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Abstract 
 

Akaike’s Information Criterion (AIC) is a popular method for estimation the number of sources impinging on an 

array of sensors, which is a problem of great interest in several applications. The performance of AIC degrades under 

low Signal-to-Noise Ratio (SNR). This paper is concerned with the development and application of quadrature mirror 

filters (QMF) for improving the performance of AIC. A new system is proposed to estimate the number of sources by 

applying AIC to the outputs of filter bank consisting quadrature mirror filters (QMF). The proposed system can estimate 

the number of sources under low signal-to-noise ratio (SNR). 

 

Keywords: Akaike’s information criterion (AIC),  quadrature mirror filters (QMF). 

 

 

1. Introduction 
 
 The Quadrature Mirror Filters (QMF) has 

diffused into most signal processing applications. 
It plays a very important role in the denoising of 

signals since it gives an effective, informative and 

compact description of the analyzed signals. In 
1988, Mallat produced a fast wavelet transform. 

The Mallat algorithm for discrete wavelet 

transform (DWT) is known as quadrature mirror 
filters (QMF) [1-3].This property also endows 

wavelets with a remarkable aptitude for denoising 

by means of a simple nonlinear thresholding filter. 

Mallat and Hwang first showed that effective 
noise suppression may be achieved by 

transforming the noisy signal into the wavelet 

domain by QMF, and preserving only the local 
maxima of the transform. A wavelet 

reconstruction that uses only large-magnitude 

coefficients has also been shown to approximate 

well the uncorrupted signal; in other words, noise 
suppression is achieved by thresholding the 

wavelet transform of the contaminated signal. 

 The problem of estimating the number of 
sources impinging on a passive array of sensors 

has received a considerable amount of attention 

during the last two decades. The first to address 
this problem were Wax and Kailath. In their 

seminal work it is assumed that the additive noise 

process is a spatially and temporally white 
Gaussian random process. Given this assumption, 

the number of sources can be deduced from the 

multiplicity of the received signal correlation 
matrix’s smallest eigenvalue [4]. In order to avoid 

the use of subjective thresholds required by 

multiple hypothesis testing detectors, Wax and 

Kailath suggested the use of the Akaike’s 
Information Criterion (AIC)[5] for estimating the 

number of sources. The AIC estimator can be 

interpreted as a test for determining the 
multiplicity of the smallest eigenvalue [5], but its 

response degrades under low Signal to Noise 

Ratio (SNR) condition due to errors in estimation 
the data covariance matrix from finite data. In this 

paper, a new system is proposed to determine the 

number of sources using AIC and QMF bank. The 

method can estimate the number of sources under 
low SNR environment.   

 

 

2. Quadrature Mirror Filter  
  

 Quadrature mirror filters (QMF) is the Mallat 
algorithm for discrete wavelet transform (DWT), 

it analyses a finite-length time-domain signal at 



Mohammed H. Miry                           Al-Khwarizmi Engineering Journal, Vol.5, No. 4, PP 51-57 (2009) 
 

52 

different frequency bands with different 

resolutions by successive decomposition into 
coarse approximation and detail information as 

shown in Fig (1). Approximations represent the 

slowly changing features of the signal and 
conversely details represent the rapidly changing 

features of the signal. The impulse response of the 

decomposition and reconstruction QMF pairs are 

related by[6] 
 

 )1()1()( 1'   nhnl n
 

 )1()1()( 1'   nlnh n
                          …(1) 

 

Where h(n) and l(n) are the low-pass and the high-

pass FIR filters of decomposition QMF and h
'
(n) 

and l
 '
(n) are the low-pass and the high-pass FIR 

filters of reconstruction QMF. The decomposition 

level of QMF bank is denoted by M (select a 
suitable number of levels based on the nature of 

the signals, or on a suitable criteria such as 

entropy). The wavelet de-noising approach is 

based on the assumption that random errors in a 
signal are present over all the coefficients while 

deterministic changes get captured in a small 

number of relatively large coefficients. As a 
result, a nonlinear thresholding (shrinking) 

function in the wavelet domain will tend to keep a 

few larger coefficients representing the underlying 

signal, while the noise coefficients will tend to 

reduce to zero. Practically, the wavelet denoising 
method consists of applying the QMF bank to the 

original noisy data, thresholding the wavelet 

coefficients, and then inverse transforming the 
thresholded coefficients to obtain the time-domain 

de-noised data [7]. It should be noted that the 

performance of the wavelet de-noising depends to 

the choice of the thresholding rule, the type of 
wavelet, the maximum depth of wavelet 

decomposition and the initial SNR. 

