J6 
 J3

−@V�J3L��−@V�J3L��WV�L�� + 1J−1J   

−@V�J6−@V�J6−1J  WV�L�� + 1J ⎦⎥
⎥⎥
⎥⎥
⎥⎥
⎤
    

                                                        … �2.32 

And 

fRl = ¤�−1 @V�L��     �−1l @V�L��    
− sRl
    �−1lsRl
  ¥ ]    … �2.33 

For a totally free beam, it must be reminded that 

a matrix Ha becomes single. Via, this case can be 

controlled to a few extension by imaginary deliver 

springs to the edges of a beam with the littlest 

stiffness. It has been exhibited in [19]. In such 

remediation via the matrix might be unconditional. 

Although, the functions are much more appropriate 

for a specific condition and can be instantly applied 

in the method of Rayleigh-Ritz as the permissible 

functions.  

By applying Eqs. (2.28) and (2.31), Eq. (2.22) can 

be expressed as 

1�O =  Jl¦lR �Ou
l0�

                                … �2.34 

Where ¦lR �O = cos sRlO+ �R�O�R7�fRl             … �2.35 
Mathematically, Eq. (2.34) suggests that all of the 

functions of the beam shown as a function in the 

practical area with the principal functions 

{¦lR �O: w = 0‚ 1‚ 2‚ … … … }. Therefore, Eq. 

(2.21) expressed as: 
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1�O‚Q =  klm¦lR �O¦mS�Qu
l,m0�

          … �2.36 

Where ¦mS�Q = cos sSmQ + �S�Q�S7�fSm          … �2.37 

The terms for �S�Q‚�S JG9 fSm can be, 

correspondingly, found from Eqs. (2.30), (2.32) 

and (2.33) by little shifting the x- concerning 

parameters by the y- concerning. 

 

2.5 Determination of the Natural Frequency 

Under in-Plane Thermal Buckling Load 
 

Substituting Eqs. (2.5) and (2.7) in Eq. (2.4), the 

total mechanical energy can be written in the 

following expressions: B
= 12 ! ! KL�� MN
1NO
 P
 + L

 MN
1NQ
 P
R

�
S

�
+ L�� M2N
1NONQ P
 + 2 ML�
 N
1NO
 N
1NQ
 PT 9O 9Q
+ 12 ! U@V�1
 + WV� XN1NO Y
ZV0�  9QS

�
+ 12 ! U@V�1
 + WV� XN1NQ Y
ZV0R  9QS

�
 

+ 12 ! U@[�1
 + W[� XN1NQ Y
Z[0� 9OR
�

+ 12 ! U@[�1
 + W[� XN1NQ Y
Z[0S  9O R
�

 
− 12 ! ! U\V] XN1NO Y
 + \[] XN1NQ Y
Z  9O 9QR

�
S

�− 12 `
 a 231
 9O 9Q                               … �2.38 

Where the transverse displacement (13 is 

substituted as mentioned in section (2.4). 

To calculate the natural frequency under in 

plane thermal buckling load action; \V] is left as a 

known ratio of the critical thermal buckling 

load \D]̈ . Performing the required mathematical 

processes (integrations and differentiations) of Eq. 

(2.38) and using Ritz method we get: NBNklm = 0                                                       … �2.39 

Eq. (2.39) gives homogenous equations as follow: ©�klm‚\VV] ‚`�= 0   ©Fª «¬gªJI¬FG G9®ª ¬GI¬J¯ Iℎ®ªwJ¯ HIª®HH                                         … �2.40 

Solving Eq. (2.40) as an Eigen-value problem 

which is written as below: 

K J�‚� ⋯ J�‚�l∗m⋮ ⋱ ⋮J�l∗m‚� ⋯ J�l∗m‚�l∗mT µ k��⋮klm
¶ = 0 

                                                                  …�2.41 

Where J·¸ are the coefficients of the nonzero 

unknowns klm. Finding the determinant of the 

first term of Eq. (2.41) and equating it to zero will 

lead to get the natural frequencies ` under intial thermal stress \D]̈  When M and N 

are more than 1, the natural frequencies ` under intial thermal stress \D]̈  is determined 

by solving the Eigen value problem. For different 

edge conditions and M and N greater than 1, the 

solution becomes more difficult and needs 

computer programming to find natural frequencies. 

