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Abstract 

 
 The design and implementation of an active router architecture that enables flexible network programmability based on so-

called "user components" will be presents. This active router is designed to provide maximum flexibility for the 

development of future network functionality and services. The designed router concentrated mainly on the use of Windows 
Operating System, enhancing the Active Network Encapsulating Protocol (ANEP). Enhancing ANEP gains a service 

composition scheme which enables flexible programmability through integration of user components into the router's data 

path. Also an extended program that creates and then injects data packets into the network stack of the testing machine 

will be proposed, we will call this program the packet generator/injector (PGI). Finally, the success of the node 

architecture and its prototype implementation is evaluated by means of a few practical applications. 

 
 

Keywords: Active Network, Active Router, User Components, Windows Operating System, Active Network Encapsulation (ANEP), 
Packet Generator /Injector (PGI). 

 

 

1. Introduction 

 
 "Active networks allow individual user, or 

groups of users, to inject customized programs 

into the nodes of the network.”Active" 
architectures enable a massive increase in the 

complexity and customization of the computation 

that is performed within the network, e.g., that is 
interposed between the communicating points." 

 In traditional networks an intermediate node 

executes ordinary computations on packets. All 

packets are treated in the same way: nodes only 
forward packets towards the right destination. 

Instead, an active node makes difference between 

packets. They contain programs that have to be 
executed on them. The difference between a 

traditional network (store-and-forwarding model) 

and an active one (store-compute-and-forwarding 
model) is that, in traditional network the delivery 

process is static, relatively passive, because all 

packets are treated individually. While in active 

network delivery process is dynamic, where the 
packets become smarts, i.e., they contain their 

own handling instruction that enable these packets 

to arrive, execute, and move to their destination 

[1]. A key characteristic of this technology is the 

ability to rapidly create, deploy and manage new 

network services in response to user demands. 
 

 

2. Literature Survey 

 
 Since the focus of the work presented in this 
paper concerns the development of active node 

architecture, this section focuses primarily on 

completed works in active systems design. 

 D. J. Wetherall and D. L. Tennenhouse have 
first pursued the idea of placing program 

fragments into internet protocol (IP) packets as 

part of the ActiveIP project [6, 7]. Initially, they 
studied the potential of placing small programs 

within the option fields of IP packets. These so-

called active options, encoded in Tcl [5] language 
in their prototype implementation, were executed 

by modified network nodes as the packets 

traversed the network. 

 Active Node Transfer System (ANTS) [8, 2], 
provides a capsule programming model. Capsules 

are packets that encapsulate data with a 

customized forwarding code. Applications use the 
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network by sending and receiving capsules via 
active nodes. When a capsule arrives at an active 

node, the type field is used for de-multiplexing to 

the corresponding forwarding routine, before the 
corresponding routine is executed to forward the 

capsule. ANTS provide active node application 

programming interface (API) calls to query the 

node environment. The demand-pull mechanism 
is used to obtain code from the previous node that 

the capsule visited. The ANTS prototype is 

implemented in Java under UNIX operating 
system. 

 The Smart Packets project [9], emphasizes 

particularly on applying active networking 

technology to network management. It aims at 
addressing scaling problems that are inherent in 

typical polled managed devices rather than aiming 

for general transport mechanisms such as ANTS. 
Smart packets are encapsulated within ANEP 

packets and ANEP packets are encapsulated 

within an IP packet using a specific option (router 
alert). The Smart Packets architecture expects all 

programs to fit within one Ethernet maximum 

transmission unit (MTU). There is no existing 

language that had a compact enough 
representation for Smart Packets environment. As 

a result, Sprocket [10] and Spanner [11] 

languages are developed as part of the Smart 
Packets project. 

 Switch Ware Active Network Architecture 

[12], consists of three layers: active packets, 
active extensions and a secure active router 

infrastructure. Active packets carry programs 

consisting of code and data to replace both the 

header and payload of traditional packets. As a 
consequence, a new programming language for 

Active Networks, known as PLAN [13, 14], is 

designed and implemented. Active extensions 
[15], which are not mobile, form the middle layer 

of SwitchWare architecture. They communicate 

with other routers via active packets. It is 

programmed in Caml. A secure active router 
infrastructure forms the lowest layer of 

SwitchWare architecture. It provides a secure 

foundation on which the other two layers are built. 
Secure Active Network Environment (SANE) 

[16] is designed to embody secure active router 

infrastructure. The role of SANE is to ensure that 
the presumptions of the other system elements are 

true. 

 MIT's Click [17] is software architecture for 

building flexible and configurable routers. A 
Click router is "configured" from packet 

processing modules called elements. Individual 

elements support simple router functions such as 
packet routing, queuing, or scheduling. A 

complete router configuration is defined by a 
directed graph whose nodes are the elements. A 

Click router configuration is determined at 

compile time. The elements are internally 
represented by C++ objects that are inter-linked 

with each other through object references under 

Linux OS. Packet passing between functional 

elements is thus simply a matter of passing 
memory pointers between objects. 

 Router Plugins [18], aims to build a flexible 

network subsystem that offers the ability to select 
implementations (or even instances of the same 

implementation) of router components, called 

plugins, on a "per-flow" basis. Plugins are binary 

code modules that can be dynamically loaded and 
unloaded into the router kernel at run-time. 

NetBSD, which is used as the base platform for 

Router Plugins, provides appropriate kernel 
support to load modules into the kernel. The 

Plugin Control Unit (PCU) provides the "glue" to 

bind individual plugins to the network subsystem. 
 The application level active network (ALAN) 

system [19], introduces value added network 

services by means of an overlay active network 

infrastructure. The system is assembled from 
standard IP applications and servers connected to 

the Internet. Active processing "inside" the 

network takes place in so-called dynamic proxy 
servers (DPS). The active programs, called 

proxylets [20], act as communication proxies for 

data streams dispatched through the dynamic 
proxy servers. ALAN requires the data streams to 

be explicitly addressed to the proxy servers. The 

current implementation, known as FunnelWeb 

[21], is based on RMI of Java 2. 
 The Lancaster Active Router Architecture 

version 2 (LARA++) [22, 3] proposes an active 

router architecture. The key building blocks of 
LARA++ are: the active NodeOS, the policy 

domains, the processing environments, and the 

active and passive components. The Active 

NodeOS provides low-level system service 
routines and policing support to enable controlled 

access to node-local resources and system 

services. Policy Domains (PDs) form the 
management units for resource access and 

security policies which are enforced on every 

active program executed within the PD. 
Processing Environments (PEs) provide the 

protected environments for the safe execution of 

active code. Active Components (ACs) are the 

units of active code processed within the PEs. To 
assure platform independence, there are two 

prototype LARA++ implementations for both MS 

Windows and Linux being developed. 
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3. Work Objectives 

 
 This work primarily aims to get the following: 
1. Proposing architecture for active network 

system, regarding the available tools. 

