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Abstract

This paper presents a robust algorithm for the assessment of risk priority for medical equipment based on the
calculation of static and dynamic risk factors and Kohnen Self Organization Maps (SOM). Four risk parameters have
been calculated for 345 medical devices in two general hospitals in Baghdad. Static risk factor components (equipment
function and physical risk) and dynamics risk components (maintenance requirements and risk points) have been
calculated. These risk components are used as an input to the unsupervised Kohonen self organization maps. The
accuracy of the network was found to be equal to 98% for the proposed system. We conclude that the proposed model
gives fast and accurate assessment for risk priority and it works as promising tool for risk factor assessment for the
service departments in large hospitals in Iraq.

Keywords: Risk factors, Neural Networks, SOM, and Risk Priority.

1. Introduction
bring the safety level below an acceptable level of

Inherent in the definition of risk management manageable risk.
is the implication that the hospital environment
cannot be made risk-free. In fact, the nature of
medical equipment to invasively or noninvasively
perform diagnostic, therapeutic, corrective, or
monitoring intervention on behalf of the patient
implies that risk is present. Therefore, a standard
of acceptable risk must be established that QUALITY DIAGNOSTICS
defines manageable risk in a real-time economic T oL AVAILABILITY
environment. PRODUCTIVITY

Risk factors that require management can be CoST ShINGS
illustrated by the example of the “double-edge”
sword concept of technology (see Fig.1) [1, 2].

For example, the purchase and installation of
a major medical equipment may only represent
20% of the lifetime cost of the equipment [3]. If
the operational budget of a nursing floor does not
include the other 80% of the equipment costs, the
budget constraints may require cutbacks where

HIDDEN COSTS
MULTIPLE OPTIONS
NEW SKILLS/RETRAINING
BUILT-IN OBSOLESCENCE
TECHNOLOGY
DEPENDENCE
NON-STANDARDIZATION
INCOMPATIBILITY
TECHNICAL LANGUAGE

Fig.1. Double-Edged Sword Concept of Risk
Management.

One computer technique under investigation

they appear to minimally affect direct patient care.
Preventive maintenance, software upgrades that
address “glitches,” or overhaul requirements may
be seen as unaffordable luxuries. Gradual
equipment deterioration without maintenance may

is the artificial neural network [4,5]. Neural
networks are tools for multivariate analysis that
can be used to estimate disease risk. They are able
to model complex nonlinear systems with
significant variable interactions. Theoretical work
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suggests that neural networks may be able to
consistently match or exceed the performance of
traditional  statistical methods [6]. Neural
networks have been used effectively in several
clinical studies, in areas including the evaluation
of radiological studies [7], the diagnosis of acute
illness [8], the prediction of intensive- care-unit
length of stay [9], the diagnosis of appendicitis
[10], the diagnosis of psychiatric disorders [11,12]
and the diagnosis of acute pulmonary embolism
[13].

In Urology, There is a good example of NN
application to diagnose prostate cancer [14]. The
purpose of this study is to develop a Kohonen-
SOM network which will determine the risk
priority based on the input components of static
and dynamics risk factors. This network will act
to help in the assessment of risk problems for
medical devices for the large Iragi hospitals.

2. Risk Management

To apply risk management to the department
of clinical engineering, one must understand the
basic components of the risk management
process. The process consists of five steps [15]:

1. Identify and analyze exposures.

2. Consider alternative risk treatments techniques.

3. Select the best technique to manage and treat
the risk.

4. Implement the selected technique.

5. Monitor and improve the risk management
program risk management program.

Reactive risk management is an outgrowth of
the historical attitude in medical equipment
management that risk is an anomaly that surfaces
in the form of a failure. If the failure is analyzed
and proper operational procedures such as, user
in-services, and increased maintenance are
supplied, the problem will disappear and the
person can return to their normal work. When the
next failure occurs, the algorithm is repeated. If
the same equipment fails, the algorithm is applied
more intensely. This is a useful but not
comprehensive component of risk management in
the hospital. In fact, the traditional methods of
predicting the reliability of electronic equipment
from field failure data have not been very
effective [1, 16].

The health care environment, as previously
mentioned, inherently contains risk that must be
maintained at a manageable level. A reactive tool
cannot provide direction to a risk-management
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program, but it can provide feedback as to its
efficiency.