In this study MATLAB R2017b is used to 

numerically solve the Eigen value problem to find 

the natural frequency under thermal buckling 

action.  

 

 

3. Numerical Result  
 

The natural frequency under the ratio of thermal 

buckling of composite laminated plate with the 

general elastic boundary condition is analyzed and 

solved using MATLAB R2017b. To verify the 

derived equations and performance of computer 

programming for vibration analysis of composite 

laminated plate, the numerical results of composite 

laminated plate were compared with those obtained 

by other researchers and those obtained by 

numerical program ANSYS. The frequencies are 

investigated with the effect of the in-plane thermal 

loading which is ratio of critical thermal buckling 

load. Several considerations are presented to 

investigate the frequency. In case of in-plane 

action, a ratio (d) of critical thermal load is applied. 

The effective ratio (d) is studied to present the 

behavior of the plate and its frequency. The 

dimensionless fundamental frequency for all edges 

simply supported symmetric cross-ply [0/90/0] 

square plates under two sets of thermal loading 

conditions with various side-to thickness ratios are 

obtained and presented in Table 1 along with those 

available in the [1], used a finite element method 

based on higher order shear deformation theory. 

From the table, as expected natural frequencies 

decrease with increasing temperature and thickness 

ratio due to reduced plate stiffness it can also be 

seen that the present results are in good agreement. 

The material properties are: 
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Table 1, 

Dimensionless first mode frequency�¼� = ¼½¾¿ÀÁÂ Ã¿⁄ Å⁄ �, for [0 90 0] plates under different load temperature) 

 
 

Also obtained natural frequencies under 

different load temperature are compared with the 

results that obtained by [17], which they applied 

the classical laminate theory (CLT) and first order 

shear deformation theory (FOSDT) as listed in 

Table 2. As expected natural frequencies decrease 

as the temperature increase due to reduction of 

plate stiffness, a rectangular laminated plate with 

dimensions 600 × 400 × 5 mm3 is considered. The 

plate is composed of five layers with equal 

thickness. The orientations of the layer are 

[0/90/0/90/0], it can also be seen that the present 

results are close to results from Ref. [17]. The 

material property of each single layer is: 
 

 

 

 

 

 
 
Table 2, 

Comparisons of natural frequencies (Hz) at different temperatures, ΔTcr=95.124. 

 
 

Fundamental natural frequency of square plates 

with various boundary conditions under different 

thermal buckling load ratio (d), is calculated and 

listed in Tables 3 and 4 for symmetric cross 

laminated plates and anti-symmetric angle ply 

which give small error when compared with results 

obtained by numerical program ANSYS. Stiffness 

of the plate with the clamped along two or four 

edges was greater than any other boundaries, 

therefore it vibrates with a higher frequency. In 

other hand, the frequency of the SFSF plate is 

minimal due to low stiffness. It is clear that the 

frequency was less than frequency that found 

without loading because of the reduced stiffness 

due to thermal loading.  

The aspect and modulus ratios schemes of 

laminated plate for simply supported are changed 

in Table 5, the results of the frequency under 

thermal load ratio (d=0.5) and compared with those 

obtained by numerical program ANSYS, it can be 

noted that the frequency decreases with increasing 

the aspect and increases when the modulus ratio 

increases, due to stiffness changes.  

Figure (2), shows the first four mode shapes of the 

laminated plate for CFFF symmetric cross ply in 

the reference temperature environment of the same 

materials properties in tables 3 and 5. 