2. Implementing a prototype for active router. 
3. Investigation of new techniques in the 

implementation. Rather than standing in the 

old layering model in networking, a 

component-based approach was introduced. 
Also, entering the challenge of in-kernel 

programming technique instead of the 

common user-mode approach. In addition to 
use a closed-source-code OS "windows", 

which is rarely used in in-kernel network 

implementations. 

 
 

4. Paper Layout 

 
 Section 5 presents the design of the active 

router (AR) architecture. This central part of the 
paper describes in detail how AR operates and 

how the component-based active node 

architecture enables network programmability 
through flexible integration and extensibility of 

network functionality. In addition to the basic 

node design, special focus is placed on the service 

composition framework. 
 Section 6 then describes the ongoing 

implementation efforts of developing prototype 

nodes of the AR architecture. Due to the 
considerable extent of the AR architecture, this 

section focuses primarily on validating the key 

aspects of the design through a 'proof-of-concept' 
implementation. 

 Section 7 continues with a qualitative and 

quantitative evaluation of AR and its prototype 

implementation. It evaluates how the AR 
architecture satisfies the objectives and 

requirements. Finally, section 8 concludes the 

paper by drawing together the main arguments of 
this work. It also describes further work that could 

be carried out based on this line of research. 

 

 

5. AR Architecture Overview 

 
 The overall architecture of the proposed active 

network has been divided into three functional 

parts: the Component Distributor (CD), the Packet 
Manipulator (PM) and the" Proof-of-Concept" 

part. 

 The first part; the component distributor 
(CD),concern the transferring of user components 

from a Privileged End-System (PES) or network 
administrator (ADMN) system to the active router 

(AR). The management of the transferred 

component is also the responsibility of the CD. 
 In other side, the PM functional part extends 

the OS networking stack such that it can intercept 

the in-bound packets that enter the AR and 

discriminate among the various types of packets. 
After distinguishing the type, the PM forwards the 

packet to the proper component to be serviced. 

 The third functional part is dedicated for the 
Proof-of-Concept of the idea in this paper. It also 

contains the design and implementation of Packet 

Generator/Injector (PGI) system. Its main purpose 

is the construction and sending of two types of 
packets: Active and Traditional. 

 The proposed architecture is designed to 

extend exiting routers by layering active network-
specific functionality on top of the router 

operating system. A generic high-level active 

network layer enables cross-platform 
programming and processing of active programs. 

Low-level functionality of the AR architecture as 

provided by the active node operating system 

(NodeOS) is directly integrated with the router OS 
in order to maintain good performance for the 

active processing. The following sections explain 

in details the first two parts of the proposed AR, 
which there positions are also shown in fig. 1. The 

third part will be explained in section 7. 

 
 

 

 

 
 

 

 
 

 

 

 
 

 

 
 

 

 
 

 

5.1. Component Distributor (CD) 

 
 The proposed Component Distributor allows 

the user to load new components in the AR, where 
it is responsible for the fetching of User 

Component (UC).  

Fig.1. Positions of the CD and PM Units with Respect 

to the Windows Layers of the Proposed AR 
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 The UC is a program performing either 
protocol processing or value-added function to the 

packet. The code of the UC is written by a 

Privileged-End User (PEU) or purchased from 
software third party, then sent from any PES to 

the AR using the CD unit. The UCs are 

distributed in the form of pre-compiled machine 

code. Thus by using UC the AR is programmed 
individually through out-of-hand instantiation of 

active program. The UC is in the form of 

Dynamic Link Library (DLL) file. The CD unit 
provides the capability of reading, packing, and 

then transferring the UC from a PES to the AR.   

 The second function of the CD is to upload the 

UC to the AR using a certain Protocol; the file 
transfer protocol (FTP) [27]. The CD unit 

operates in a client/server fashion. The AR 

represents the server, whereas the PES represents 
the client. Hence, jobs of the CD can be 

summarized as: packing, uploading, and 

controlling the UC. 
 

5.2. The Packet Manipulator (PM) 

 
 The packet manipulation begins with 

intercepting the packet and ends with forwarding 

it to the appropriate user component to be 
processed there. Hence, in addition to catching a 

packet, the PM performs a light firewalling, lifting 

the packet from the kernel to the user mode, 
recognizing its type, and finally (if required) 

dispatching the packet to the user component that 

it whishes for processing. 
 

 

 

 
 

 

 
 

 

 

 
 

 

 
 

 

 
 

 

 

 
 

Fig.2. Block Diagram of PM Architecture. 

 Consequently, the PM architecture was further 
divided into the following functional units: The 

Packet Interceptor/inJector (PIJ), Packet Filter 

(PF), Packet Bridge (PB), Packet Classifier (PC) 
and Packet Dispatcher (PD). It is noteworthy to 

state that the packet classifier and packet 

dispatcher are residing in the user-space of the 

AR. The packet bridging unit behaves as a 
channel between the user space units and the rest 

kernel space units (interceptor and filter). A 

simple block diagram of the designed PM is 
shown in fig. 2. The figure also depicts paths that 

may be taken by packets that passing the AR. The 

following sections illustrate the PM units briefly. 

 

5.2.1 Packet Interceptor/Injector (PIJ) 

 
 The Packet Interceptor/injector provides the interface 

between the active network environment and the data 

path on the node. The Packet Interceptor (PI) is 
responsible for intercepting the network traffic 

traversing the node and passing it to the active 

network environment for processing. The Packet 
Injector (PJ), by contrast, re-injects the network data 

back into the default forwarding path on the node or 

sends it directly through one of the outgoing interfaces. 

 
 

 

 
 

 

 
 

 

 

 
 

 

 
 

 

 

 
 

 

 
 

 

 
Fig.3. Simple Diagram of the Proposed Skeleton IM 

Driver (PIJ unit). 
 

 A network driver interface specification 

intermediate (NDIS IM) network driver was proposed 
to realize the PIJ under windows 2000 OS. We choose 
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this driver in this paper because it’s well documented 
and it’s in excellent location in the stack, which will 

gives a lot of control over network packets without 

affecting other network protocols in the stack. A 
simple diagram of the proposed skeleton IM driver 

(PIJ unit) is shown in fig. 3.  

 The proposed PIJ can be loaded (or unloaded) 

dynamically at run-time (without interrupting the entire 
system). This allows the AR to dynamically activate 

(and de-activate) the active network functionality on 

a node. Note that removing the packet interceptor 
completely disables any AR specific processing on 

the data path. 