Obviously, a more forward-looking tool is
needed to take advantage of the failure codes and
the plethora of equipment information available in
a clinical engineering department. This proactive
tool should wuse failure codes, historical
information, the “expert” knowledge of the
clinical engineer, and the baseline of an
established “manageable risk” environment
(perhaps not optimal but stable).

The overall components and process flow for
a proactive risk-management tool are presented in
Fig. 2 [1]. It consists of a two-component static
risk factor, a two-component dynamic risk factor,
and to two different static risk and two “shaping”
or feedback loops.

2.1. Static Risk Factors

The static risk factor classifies new equipment
by a generic equipment type: defibrillator,
electrocardiograph, pulse oximeter, etc. When
equipment is introduced into the equipment
database, it is assigned to two different static risk
(Fig. 3) categories [1,2].

The first is the equipment function that
defines the application and environment in which
the equipment item will operate. The degree of
interaction with the patient is also taken into
account. For example, a therapeutic device would
have a higher risk assignment than a monitoring
or diagnostic device.

The second component of the static risk factor
is the physical risk category. It defines the worst-
cases scenario in the event of equipment
malfunction.

The correlation between equipment function
and physical risk on many items might make the
two categories appear redundant. However, there
are sufficient equipment types where there is not
the case.

A scale of 1-25 is assigned to each risk
category. The larger number is assigned to
devices demonstrating greater risk because of
their function or the consequences of device
failure. The 1-25 scale is an arbitrary assignment,
since a validated scale of risk factors for medical
equipment, as previously described, s
nonexistent. The risk points assigned to the
equipment from these two categories are
algebraically summed and designated the static
risk factor. This value remains with the equipment
type and the individual items within that
equipment type permanently. Only if the
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would this assignment be reviewed and changed.

equipment is used in a clinically variant way or
relocated to a functionally different environment
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EQUIPMENT PHYSICAL
FUNCTION RISK
E 25  Life support 25 Patient or Operator Death
@ | 23 Surgical and IC 20 Patient or Operator Injury
g 20 Physical Therapy and 15 Inappropriate Therapy or
= Treatment Misdiagnosis
- _ 10 Patient Discomfort
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e Monitoring .
2| 15 Additional Monitoring
(=) and Diagnostic
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Fig.3. Static Risk Components.
MAINTENANCE RISK
REQUIREMENT POINTS
25 divisions based on least to Annual risk points assigned based
greatest equipment type annual an 9 risk categories
unplanned maintenance requirements
Points Risk
+1  Exceeds AHA Useful life
Initialize equipment type +2/2 PatientEmployee Injury
categories by 5% adjustment +1  Equipment Failure
within next higher category +1  Exceeds MTBF
+1  Repair Redo (<7 day turnaround)

+1  User Operational Error
+1  PM Inspection Failure
+1  Physical Damage
Equipment Type +1  PM Overdue

Scaling Factor [

Total Risk Points For Unit Devices
Minus Equipment Type Annual Risk Points

Fig.4. Dynamic Risk Components.
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2.2. Dynamic Risk Factors

The dynamic component (Fig. 4) of the risk-

management tool consists or two parts [1, 2].
The first is a maintenance requirement category
that is divided into 25 equally spaced divisions,
ranked by least (1) to greatest (25) average man
hours per device per year. These divisions are
scaled by the maintenance hours for the
equipment type requiring the greatest amount of
maintenance attention. The amount of non
planned (repair) man hours from the previous 12
months of service reports is totaled for each
equipment type.

The second dynamic element assigns
weighted risk points to individual equipment
items for each unique risk occurrence. An
occurrence is defined as by one of the following
points:

e Device exceeds the American Hospital
Association Useful Life Table for Medical
Equipment or exceeds the historical Mean Time
Before Failure (MTBF) for that manufacturer
and model

e Device injures a patient or employee

e Device functionally fails or fails to pass a PM
inspection

e Device is returned for repair or returned for
repair within 9 days of a previous repair
occurrence

e Device misses a
inspection

e Device is subjected to physical damage

e Device was reported to have failed but the
problem was determined to be a user
operational error.