 
 

 

 

E1 E2 G13=G12 G23 

40*E2 6.92Gpa 0.6*E2 0.5*E2 

12v α1 α2 

0.25 1.14*10-6/0K 11.4*10-6/0K 

Discrepancy % [1] Present 

Temp. 
a/h=50 a/h=20 a/h=50 a/h=20 

a/h=50 

ΔTcr=223.451 

a/h=20 

ΔTcr=1401.64 

0.656 7.077 18.7871 17.483 18.9 18.8145 0 

11.234 5.5534 16.2855 17.172 14.456 18.1817 100 

E1 E2 G13=G12 G23 

132Gpa 10.3Gpa 6.5Gpa 3.91Gpa 

v12 α1 α2 ρ 

0.3 
1.2*10-

6/0C 

2.4*10-

6/0C 

1570 kg/m3 

80 60 40 20 0 Temp 

82.46 123.6 154.131 179.54 201.65 Present 

66.1 116.19 149.89 176.91 200.02 [17] 

19.84 6 2.75 1.465 0.81 Discrepancy % 
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Table 3, 

Dimensionless first mode frequency�¼� = ¼½¾¿ÀÁÂ Ã¿⁄ Å⁄ �, for [0 90 90 0] plates under different load ratios of 

critical buckling temperature for different boundary conditions, (ÃÆ Ã¿⁄ = ÆÇ‚ ÈÆ¿ = É. ÇÃ¿ ‚È¿Ê =É. ÊÊÇËÃ¿‚ÌÆ¿ = É. Ê‚ �Æ = É. ÉÆÇÍ − Ë‚ �¿ = ÆÍ − Ë ¾ = Î‚  ¾Å = ÆÉÉ. 

 
Table 4, 

Dimensionless first mode frequency�¼� = ¼½¾¿ÀÁÂ Ã¿⁄ Å⁄ �, for [30/-30]4 plates under different load ratios of 

critical buckling temperature, (ÃÆ Ã¿⁄ = ÆÇ‚ ÈÆ¿ = É. ÇÃ¿‚ È¿Ê = É. ÊÊÇËÃ¿‚ÌÆ¿ = É. Ê‚ �Æ = É. ÉÆÇÍ − Ë‚ �¿ =ÆÍ − Ë ‚¾ = Î‚ ¾Å = ÆÉÉ. 

 
Table 5, 

Dimensionless first mode frequency �¼� = ¼½¾¿ÀÁÂ Ã¿⁄ Å⁄ �, for [0 90 90 0] (SSSS) plates with effect of aspect and 

modulus ratios, (ÈÆ¿ = É. ÇÃ¿‚ È¿Ê = É. ÊÊÇËÃ¿‚ÌÆ¿ = É. Ê‚  �Æ = É. ÉÆÇÍ − Ë‚ �¿ = ÆÍ − Ë ‚  ¾Å = ÆÉÉ natural 

frequency under load ratios of critical buckling temperature d=0.5). 

 

 

 

 