 In this paper, we use soft thresholding method 
to eliminate noise from noisy data. According to 

soft thresholding method, the wavelet coefficient 

between -δ and δ is set zero [8], while the other 
are shrunk in absolute value. The threshold δ 

proposed by Donoho is   
 

 )log(2 N                                      …(2) 

 

where N is the total number of samples and σ is 

the standard deviation of noise. In order to apply 
this method in practice, one usually needs to 

estimate σ. Donoho & Johnstone suggest using as 

an estimator the median of the coefficients on the 
finest level divided by 0.6745 which usually 

works well as long as the signal is contained 

mainly in the low frequency coefficients [8].
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Fig.1. Structure of the QMF Bank. S = Signal, L = Low-Pass Decomposition Filter; H = High-Pass 

Decomposition, L' = Low-Pass Reconstruction Filter; H' = High-Pass Reconstruction Filter Filter;         
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3. AIC Principle 
 

 The array model assumes the presence of q 

sources impinging on an p-channel array 

according  to [9]  
 

 ZASY                                              …(3)     
  

where 
NPY   denotes the multichannel 

observations in the sampled time interval nTt  , 

where n is an integer, 
qPA   denotes the 

mixing (steering) matrix, 
NqS  denotes the 

source signal matrix, and 
NPZ  denotes an 

additive Gaussian noise component with 

nontrivial temporal and spatial covariance 
matrices. It will be assumed that within the N 

snapshots consisting the analysis window, no 

more than pq  sources is present. The matrix S 

is full rank when all the q sources are 

independent. When S is rank-deficient, this 

usually means that either the source signals have 
correlated waveforms, or subsets of the signals are 

perfectly coherent, i.e., at least one of the signals 

is just a scaled and delayed version of another 
signal. This type of situation arises when the 

multipath phenomenon occurs, i.e., a direct signal 

path and one or more indirect paths are received 

by the array in which case the signals are not 
independent. On the other hand, the columns of 

the matrix A represent the array response due to 

each of the q signals impinging on the array. Each 
column depends only on the geometrical 

construction of the array and the directional 

response of the sensors. Generally speaking, if the 

array is properly designed and the sources are 
independent and treated as point sources, A will 

be full rank. A can also be rank deficient when the 

propagating medium has nonstationary 
characteristics, or in some sense anisotropic. This 

situation can very likely arise in a 

neurophysiological experiment. First, consider the 
noise free observations given by the product 

matrix X = AS. If A or S has rank less than q, X 

will also have rank less than q. If there are q ≤ p ≤ 

N independent rows in X, then this matrix is said 
to have a P-dimensional range or row space, 

which is a subspace of the M-dimensional 

Euclidean space ℜM
 . The rank of this matrix is 

the dimension of this subspace. The spatial 

covariance of X when spectrally factored yields 
 

   T

XXX

T

X UDUXXER ..                 …(4) 

 

where 
pp

XD  is a diagonal matrix 

containing the rank ordered eigenvalues 

0.................. 121   pqq  o

f RX. If there are q signal sources, the largest q 
eigenvalues correspond to the q sources and the 

first q columns of the unitary matrix UX span the 

signal subspace. The remaining p-q eigenvalues 

are equal to zero with probability one. In practice, 
the finite sample size and the presence of noise 

amount to estimating the sample eigenvalues 

0.................21  pq   from the 

sample covariance matrix [10-11] 
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The remaining p-q eigenvalues are no longer 

equal to zero and the corresponding p-q 
eigenvectors span the noise subspace. When the 

noise is cross correlated with the signal of interest, 

RY can be expressed as 
 

 
T

ZSSZZ

T

SY ARARRAARR     …(6) 

 

where sR  is the autocorrelation of signal, zR  is 

the autocorrelation of noise, szR  is the 

crosscorrelation between the signal and noise and 

zsR  is the crosscorrelation between the noise and 

signal. The presence of the cross covariance terms 

shrinks the separation distance that should be 
observed to determine the subset of eigenvalues 

belonging to the signal subspace because of the 

mutual correlation of the sample eigenvalues, 
making it practically impossible to determine q. In 

good SNR conditions, the separation between the 

signal and noise subspaces is easily obtained. In 

low SNR conditions, this separation does not 
yield easily and the source detection problem 

amounts to the so-called sphericity test to 

determine the multiplicity of the smallest p-q 
eigenvalues using the Akaike’s Information 

Criterion (AIC) [5]  
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where il denote the eigenvalues of 
^

R . The 

number of signals is taken to be the value of 

 1,......,1,0  pK for which AIC is minimized. 
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4. Proposed Model 
 

 Figure 2 shows the block diagram of the 

proposed system to estimate the number of 

sources. The main procedure of the system is 
described as follows. First, the signals are 

received by antennas. Next, these signals are 

processed by the QMF bank. Then, in every bank, 

the channel that exceeds threshold level (δ) as 

compared with other channels will be chosen at 
the selection unit. The selected channel’s output 

data is applied to IDWT (inverse of discrete 

wavelet transform). The output of IDWT is used 
to compute its covariance matrix. Finally AIC is 

calculated to estimate the numbers of sources. 
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4.1. Selection Unit 
 

 Figure 3 shows the structure of selection unit. 