planned  maintenance

3. Theory of Self Organization Maps

Kohonen networks or self-organizing feature
maps are networks, which consist only of two
layers, an input and an output layer. The output
layer of Kohonen networks can be two-
dimensional. The most important difference is that
the neurons of the output layer are connected with
each other. The arrangement of the output neurons
plays an important role. Sensorial input signals,
which are presented to the input layer, cause an
excitation of the output neurons, which is
restricted to a zone of limited extent somewhere
in the layer. This excitation behavior comes from
the back coupling of the neurons. It is essential to
know how the interconnections of the neurons
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have to be organized in order to optimize the

spatial distribution of their excitation behavior

over the layer. Neurons with similar tasks can
communicate over very short pathways.

The SOM algorithm is based on unsupervised,
competitive learning. It provides a topology
preserving mapping from the high dimensional
space to map units. Map units, or neurons, usually
form a two-dimensional lattice and thus the
mapping is a mapping from high dimensional
space onto a plane. The property of topology
preserving means that the mapping preserves the
relative distance between the points. Points that
are near each other in the input space are mapped
to nearby map units in the SOM. The SOM can
thus serve as a cluster analyzing tool of high-
dimensional data. Also, the SOM has the
capability to be generalized. Generalization
capability means that the network can recognize
or characterize inputs as it has never encountered
before. A new input is assimilated with the map
unit it is mapped to.

The optimization produces topographic maps
of the input signals, in which the most important
relationships of similarity between the input
signals are converted into relationships among the
neuron positions. This corresponds to an
abstracting  capability =~ which  suppresses
unimportant details and maps the most important
features along the map dimension. Summarized,
one can say that Kohonen networks seek to
transpose the similarity of sensorial input signals
to the neighborhood of neuron positions.

The proposed SOM algorithm is based on the
conventional SOM algorithm developed by
Kohonen [17] [18]. A sketch of a SOM topology
is shown in fig. 5. The SOM algorithm for
classification is summarized by the following
steps:

a. Initialize input nodes, output nodes, and
connection weights: Use the top (most
frequently occurring) N terms as the input
vector and create a two-dimensional map
(grid) of M output nodes. Initialize weights w;;
from N input nodes to M output nodes to
small random values.

b. Present each set in order: Describe each set
as an input vector of N coordinates..

c. Compute distance to all nodes: Compute
Euclidean distance d; between the input vector
and each output node j:

N-1

d; = > (%0 —w; (1) ()
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where xi(t) can be 1 or 0 depending on the
presence of i-th term in the document
presented at time t. Here, w; is the vector
representing position of the map node j in the
document vector space. From a neural net
perspective, it can also be interpreted as the
weight from input node i to the output node j.

d. Select winning node j* and update weights
to node j~ and its neighbors: Select winning
node j", which produces minimum d;. Update
weights to nodes j~ and its neighbors to reduce
the distances between them and the input
vector x;(t):

W; t+1)= W; O+t +1) - W; 1)
Q)

Where 5(t) is the learning parameter. After
such updates, nodes in the neighborhood of j*
become more similar to the input vector x;(t).
Here, # () is an error-adjusting coefficient (0
< (1) <1) that decreases over time.

For the neurons that lose the competition as:

w, (t+1) = w, (t) &)

Each Cutput Node is a vector of N weights

Kohanen
Laver

Input Layer -- Each Node a vector
representing N terms.

Fig.5. Kohonen SOM Topology

Kohonen’s SOM or a feature map [19]
provides us with classification rules. SOM
combines competitive learning with
dimensionality reduction by smoothing clusters
with respect to an a priori grid. With SOM,
clustering is generated by having several units
compete for (training) data The unit whose weight
vector is closest to the data becomes the winner so
as to move even closer to the input data, the
weights of the winner are adjusted as well as those
of the nearest neighbors. This is called Winner
Takes All (WTA) approach. SOM assumes some
topology among the input data. The organization
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is said to form a SOM map because similar inputs
are expected to put closer position with each other.
The flow chart of SOM algorithm is shown in
fig.6 [20].