 

5.2.2 Packet Filter (PF) 

 
 The proposed project provides a programmable 
PF on the read handle. The PF introduces a list of 

network source/destination address ranges and an 

"action" to be performed on packets that match the 
firewall criteria. The actions are: 

Block: Have the PF drop the matching packet from the 

normal packet flow.  
Pass: Have the PF allow the matching packet to pass up 

to the PT driver as in the normal flow.  

Read: have the PF pass a copy of the received 

packet to the packet bridge which is the next unit in the 
AR. 

 

5.2.3 Packet Bridge (PB) 

 
 The paper establishes so-called Packet Bridge to 
provide the means to transfer network data to and from 

the UC. The PB unit targets to facilitate the 

interface between the kernel and user sides of the 
PM. Hence, PB consists of modules in both the 

kernel and the Win32 application sides. It is 

noteworthy to recall that the PIJ and PF units are 

placed within the kernel space of the proposed AR. 
However, to make the system more flexible it is 

suggested to load the UCs in the user space of the OS. 

 

5.2.4 Packet Classifier (PC) 
 
 At this point a copy of complete packet has been 

captured and reached the PC. The object of the PC is 
the discrimination among the various types of 

packets that may pass through the PM.  

 

5.2.5 Packet Dispatcher (PD) 

 
 The PD defines the "route" through the UC space 

for the active data packets (ADPs) passing a node. 

The PD plays a central role in the service 

composition process. It determines based on the 

set of component identifier (CID) in service 
composition field of the ANEP header which UC(s) are 

involved and in which order they should process the 

ADP.  
 After the UC(s) finished it's processing on the ADPs, 

the PD returns the packet back to the windows network 

stack through the PB. The PB, in turn, either injects 

the packets into its previous default forwarding path 
(virtual adapter) on the node or sends it (lower 

adapter) directly through one of the outgoing 

interfaces. If the ADP is re-injected to the virtual 
adapter, the routing operation is applied. It is 

performed strictly like the conventional routers. 

 

 

5.3. Service Composition 

 
 A composite service [28] is constructed from a set of 
components by means of a composition method. The 

composition method determines the set of software 

components needed to compose a service and the 
bindings to join these components. A PD is 

designed to associate Active Data Packets (ADPs) 

passing an active node with the appropriate active 

extension (or UC). For this reason, ANEP [4] has 
been proposed as a means to assign packets passing a 

network node to active computations. 

 

5.3.1. Enhancing ANEP 

 
 The basic ANEP header [4] specifies a 16-bits field 

for the type identifier (ID) of a single executing 

environment (EE) that must process the ADPs in the AR. 
But, in this paper, the concept of component-based 

services is envisaged to achieve a good flexibility in 

introducing functionalities for the ADPs. This means 

that we have either multi-Execution Environment 
(where each one represents a single component) or 

single EE (contains all installed UCs). 

 In the two assumptions there is a limitation in 
determining which components(s) and in what 

order are appropriate to process the ADPs. 

According to the basic ANEP header, the type ID field 
in the entering ADP can assign only one component to 

process the packet. This is a big restriction. This will 

restrain the AR to be really active and flexible. 

Furthermore it may weak or omit the principal of 
component-based services in the AR; services that 

require more than one component can not be achieved 

in such fashion. Therefore, two proposals are presented 
below to enhance the original ANEP to overcome this 

limitation. 
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5.3.1.1. ANEP Proposal 1 
 
 Using the same ANEP structure but with giving a 
unique type ID not only for each single components 

but also for each combination of 2 or more components 

with various sequences. For example, if there are two 
components (namely A and B) installed in the AR, the 

coding of the type ID field, to assign one of them or 

both, appears as in table 1. The statement (A then B) 

that appears in table 1 means that the active packet 
like to enter component “A” processing first and then 

component “B”. It is a simple service composition 

method. However, the same context can be followed for 
three or more components. 

 
Table 1, 

Type ID coding of active component for proposal 1. 

Component Name Type ID 

A 1 

B 2 

A then B 3 

B then A 4 

 

 

5.3.1.2.  ANEP proposal 2 
 
 In which the type ID field is not used to 

indicate exactly the UC, instead it is exploited for 

indicating the count of UCs that may be composed to 
introduce the service to the active packet. The 

Component ID (CID) of the component itself is 

described in a new proposed variable-length field 

which we call "service composition" field. It is 
placed after the basic header and before the options 

field. This new field consists of the CIDs of the 

components that must be composed to create the required 
active service. 

  

 

 

Fig.4. Format of ANEP Proposal 2. 
 

The order at which the CIDs appear in the service 
composition field is considered as the sequence of the 

components that will be composed in the active 

network node. The proposed ANEP format is 
shown in fig. 4. Using this format, the lack of service 

composition capability in the original ANEP can be 

avoided. 

 Service Composition field format 
 
 The proposed format of the service composition field 

is shown in fig. 5. It is divided into subfields, each one 

contains a CID of the component to be processed and its 
length is 16 bits. Conceptually, the count of 

components that can be assigned in the service 

composition field is bounded by the count of 
component (CC) field value, which is not exceeds 

2
16

 as maximum edge. 

 

 

 
Fig.5. Format of "Service Composition" Field. 

 

 

 At a first glance, one may think that the 16-bits 
long component ID field of each component will cause 

a large overhead on the system, especially if there are a 

large number of components required to be composed to 
provide the suitable processing for the packet. 

However, this is not true, because  normally the 

components that need to be composed may not exceed 

about 10 components (i.e. about 20 bytes overhead 
only out of 1500 bytes long for IP protocol packet). 

 

5.3.2. Discussion 

 Proposal 1 

Advantages 

1- Functionality better than the original ANEP 

format since it provides a single and multi-

component service composition with controlled order. 
2- Relatively, No additional processing time needed 

over the original ANEP since the same fields are used. 

Disadvantages 

1- Type ID range available to identify components is 

decreased because of the range that is wasted in 
covering the multi-component service composition 

IDs with various ordering. 

2- The active components and the composed services are 
offered by the active node designer or administrator 

and not the active network user who construct the 

active packet. The active node designer, for any 

reason, may not offer all the probabilities of 
services that may composed by different 

components or he may impose a charge for specific 

services. This might represent a contradiction with 

0                                 15 16                       31 

version flags Component count 

ANEP Header Length ANEP Packet Length 

Service composition 

Options 

payload 

0                    15 16                         31 

1st component ID 2nd Component ID 

3rd component ID  ……….  

……………  …………  

…………  
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the idea of active networking that depend on, as 
long as possible, moving the programmability 

from the active node administrator to the 

privileged users for more flexibility. 
 

 Proposal 2 

Advantages 

1- Like in ANEP proposal 1, it has functionality 
better than the original ANEP format since it 

provides a single and multi-component 

service composition with controlled order. 