d References CCCC SSSS SCSC CCCF SSSF SFSF CFCF 

0 

MATLAB 26.4 15.53 24.26 12 6.87 4.1 9.283 

ANSYS 25.63 15.66 23.54 11.5 6.675 3.632 8.671 

Discrepancy % 3 0.83 3 4.167 2.84 11.4 6.6 

0.25 

MATLAB 22.86 13.45 21.33 10.38 6 3.537 8.04 

ANSYS 22.06 13 20.5 10.4 5.86 3 7.56 

Discrepancy % 3.5 3.346 3.89 0.2 2.33334 15.2 6 

0.5 

MATLAB 18.6676 11 18 8.5 4.86 2.8878 6.56 

ANSYS 17.68 10.353 17 9.2 5.0845 2.37 6.24 

Discrepancy % 5.3 5.882 5.556 7.61 4.4 18 4.88 

0.75 

MATLAB 13.2 7.76 13.706 6.02 3.44 2.042 4.6415 

ANSYS 11.4344 6.86 12.35 7.7455 4.1642 1.506 4.4672 

Discrepancy % 12 11.6 10 22.277 17.4 26.25 3.77 

d References CCCC SSSS SCSC CCCF SSSF SFSF CFCF 

0 

MATLAB 27 12.5 25.02 12 5.3 4.81 11 

ANSYS 26.673 12.43 24.67 11.865 5.28 4.8 10.544 

Discrepancy % 1.2 0.56 1.4 1.125 0.377 0.208 4.1455 

0.25 

MATLAB 23.563 10.838 23.6 10.4 4.6 4.67 10.07 

ANSYS 23.124 10.75 23.32 10.8 4.57 4.25 10 

Discrepancy % 1.863 0.812 1.186 3.7 0.65 9 0.7 

0.5 

MATLAB 19.55 8.86 22.2 8.55 3.76 3.65 8.48 

ANSYS 18.773 8.757 21.88 9.6 3.7 3.63 9.056 

Discrepancy % 3.94 1.16 1.44 11 1.6 0.548 6.36 

0.75 

MATLAB 14.46 6.2876 20.7 6.1 2.667 3 6 

ANSYS 12.653 6.15 20.34 8.2 2.61 2.876 7.97 

Discrepancy % 12.5 2.2 1.74 25.5 2.14 4.127 24.7 

References a/b 
E1/E2 

5 10 15 

MATLAB 

0.5 

19.848 28.27 34.72 

ANSYS 18.77 26.76 33 

Discrepancy % 5.43 5.34 5 

MATLAB 

1 

5.88 7.4 8.654 

ANSYS 6 7.5 8.74 

Discrepancy % 2 1.33334 1 

MATLAB 

1.5 

3.814 4.54 5.17 

ANSYS 3.84 4.553 5.1 

Discrepancy % 0.677 0.2855 1.354 
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Fig. 2. Mode shape for free vibration of (CFFF) for (0/90/90/0) laminated square plate. 

 

 

4. Conclusion 

 
In the present work natural frequency of 

laminated plate with different angle schemes under 

ratios of thermal buckling load and general 

boundary conditions was developed using Ritz 

method based on a permissible function for the first 

time. Changing some design parameters such as 

thickness ratio, aspect ratio and orthotropic ratio 

are also studied, as expected fundamental 

frequency of the plate is affected by the ratio of 

initial thermal buckling load. The results present to 

this conclusions; the natural frequencies for 

laminates increase with the increase in aspect ratio 

and modules ratio E1/E2. The reduction of natural 

frequencies in angle ply laminates is much higher 

compared to cross ply laminate. The SSSS plate is 

the most sensitive against simultaneous change in 

the system properties, and thermal expansion 

coefficients, while the CCCC plate is the least 

sensitive (Clamped edges conditions offer high 

stiffness). Therefore, this investigation showed that 

this function can be used to find work natural 

frequency of laminated plate with different angle 

schemes under ratios of thermal buckling load and 

general boundary conditions. 
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 الحمل تحت العامة الحدود ذات المرنة الدعامات ذات المركبة للصفائح الحر الاهتزاز تحليل

  الأولي الحراري
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  alabas@gmail.com88mohammed*البريد الالكتروني: 

  

  خلاصةال

د معادلة الحركة اعتمتم اللوحات مغلفة رقيقة مركبة مع شرط الحدود المرنة العامة.  نبعاجالحر في ظل نسبة درجة حرارة الايتم تطوير سلوك الاهتزاز 
ة بينما تتكون وظائف الحل من دالة مثلثية ووظيفة مستمرة تضاف لضمان سلاسة كافية لوظيفة الإزاحة المتبقي (CLPT) على نظرية الألواح الرقائقي الكلاسيكية

جنبًا إلى جنب مع تقنية  Ritzتم تطوير حل إجراء معمم باستخدام طريقة كما المعدلة ،  Fourierالمسماة على الحدود ، في هذا البحث ، تم استخدام سلسلة 
بقات ، ونسبة الحمل الحراري الأولي تحليل تأثير العديد من معاملات التصميم مثل نسبة السُمك ، ونسبة العرض إلى الارتفاع ، وزوايا الطمع التخيلية.  النابض

مقارنة النتائج الحالية مع تلك التي حصلنا عليها من قبل  وتمتالظروف الحدودية المختلفة ، على الترددات الطبيعية للصفائح الرقائقي.  فضلا عنفي المستوى 
   .اً جيد ااتفاق اعطتباحثين آخرين، و

  

  

  

  

  

  

 