Random weight

v

Input training data X;

'

Initialize learning

y

t=0

¢

Yes
End

NO

Find the best match

d; = 04() ()

Select winning node j: and update
weights to node j and its
neighbors:

W (£-+2) = w (£) + 7(E) Ox (£+2) - w (1)

v

Adjust 1

v

t=t+1

Fig.6. Flow Chart of SOM Algorithm [20]
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4. Data Collection and Methods Used

In this study, our survey took two large

general hospitals in Baghdad. (Al Yarmmok
Teaching Hospital and Shaheed Adnan Hospital
for Specialized Surgeries).
A report is prepared which contains the coding of
the static and dynamic risk components. These
codes will be used for calculation of the risk
factor components. The period for collecting these
reports is from September- 2008 to November-
2008.

345 reports for different medical equipment
were collected from these hospitals with the help
of the biomedical engineer in the service
department at these hospitals. A variety of
medical equipments are included in our research
starting from small to large, simple to complex
and analytic to therapeutic equipments.

A sample of the collected reports for the
calculation of risk factors components calculation
is shown in Fig. 7.

These reports are analyzed and coded to
calculate the following risk components:

i. Equipments function.

ii. Physical risk

iii. Maintenance requirements.
iv. Risk points.

The risk components report is taken from the
biomedical engineer at the above mentioned
hospitals.

The total amounts of cases for all reports in
this study have been divided into two groups. One
for the training process (290 cases) and the other
group for testing of the proposed network (55
cases). MATLAB Software package version 7 is
used to implement the software for the current
work. A sample of the testing data for forty cases
is shown in Table 1.

A total set of 345 feature vectors each one with
four risk components is prepared to be as an input
to the proposed SOM. Then the SOM network
will give us the risk priorities based on the input
data.

5. Training and Testing

The network was trained with all of 290
training data sets. These 290 training data sets are
fed to the Kohonen SOM with four neurons.

The Kohonen learning rate is set to 0.01. The
output of the SOM network was 1,2,3,4 and 5;
this means that we have a 1%, 2" 3 4" and 5"
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degree of risk priority respectively. The 1% and the
5" degree of risk priority represent the minimum
and maximum risk priority whereas the 3" degree
represents the moderate risk degree. The
remaining 2" and 4" degree are the low and high
risk priority.

The training set is grouped into one matrix
with dimension of (290x4). This matrix is fed to
the input layer of SOM.

After 100 epochs, the network finished the
training process. When the training process is
completed for all of the training data sets (290
cases), the last weights of the network were saved
to be ready for the testing procedure. The training
process took 7.1 second.

The testing process is done for 55 data sets.
These 55 data sets are fed to the network and their
output is recorded for calculation of the accuracy
of the network. The time for running the
algorithm for testing process was 1.3 second.

6. Results and Discussion

The performance of the algorithm was
evaluated by computing the percentage and
accuracy of the network. The definition of
accuracy of proposed network is [21]:

Correct identification .
X100% ... (4)

Accuracy=
Total no. of cases

The obtained accuracy of assessment with the
time to run the algorithm is shown in Table 2.