2- It keeps the wide range of type ID field by 
providing 16-bit field for each single component 

in the service composition field. This property 

supports the component-based principal of the 
network node by keeping the capability of 

building different useful services by small 

program components. 

3- The PEU (or the packet producer or installer) 
himself would be the composer of the services 

and not the active node designer or 

administrator. This evidenced that the end-user 
is the first beneficial of the active network idea. 

Disadvantages 

1- The overhead is more than both the original 

ANEP and proposal 1 formats because of the 

additional service composition field.  

2- It requires more processing time than both the 
original ANEP and proposal 1 formats because of 

the new appended service composition field and 

the CC field. 
 A brief comparison among the original ANEP 

format and the two proposals for enhancing ANEP 

is shown in table2. 

 

 

Table 2, 

Brief Comparison Among ANEP, ANEP Proposal 1 and 2. 

ANEP Proposal 

2 

ANEP Proposal 

1 

Original ANEP Function  

Single and 

Multiple 

Component 

Services 

Single and 

Multiple 

Component 

Services 

Single 

Component 

Services 

Services 

Component 
1 

Better 

Functionality 

Better 

Functionality 

Fair Functionality Functionality 2 

Require More 

Processing Time 

than the Original 

No Additional 

Processing Time 

Required the 

Original ANEP 

Processing Time 

Processing Time 3 

Wide Type ID 
Range 

Type ID Range 
Less than Original 

Wide Type ID 
Range 

Type ID Range 4 

Services are 

Flexible Because 

it is Fully 

Controled by the 

End User 

Services are 

Flexible But 

Offered by the 

Active Node 

Administrator 

Services are 

Restricted 

Because it 

Depends on 

Single 

Component 

Flexibility Of 

Services 
5 

Overhead is Large 

thab the Original 

Similar to the 

Original Bit 

Overhead 

Original Bit 

Overhead 

Bit Overhead 6 

 

 

5.3.3. Conclusion 

 
 According to the above discussion, it is evident 
that proposal 2 for enhancing the basic ANEP 

header is preferred. Therefore, proposal 2 will be 

adopted throughout the work presented in this 
paper. One of the contributions, of the proposed 

AR is the novel service composition scheme for 

active services.  
 

 

6. AR Implementation 

 
 This section describes the ongoing efforts to 
engineer a prototypical realization of the proposed 

active router (AR) architecture.  

 

6.1.  Component Distributor Implementation 

6.1.1. CD Server 
 
 The CD server is implemented using the FTP 



Omar A. Athab                                       Al-Khwarizmi Engineering Journal, Vol. 5, No. 4, PP 69-98 (2009) 

 

76 

server provided by windows OS. The FTP service 
is available already but not activated. To activate 

this facility, information services (IIS) in the 

Add/Remove Windows Components dialogue must 
be chosen. In the internet IIS dialogue; the FTP 

service should be selected. The default folder used 

to cache the UCs in the AR is located in 

C:\Inetpub\FTProot. Any FTP client can, till now, 
only visit this folder, but it can not read or write files 

on it. To enable the read and write on UCs in the 

FTP root folder, the Read and Write boxes must be 
checked in the home directory of FTP server 

properties. The FTP server properties can be 

reached from IIS service in the administrative tools 

within the control panel.  
 

6.1.2. CD Client 

 
 The CD client in the PES side is realized by 

exploiting the FTP client capability which is 
available in with the internet explorer under Windows 

OS. 

 PEU can display the two side screens (FTP 
client and server) in his workstation. The FTP 

client in the PES side is realized with the internet 

explorer under windows OS. While the FTP server 

is realized by inserting the IP address of the target 
AR in the address bar preceded by FTP acronym 

to connect to the FTP server. UCs can be uploaded 

easily by drag and drop from the PES screen to the 
AR screen. PEU, also, can control (delete partially or 

completely and rename) the installed UCs in the 

AR. But this control capability obeys the previous 
configuration of the FTP server. 

 

6.1.3. Structure of UC 

 
 The proposed UC is implemented as two files: code 

and configuration files. Code file contains the source 
code required to process the ADP actively to enforce a 

certain protocol or achieve a value-added function. 

The code should be written in high-level language 
support Microsoft Visual Studio application 

programming interfaces (APIs). In this paper, C++ 

language is used to program   the   source   file.  

 Concerning the code file of UC, PEU can either 
upload it as it is (source code file) or convert it to a 

dynamic link library (DLL) file. In this 

implementation, only the latter case is adopted. 
DLL is a module contains function(s) and data. A 

DLL is loaded at run time by its calling module. When 

a DLL is loaded, it is mapped into the address 
space of the calling process. DLLs can define two 

kinds of functions: exported and internal. The 

exported functions can be called by other modules. 
Internal functions can only be called from within 

the DLL where they are defined. Although DLLs 

can export data, its data is usually only used by its 
functions. 

 The second part of the expected UC is the 

configuration file. Actually, it is an initialization 

(ini) file that contains configuration data (i.e. 
idiom terms) for Microsoft Windows based 

applications. It allows a program to store initialization 

data, which can then be easily parsed and changed. 
“ini” files are used to store configuration information 

for applications programs. 

 To provide more flexibility for PEU, in this project 

the “ini” file is created using simple C language 
routine. The file consists of only a single C-language 

structure (Servlnfo structure). This structure, in turn, 

contains the name of code file of UC (the .dll file 
name) in a string format and a control buffer with its 

length.  The control buffer is involved for 

configuration purposes (if required).  
 

6.2. Packet  Manipulator Implementation 

 
 The PM is implemented using IM driver (in the 

kernel space), the PC and PD units are realized in the 

user-space as an extension of the driver.  
 

6.2.1. IM driver 

 
 The foremost and significant step in realizing the 

PM architecture is the implementation of a simple 
"pass through" IM driver. A "pass through" (or 

passthru) driver means a do-nothing pass-through IM 

NDIS driver. It abstractly performs the basic principles 
of initializing and setting up an IM driver. This driver 

exposes a virtual adapter for each binding to a real 

physical adapter. In turn, the overlying protocol 

drivers can bind to these virtual adapters as if they are 
real adapters.  

 However, the passthru driver has been 

implemented as six software modules: Main, 
Adapter, NDISreq, Recv, Send and Status. In 

addition, there are other auxiliary modules that are 

related to power management of the driver such as 

the reset and shutdown states and the plug and 
play (PnP) capabilities. 