The role of the unit is to select the channel that 

exceeds threshold level (δ) as compared with 

other channels. In every bank, the soft threshold is 

applied to the output of QMF bank. The gate 
switches are simultaneously closed when the 

output of QMF banks exceeds threshold level (δ) 

 

 

 
Table 1, 

The Response of the AIC Method With Two Sources  

K 0 1 2 3 4 5  6 7 
Classical 

System 

AIC(K) 1505.5 25.7 * 31.6     114.6     225.9     389.8     703.5     1615.9 

Modified 

System 

AIC(K) 1875.4 87.7     41.1 *    49.1     171.3     353.5     703.5     1724.8 

* refers to the minimum value 
 

 
 
Table 2, 

The Response of the AIC Method With Three Sources 

K 0 1 2 3 4 5 6 7 8 9 10 

Classical 

System 

AIC(K) 1371.1 96.4 29* 98.2 190.6 280.4 368.1 455.8 541.2 625.6 710.2 

Modified 

System 

AIC(K) 19451.5 263.7 157.3 38.6* 124.4 411.2 1204.1 1637.3 1872.1 1017.5 791.9 

 
Table 2, 

Continue  

K 11 12 13 14 15 16 17 18 19 20 21 

Classical 

System 

AIC(K) 811.2 903.5 1004.8 1120.1 1255.6 1431.3 1673.9 2077.0 2816.4 4978.5 5816.3 

Modified 

System 

AIC(K) 682.0 619.7 581.3 558.1 544.5 537.7 536.5 539.9 547.2 557.7 554.3 

* refers to the minimum value 
 

 

 

5. Simulation and Results 
 

 In order to compare the performance of the 
above proposed system with classical system 

(without applying proposed model for AIC 

method), we consider two cases with different 
values for SNR, the number of sources and 

direction of arrival for the sources.  The first case,  

A uniform linear array (ULA) of 8 sensors is 
consider with a half-wave length inter-element 

spacing, used to separate two uncorrelated 

emitters based on a batch of N=100 data samples 

with SNR=13 dB. The first source is at 50
o
 while 

the second source is at 55
o
.  It is noticed the 

response of classical system shown in table(1), the 

minimum value of AIC is obtained incorrectly for 

K = 1. The parameter are used in proposed system 
include Daubechies wavelet (db18) and one level 

decomposition, the response of proposed system 

shown in table (1), the minimum value of AIC is 

obtained correctly for K = 2. The second case,  A 
uniform linear array (ULA) of 22 sensors is 

consider with a half-wave length inter-element 

spacing, used to separate three uncorrelated 
emitters based on a batch of N=100 data samples 

with SNR= 2 dB. The first source is at 50
o
, the 

second source is at 52
o
, while the third source is at 

54
o
.  It is noticed the response of classical system 
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shown in table (2), the minimum value of AIC is 

obtained incorrectly for K = 2. The response of 
proposed system shown in table (2), the minimum 

value of AIC is obtained correctly for K = 3. 

Through comparison between the responses of 
classical system with the responses of proposed 

system, it is seen that the first does not yield the 

correct number of the sources but the proposed 

model gives the correct number of the sources as 
seen in table (1) and table (2). 

 

 

6. Conclusion 
 

 In this paper, we have introduced a new 

system to determine the number of sources by 

applying AIC to the outputs of filter banks 
consisting QMF. In the paper, the classical system 

and proposed system are compared through 

simulation. The proposed method can give good 
estimation for the number of the sources even if 

low SNR environment while the classical system 

is fail under low SNR. The QMF in proposed 
model helps to reduce the error of the array data 

covariance estimated from finite data and thus 

reduce the error of the AIC estimation. 
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 لحسمة   أزالة التشوٌه  بالأعتماد علىAkaikeمعٍار معلومات تطوٌر تخمٍن 

 مرشح مربع المرأة
 

 محمذ حسٍن مري
 الجبهعت التكٌىلىجٍت/ قسن الهٌذست الكهزببئٍت و الألكتزوًٍت

 

 

 

الخلاصة 

والتً تعتبز ههوت فً العذٌذ هي ,   هً طزٌقت هعزوفت لتخوٍي عذد الوصبدر الوزتطوت  بٌظبم الوتذسسبث Akaike (AIC)هعٍبر هعلىهبث 

هذا البذث هختص بتطىٌز و تطبٍق هزشخ هزبع .  واطئت(SNR) تصبخ سٍئت عٌذهب تكىى ًسبت الأشبرة الى التشىٌه (AIC)اى أستجببت طزٌقت .التطبٍقبث

 على ًتبئج دزهت هزشخ ٌذتىي على  (AIC)ًذي أقتزدٌب ًظبم جذٌذ لتخوٍي عذد الوصبدر بىاسطت تسلٍط   . (AIC)  لتذسٍي استجببت(QMF)الوزأة 

 .  واطئت(SNR)الٌظبم الوقتزح ٌستطٍع تخوٍي عذد الوصبدر عٌذهب تكىى ًسبت الأشبرة الى التشىٌه  . (QMF)هزشخ هزبع الوزأة  

 

 

 

 