In our study, the use of SOM has been
proposed for risk priority assessment for medical
equipments by means of calculating the risk
factors components (Equipments, function,
physical risk, maintenance requirements and risk
points) from reports of risk factors. The obtained
accuracy of proposed network was found to be
98%. This means that the proposed model falls
only one time to assess the risk priority (only one
misidentification from the total 55 set of testing
data). This is regarded a very robust and the
system is reliable when there is a little number of
misclassification. The time needed to test the
proposed algorithm was 1.3 sec. which is
relatively short time and can be helpful in
minimizing the time needed to assess the status of
risk of the medical equipment in the hospitals.
Based on the obtained result, it showed that the
algorithm can be reliable purposes in the service
departments of large hospitals.
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Table 1,
Data Used for Testing of the SOM Network
No. _ Dev Equip. Phy_sical Main_tenance. R!sk Risk F_Qisl_< Ou;E)ut
ice Name Function Risk Requirements Points Factor Priority SOM
1 Carbon dioxide gas analyzer 13 15 5 0 33 2 2
2 Carbo“arr]‘;‘l’;fexr'de gas 13 15 5 0 33 2 2
3 Oxygen gas analyzer 13 15 5 3 36 2 2
4 Monitoring spirometer 15 15 5 0 35 2 2
5 Gas pressure gauge 10 15 4 0 29 2 2
6 Anesthesia breathing circuit 25 20 10 0 55 3 3
7 Breathing gas mixer 25 20 10 0 55 3 3
8 Electro anesthesia apparatus 25 20 12 3 60 3 3
9 Nebulizer 20 15 5 0 40 2 2
o Nl s s 2 w2
11 Densitometer 15 15 3 6 39 2 2
12 Angiographic injector 10 5 6 6 27 2 2
13 Stethoscope 5 5 0 0 10 1 1
14 Cardiac monitor 18 15 11 8 52 3 3
15 Ultrasound 18 15 3 6 42 3 3
16 Electrocardiograph 18 20 3 12 53 3 3
17 Phonocardiograph 15 10 6 3 34 2 2
18 Pulse Oximeter 15 15 2 3 35 2 2
19 Intra-aortic balloon 25 25 17 14 81 5 5
20 External pacemaker 23 20 2 14 59 3 3
21 Implantable pacemaker 23 20 2 14 59 3 3
22 DC-defibrillator 23 25 5 14 67 4 4
23 Blood Pg/(;)tg;nPOZ test 13 15 3 7 38 2 2
04 oWl i@‘s"tgfffm' test 13 15 3 7 38 2 2
25 Creatine test system 13 15 3 8 39 2 2
26 Blood spe(éler?/iecr:e collection 13 15 3 8 39 2 2
27 Uric acid test system 13 15 2 8 38 2 2
28 Spec%?';’nhiggl’t‘ier for 13 15 3 9 40 2 2
g ~ EXira OrS;SS‘t‘;‘rJT:CE x-ray 15 5 4 14 38 2 2
30 Intraoral source x-ray system 15 5 4 11 35 2 2
31  Dental chair and accessories 5 10 3 7 25 2 2
32 Boiling water sterilizer 0 5 1 7 13 1 1
33 Audiometer 5 15 1 3 24 2 2
34 Auditory impedance tester 5 15 2 3 25 2 2
35 Hearing Aid 5 15 1 3 24 2 2
36 Laryngostroboscope 5 5 1 3 14 1 1
37 Otoscope 5 5 1 3 14 1 1
38 electronic thermometer 5 15 2 3 25 2 2
39 infant radiant warmer 5 0 3 3 11 1 1
40 infant incubator 5 0 2 0 7 1 1
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Table 2,
The Results After Training of the Proposed
Network

No. of
cases

Accuracy of the

network Time

SOM 55 98% 138§

7. Conclusions

In this paper, it has implemented a robust
algorithm for risk priority assessment of medical
equipments based on SOM and risk factor
components. Three hundred and forty five reports

were taken from two general hospitals in
Baghdad. These reports are used for the
calculation of the risk factor components.

MATLAB software package version 7 was used
to implement the software in the current work.
Four risk components Equipments, function,
physical risk, maintenance requirements and risk
points) were calculated for the collected data sets.
These components which represent the static and
dynamic risk factors for the medical equipment.
These risk components were carried out to
generate training data for the SOM and to assess
risk priority. These components are fed to the
SOM network.

The accuracy is calculated to evaluate its
effectiveness of the proposed network. The
obtained accuracy of the network was found to be
equal to 98%.

The biomedical engineer can use the proposed
algorithm to deploy technical resources in a cost-
effective manner. In addition to the direct
economic benefits, safety is enhanced as problem
equipment is identified and monitored more
frequently. The integration of a proactive risk-
assessment tool into the equipment management
program with the use of NN can more accurately
bring to focus technical resources in the health
care environment..

Individually, the biomedical engineer cannot
provide all the necessary components for
managing risk in the health care environment.
Using historical information reports of the
medical device and the computer algorithms to
only address equipment-related problems, after an
incident, is not sufficient. The use of a proactive
risk-management tool is necessary.

Based on the obtained accuracy, it can be
concluded that that the proposed system gives
faster and more accurate risk assessment
compared with human work and acts as promising
tool for assessing the risk factor in the service
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departments in large hospitals in Irag. Also it will
save the time and labor for the hospitals and
eliminate the time consuming procedures for
calculation of risk priority.

In summary, superior risk assessment within a
medical equipment management program requires
better use of  computer algorithms,
communication, and information analysis by the
use of NN and distribution of the resulted risk
priorities among all health care providers.
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