 The following subsections briefly discuss the 

developed passthru driver modules. The routines of 
these modules may require prior knowledge of 

NDIS drivers' development: 

A) Main Module: This module consists of the 
routines that load the passthru driver and initialize its 

driver-wide data structures and resources. In 
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addition, the main module register and de-register 
the input output control (IOCTL) interface and the 

device object that are used by the user-mode 

applications to communicate with the IM driver. 
 

B)  Adapter Module: The adapter module functions 

are called by the NDIS wrapper, for example to 
allocate and de-allocated a passthru virtual adapter 

instance, to halt or shut down the driver upper edge, 

to query information about the capabilities of the 
passthru and to request the driver to bind (or 

unbind) to an underlying MP NIC driver. Also 

there are routines capable to allocate and de-
allocate a context pool to be used for exchange of 

data between the adapter and the applications. 

C)  NDISReq Module: Mainly the functions of this 

module related to NDIS requests to the passthru 
driver. NDIS may query information about the 

status of the IM or request changes in the state 

information that the passthru maintains. Each 
NDIS driver contains its own management 

information block (MIB) [23]. It is an information 

block in which the driver stores dynamic 
configuration information and statistical 

information that higher-level drivers or applications 

can query or set. 

D)  Status Module: Status notifications initiated by 
the underlying NIC MP driver are indicated using 

functions of this module. 

E) Send Module: NDIS calls the functions of this 
module to transmit a single (or multi) packets to the 

underlying NIC driver. Then, NDIS also indicates the 

completion of the send operation to the IM driver. 

F) Recv Module: After the underlying NIC driver 
indicates a received packet to the wrapped NDIS, 

the NDIS in turn indicates this packet up to the 

passthru driver by calling the functions of the Recv 
module. 

 Two standard functions were written to receive 

the indicated packet (as recommended by driver 
development kits (DDK) documentation). These are 

the PtReceivePacket and PtReceivelndication 

functions. The two functions must be exposed by 

the passthru driver to the underlying MP driver. 
Nevertheless, it may not be easy to guess which one 

the NDIS will decide to use. In either case, the 

passthru performs the minimum manipulation here to 
just forward the packet up to the overlying PT driver. 

Exposing the two receive functions is mandatory. It is 

important to be noticed that the routines mentioned 
above are only the essential routines that must be 

included according to Microsoft DDK documents 

[23].  
 

6.2.2. PIJ Unit 

 
 The implemented passthru IM driver simply passes 

the packet data along without modification. Also, this 

driver stops short of actually illustrating any 
observable function. To be of any actual use, the 

developer must take the next step and add 

functionality of his own to the implemented skeleton 
driver. 

 Also, the passthru driver requires an accurate tracking 

to get a copy of a complete received packet. In addition, 

when gaining a copy of a packet it may be needed (after 
processing, if any) to re-inject the packet again into the 

IM driver to complete its passage up in the networking 

stack. As stated in Recv module, PtReceivePacket 
function or PtReceiveIndication function may be called 

by NDIS to indicate a received packet. Internal 

considerations in the operating system determine which 
one is used.  Other crucial considerations such as 

avoiding interrupting with Windows normal activities 

and take care in allocating and de-allocating of memory 

storage areas must also be taken into account in the PIJ 
implementation.  

 However, two approaches are available in PIJ 

realization (or extending IM driver, in general). The 
developer either enforces the above step-by-step 

(manual) implementation or using a cloned packet 

approach. The cloned-packet approach has been realized 
by adding a smart module called UTIL module, which 

support Recv module. UTIL module consists of routines 

deal with allocating and de-allocating packets, memory, 

and buffer descriptors, and tracing the packet path in the 
send and receive routes to aggregate its hashed portions. 

Also, UTIL module support the capability of operating 

with the lower-edge (lower adapter) and the upper-edge 
(virtual adapter) and making read and write with these 

two bindings of the IM driver in kernel level. In addition, 

it provides a complete packet in a clear buffer in the 

kernel-mode. Flowcharts of the implemented receive 
functions (PtReceivePacket and PtRecveiveIndication) of 

PIJ unit are shown in figs. 6.a - 6.m. functions preceded 

by UTIL acronym are belong to PCAUSA  [25] code. 
After realizing the PIJ, the next step is to implement the 

Packet Filter. 
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Fig.6.a. Flowchart of Pt Receivepacket Function. 

 

 

 
 

 

 
 

 

 

 
 

 

 
 

 

 
 

 

 

 
 

 

 
 

 

 
 

 

 
Fig.6.b. Flowchart of IM Filter_Filter Receivepacket Function. 
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Fig.6.c. Flowchart of IM Filter_Getfilter Action Function. 

 

 

 
 

 

 

 
 

 

 
 

 

 
 

 

 

 
 

 

 
 

 

 

 
 

 

 
 

Fig.6.d. Flowchart of UTIL_Clone Receivepacket Function. 

 

 
 

 

 
 

 

 

 
 

 

 
 

 
Fig.6.e.  Flowchart of UTIL_Allocatepacket Function. 
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Fig.6.f. Flowchart of IM Filter_  Handle Receivepacket Function. 

 

 

 
 

 

 

 
 

 

 
 

 

 

 
 

 

 
 

 

 
 

 

 

 
 

 

 
 

 

 
 

 

 
Fig.6.g. Flowchart of Process Pending Reads Function. 
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Fig.6.h. Flowchart of MP Return Packet Function. 

 
 

 

 

 
 

 

 
 

 

 
 

 

 

 
 

 

 
 

 

 

 
 

 
Fig.6.i. Flowchart of Pt Receive Indication Function. 

 
 

 

 
 

 

 
 

 

 

 
 

 

 
 

Fig.6.j. Flowchart of IM Filter_ filter Receive Indication Function. 
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Fig.6.k. Flowchart of UTIL_Make Packet From Receive Indication Functions. 

 

 
 

 

 
 

 

 

 
 

 

 
 

 

 
 

 

 
Fig.6.l. Flowchart of Pt Transfer Data Complete Function. 
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Fig.6.m. Flowchart of IM Filter_Handle Receive Indication Function. 

 

 

 

6.2.3. PF unit 

 
 This section illustrates how to extend the proposed 

PIJ so that it has the capability to block the received 

packets according to a pre-defined list of network IP 
addresses to be blocked. The basic requirements for 

IP address blocking driver are:  

 Kernel-firewall: develop a kernel-space 

software based on the PIJ driver that blocks packets 

that are received using an IP addresses list. 

 Application-control: Include a companion 

Win32 application that controls and read the list of 

IP addresses to be blocked. To make the matter 

more explicit, dropping a packet in the IM driver is 
accomplished by not forwarding it to the upper 

layer. There is no NDIS API to drop a packet. This 

notion may clarify some of the constraints imposed 

due to in–kernel programming. 

 Generally, the PF provide the capability of a 
user-mode application to read a list containing the 

adapter name and the IP addresses to be blocked. 

The sorted list is passed to the Kernel-mode using 

the PB unit. The list of IP addresses is duplicate in the 
Kernel space and then saved in the FilterReserved area 

of the ADAPTER structure (ADAPTER structure will 

be explained in section 6.2.4).  
 The starting point of this PF is the PIJ unit. The 

base code was reorganized by adding a new module 

(IMFilter.C) that isolates the actual filtering code 
from the basic packet interception. The key functions 

provided in the new module are: 

A. IMFilter-SetPktFilter function: The IMFilter-
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SetPktFilter function is responsible to move the 
information of filter setting from the user 

application to the context pool of the currently 

opened adapter. The filter setting information 
consists of list of Destination/Source IP address 

ranges, the action of the filter (Block, Duplicate 

(or read), and claim). The adapter must be priory 

opened by the application before setting the filter 
parameters. Then, the given filter structure that is 

required to be imposed on the received packet is 

drawn from the input/output request packet (IRP) 
pointer. Completing the IRP request is essential to 

free the resources before returning from the IMFilter-

SetPktFilter. 

B. IMFilter-ResetPktFilter function: In the other 
side, the IMFilter-ResetPktFilter function resets 

what the IMFilter-SetPktFilter has been set. It 

frees the allocated memory of the recently stored 
filter structure and nulls the corresponding 

parameters in the specified open context. Finally the 

IMFilter-ResetPktFilter will complete the IRP 
request and feedback the suitable status of the 

processing.  

C. IMFilter-Filter Receive Packet, IMFilter-

Handle Receive Packet, IMFilter-Filter Receive 

Indication, IMFilter-Handle Receive Indication: 

Jobs of theses four are illustrated previously if figs. 

6.b, f, i and m, respectively. Generally, IMFilter-
Filter Receive Packet and IMFilter- Filter Receive 

Indication functions are responsible to find the 

required filter action for the received packet. 
Whereas, IMFilter-Handle Receive Packet and 

IMFilter-Handle Receive Indication functions handle 

the received packet according to the found filter 

action. 
 

6.2.4. PB Unit 

 
 The DEVMJFCN.C and WDMSUP.C are 

modules in the kernel side that encapsulates the 
routines related to the IOCTL interface. In user mode 

side, the modules are realized in C language and then 

converted to “dll” file such that they export a ready 

to use APIs for the Win32 applications of the AR. 
These APIs involve the following: Open Lower 

Adapter API, Open Virtual Adapter API, Open Lower 
Adapter By Link Address API, Open Virtual Adapter 

By Link Address API, Read On Adapter API, Write 

On Adapter API, Set PKT Filter API, Reset PKT 
Filter API. In addition to auxiliary APIs that are 

offered to facilitate Opening an adapter and querying 

information, these are: Enumerate Bindings API, 

Make Ndis Request API, Make Private Request API. 
 In this paper, the IRP-based interface is used to 

implement the user/driver programming interface. In a 

consequence, applications can use the basic Win32 
functions; Creat File, Devicelo Control, Read File, 

Write File; and Close Handle in the user-mode side of 

the interface. 

 In the Main module (section 6.2.1), the driver 
creates a device object and a Win32-visible symbolic 

link name that can be opened in user-mode using 

CreatFile. Also, at Main Module initialization, the driver 
was registered IRP-based functions that are 

(eventually) called to implement the kernel-mode 

end of the interface. The foundation of the device 
I/O control is accomplished by calling the Ndis Register 

Device API from the WDM Initialize function in the 

Main .C  module. 

 Using Creat File API, the user mode is able to open 
and close a general device handles on the IM driver 

file space name. A handle of the IM file object is an 

ordinary handle to the device that is not associated with a 
specific adapter binding. This device handle "or 

control channel" is used to access global information 

such as drivers binding list but not beyond that. 
Nevertheless, this handle is not sufficient to make 

interface with the driver. Knowing that, any IM driver 

may be connected to more than one MP NIC driver and 

also more than one overlying PT driver. 
 The connection between the IM driver and each 

one of the underlying MPs is represented by a certain 

Adapter structure; we were called (ADAPTER). Each 
ADAPTER structure establishes a driver-specific 

context area between the IM and one of the specified 

MP drivers. Most information and resources used by 

the PM units such as packet pool handles, buffer pool 
handles, and locks are kept in this structure. 

Several members of an ADAPTER structure is 

shown in fig. 7. 
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Fig.7.  Several ADAPTER Struct Members. 

 
 

 

6.2.5. PC Unit 

 
 At this point, a copy of a complete, received, 
filtered packet has been gained and queued in the 

Pending Read Packet List in the OPEN-CONTEXT 

structure.  
 However, because we use the standard IP header in 

implementing the AR architecture, we must 

discriminate the IP which carry an ANEP header 

from that which carries non-ANEP content (i.e. 
discriminate active from non active packets). We were 

proposed to use a special value in the protocol field of 

the IP header to refer to the ADP (which contains ANEP 
header). In such case, all the required to do by the PC 

module is to inspect the value of the protocol field in 

the IP header of the received packet. If it refers to ADP, 
the packet will be passed to the PD unit.The non-ADP 

value of protocol field represents either a traditional 
data packet (TDP) or a component packet (CP) types, 

hence the PC re-inject (write) these packets to the 

virtual adapter of the PIJ to be lifted to the upper layers 
for processing. 

 The PC is realized in a discrete function and we call 

it a CLSF function. CLSF function takes a pointer to 

the received packet and its length as input parameters 
and returns nonzero value if the packet is ADP. 

However, CLSF function follows the following steps: 

- Examine the type of Network layer protocol. 
- According to the protocol type, CLSF function can 

determine which field in the protocol header should 

be tested to know the packet is an ADP or not. 
- According to the suitable header field, if the packet is 

ADP, return non zero value, else return zero value. 
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6.2.6. PD Unit 
 

 After completing the filtering and classification 

operations, the PC will deliver only the ADPs to the 
PD. The PD is a user-mode unit. It is responsible for 

directing the ADPs to their appropriate UCs. 

According to the ANEP header of the ADP, the 
PD can recognize which UC is required to process 

the new received packet. As has been stated in 

section 5.3, the ANEP header contains a Component 
Count (CC) field and a service composition field. 

These fields tells the PD how many and which UC 

must be called to process the ADP. The order of 

these UCs is also determined by the ANEP header. 
 At first, PD delivers an ADP from the PC and 

checks the integrity of the enhanced ANEP header. 

Then, the PD pushes the ADP in a temporary 
polling cycle to be processed by the appropriate UC. 

If it is found that one of CIDs does not recognized, 

the PD will cancel the packet. Jobs of PD unit are 

implemented as three C++ functions: Serv No, 
Serv ID, and Get Serv Info. Below is a brief 

description of each one of them: 

A) Serv No Function: The Serv No function is 
dedicated to determine how many UCs must be called 

and executed on the received ADP. ServNo, simply, 

initialize a pointer to the CC field in the enhanced 
ANEP header and return a copy of CC field value. 

B) Serv ID Function: In other side, Serv ID 

function targets to withdraw the CIDs of the 

required UCs in a correct order. Using the packet 
array and taking into account the order of the 

required UC and the type of protocol headers, a 

pointer to the correct CID value in the service 
composition field is initialized. This value (CID) will 

return to the Execution Environment Manager (EEM) 

module (see the next section). Actually, the CID is used 

by EEM to search the cached configuration files which, 
in turn, used to call the associated UC. 

C) Get Serv Info Function: The last support function 

is the Get Serv Info. It is intended for getting a copy of 
Serv lnfo structure from the configuration file associated 

with the UC. CID integer will be inserted as input 

and Serv lnfo structure is achieved as output from Get 
Serv Info function. 

Below is a brief description of the necessary steps 

followed by Get Serv Info function: 

- Define some useful variables. 
- Convert the CID integer into an ASCII string. 

- Search and then open the “.ini” file indicated by CID 

string. 
- Read and copy the file contents into a pre-allocated 

structure of type Serv lnfo. This structure will be 

exported as output of Get Serv Info function. 

- If the above steps work OK, return a non-zero value, 
otherwise return a zero. 

 

6.3. Active Network Operation 
 

 UCs are implemented as dynamic link libraries 

under windows 2000. Since the AR prototype 
implementations exploit standard link library 

technique and execute active code within user-space 

processes, components can be developed and tested 
based on standard development tools (for example, 

the visual studio IDE compiler and debugger). As DCs 

can be loaded and executed in the form of binary 

code, the implementation of the components is 
conceptually independent from any particular 

programming language. Note that this designed AR 

doesn't build safety and security upon a specific 
programming language or certain language constraints 

(such as strong typing, range checking .. .etc). However, 

since the APIs must be linked to the component at 

execution time of DLL, only programming 
languages for which the system API is available can 

be used. At the present time, the system APIs of the 

current AR prototype implementation are only available 
for C and C++. The software linker between the CD 

server and the PM in the AR is the EEM. The EEM is a 

module designed to integrate the two running software 
units, namely, the IM driver-based and the FTP-based 

programs. Briefly the EEM performs the following main 

jobs: 

1. Declare two instances of lower and virtual 
adapters to be used for network access and low-

level information. 

2. Define and initialize necessary variables. 
3. Define two packet arrays (TempPack and 

OutPack), one for temporary processing and the 

other for returning the processed packet. 

4. -Declare an instance of ServInfo structure. It is 
used to read and store temporarily the contents of 

the configuration (.ini) file. 

5. Open the lower and virtual adapters, using APIs 
exported by PB unit (see section 6.2.4). 

6. Read the received packet(s) and its length from 

the lower adapter and store it in TempPack array. 
If there is no received packet yet, EEM still wait 

until one is reached to the PendingReadPacketList 

buffer. 

7. Call CLSF function (see section 6.2.5) to check if 
the received packet is an ADP or not. CLSF 

function take TempPack array and its length as 

input parameters. If it is non-active packet, EEM 
will write the packet directly in the virtual adapter 

to be processed traditionally by Windows stack. In 

this case, this packet is either a TDP or a 
Component Carrying Packet. In the case of TDP, 

the burden of packet-routing and forwarding is 
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moved to the shoulder of windows protocol layer. 
Whereas, if it is a component carrying packet, 

windows stack will raise it to the CD server to be 

dealt with there. In other side, if the packet is an 
ADP then, perform the following steps. 

8. Declare a general handle to a dll file which is 

expected to refer to the required UC. 

9. Call the PD unit. PD will perform the following 
steps: 

a) Call ServNo function to get how many UCs are 

required to process the ADP. According to the 
count of the UCs, steps 9.b up to 12 must be 

repeated. 

b) Call ServID function to get the suitable CID 

from the composition service field in the 
Enhanced ANEP header. 

c) Using the CID, the cached configuration files 

(associated with UCs) are searched to get the 
correct Servlnfo structure. GetServInfo function 

is called to accommodate this job. Servlnfo 

structure contains the name of the UC's dll file 
whose its CID is given as input to 

GetServInfo function. 

10. Call the Component Loader (CL) function. The 

CL of the EE is responsible for loading UCs into 
memory, and to initialize and start them. The CL is 

initiated by the EEM. However, steps 

followed by the designed CL are: 
a) Load the ProcPacket function from the DLL 

library into memory to be executed. Calling 

LoadLibrary API will attempt to locate the 
DLL and then perform such loading. The code 

file name (i.e. DLL name) of the UC is given 

as input parameter to LoadLibrary API. 

LoadLibrary Windows API maps the 
specified executable module (dll) into the 

address space of the calling process. The 

returned value will be a specific handle to 
the required DLL library that is loaded in 

the memory. Remembering that a general 

handle to DLL file has been declared in step 

8. This handle is assigned now to the handle 
dedicated to the useful UC returned from 

LoadLibrary. 

b) Given the dedicated DLL handle and the 
name of the exported function (ProcPacket) 

as inputs to the GetProcAddress API, a 

pointer to the specified exported DLL 
function (i.e. ProcPacket function) is returned. 

ProcPacket is the Template name of the UC 

function which is required to process the 

received packet. The function name given to 
GetProcAddress API must be identical to 

that in the EXPORTS statement in the DLL's 

definition (.def) file. 
11. To execute ProcPacket function, TempPack 

array, its length, (a control buffer and its length 
if required) is passed as input parameters, and 

then enforce the ProcPacket function. The 

actively processed packet is returned in the 
OutPacket array. 

12. Decrement the count of UCs that has been read 

in step 9.a. If there are more components must 

be executed, repeat steps from 9.b up to this step. 
If component count reaches zero move to step 13. 

13. Using the developed WriteOnAdapter API, 

push the processed packet again to the windows 
stack through writing on the opened virtual 

adapter to be routed and forwarded 

conventionally there. 

14. As long as there is no manual EEM exit 
instruction, the program continued in step 6. If 

there is an exit EEM instruction, close the 

lower and virtual adapter instances and exit 
program. The two support APIs (LoadLibrary and 

GetProcAddress) are provided by Microsoft Visual 

C++6. 
 

 

7. Evaluation and Results 

 
 This section evaluates the designed AR 

qualitatively and quantitatively. 
 

7.1. Packet Generator/Injector 

 
 In this paper, an external program is proposed 

and implemented which creates and then injects 
data packets into the network stack of the testing 

machine. We will call this program a Packet 

Generator/Injector (PGI). The generated packets 
involve ADPs and TDPs. In each testing course 

the testing machine which runs the PGI software 

is connected to the AR (to be tested) or even the 

ES(s). 
 Several ready-to-use Packet 

Generators/Injectors are available as executable 

software in the internet [29] [30]. All the offered 
programs use Windows Socket (WinSock) [26] 

capability to inject user defined packets. The use 

of WinSock involves encapsulating the injected 

headers (Ethernet, IP ... etc) within the Transport 
layer (TCP, for example). This method obliges 

users to insert virtual headers within the real 

headers. Furthermore, such technique decreases 
the MTU of the original protocols due to the 

virtual headers overhead.  

 Due to the above reasons, a novel PGI is 
designed and implemented. It uses only the 

original protocol headers with full control on 

filling their fields. Also, the designed PGI pushes 
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the generated packets directly to the IM driver in 
the network stack. PGI exploits the implemented 

PM units. It uses the PIJ and PB units to inject our 

created packets directly into the lower adapter. 
Fig. 8 shows a simple block diagram for the 

designed PGI. 

 A new function in user-space is developed to 

facilitate creating and injecting data packets by 
AN users in the ES. However, it is intended 

mainly for AN developers and not AN customers. 

The function is implemented as stand alone 
module called PGI.C.  

 

 

 
 

 

 
 

 

 
 

 

 

 
 

 

 
 

 

 
 

 

 

 
 

Fig.8. Illustration of PGI Units 

 

 
 

7.2. Evaluation Methods 

 
 In general there are two methods used for the 
evaluation of system such as that presented within 

this paper, namely qualitative and quantitative 

evaluation [2]. Since the main contribution of this 
paper is the architecture for active routers, a 

qualitative evaluation of the concepts and design 

of the AR architecture has been regarded as more 

meaningful. Since it has been feasible to 
implement only a subset of the overall AR 

architecture, a quantitative evaluation of the entire 

system (with applications) cannot be provided at 
this stage. Nevertheless, section 7.4 provides a 

quantitative evaluation of the key units. 

 

7.3. Qualitative Evaluation 
 

 Issues regarding the design and concepts 

behind the AR programmability are considered 
here. In order to evaluate the AR architecture, an 

example case study is introduced. 

 

7.3.1.  Case Study 
 

A) System Setup: As illustrated in fig. 9, set up 

assume existence of an establishment (Company, 
Bank, Library, Campus ... etc) divided into 

headquarter and other branches distributed around 

wide area, such that they exchange information 
through the internet. Headquarter may contain 

multiple networks (LANs or/and WANs) such 

that there is a network for each department or 
section. 

 It is envisioned that ARs will form the core 

elements (access and gateway) of this network. 

Administrator (ADMN) of the network was 
decided to operate under TCP/IP suite and 

running the ARs under Windows 2000 server. 

 

 
 

 

 

 
 

 

 
 

 

 
 

 

 
Fig.9.  Hypothetical Diagram of Computer Network of an Establishment. 
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B) The Challenge: The key challenge of the 

setting is to "open up" the establishment network 

and to provide public services (through internet) 
to remote authorized users (RAUs). RAUs may 

belong to the establishment staff or external 

customers. It is required to provide sufficient 

confidentiality for the transferred information 
from RAUs to the establishment (headquarter or 

one of the branches) services. It is decided to 

provide security by the developed encryption 
algorithm called "RC5" [31]. 

C) The Solution (Network-Level Encryption): 

The focus here lies not on the solution itself, as 

the concepts behind the solution are not specific 
to ANs and therefore can be realized otherwise, 

but on the fact that the AR provides a generic 

platform that is sufficiently flexible to resolve this 
problem. 

 To enable remote RAU to send information to 

a specific section (headquarter or branch) in the 
establishment, ADP are encrypted in the ES of 

RAU side. The ANEP pay load is encrypted using 

RC5 algorithm [31]. Since the transferred 

information targets one of the multiple sections of 
the underlying establishment, all gateway routers 

(which are active) must be prepared to decrypt the 

arrived ADPs. 
 The security system can be realized as follows: 

The software department in the establishment 

installs RC5 decryption component in the gateway 
ARs which are belong to the establishment. The 

installed UC (decryption component) has its own 

CID. RAU who wish to benefit from the services 

introduced by any deterministic section in the 

establishment must gain the CID and the secret 
key (user's-specified key). The CID can be gained 

from publicly shared specifications of the running 

ARs which are distributed by AN community. 

The secret key is distributed securely (manually or 
through network) by the software department of 

the establishment to their authorized customers. 

D) Prototype Realization: For prototype 
implementation, the basic setting of case study is 

minimized into only three computers, namely 

“A”, “B” and “C”, as shown in fig. 10. Computer 

“B” realizes the gateway active router whereas 
computer “A” realizes two entities. Before any 

information exchange, computer “A” will 

represent the PES; actually it is the software 
department of the establishment which will create 

and install the UC (the RC5 decryption 

component). After installing the UC, the function 
of this computer will be replaced to represent one 

of the RAUs who will send encrypted ADPs to the 

establishment (computer “C”), through the 

gateway AR (computer “B”). The three computers 
have their own IP addresses and also their own 

NIC cards. A unique MAC address is assigned to 

each one. NIC cards used in this prototypical 
setting are of type SURECOM 10/100M PCI 

adapter and uses Fast Ethernet Protocol. Fig. 11 

shows a picture for the configured computers of 
the case study in the laboratory. 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Fig.10. Setup of Prototype Realization of Case Study. 
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Fig.11. Configuration of Case Study in the Laboratory. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Fig.12. Flowchart of RC5 Encrypting and Sending of ADPs. 
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 In this proof-of-concept case study, RAU 

realizes the RC5 encryption algorithm as a single 

module (RC5.C) using VC++6 environment. A 
general flowchart of RC5 module realization is 

shown in fig. 12. As shown in the flowchart, after 

performing RC5 encryption of ADP payload, the 

RAU exploits the previously explained PGI unit 
to create and then send the packet. The flowchart 

addresses encrypting and sending of only one 

ADP; however, this routine can be repeated as 
many as required to proof the concept. 

 Software department enforce accurately steps 

mentioned in section 6.1.3 to implement the two 

files of the UC of the RC5 decryption algorithm. 
C++ language is used in programming the code 

and configuration files. Concerning the control 

buffer in Servlnfo structure, it is exploited to store 
the users' supplied secret key. The flowcharts 

shown in figs. 13, 14, and 15 are demonstrate the 

steps of realizing the RC5 decryption component 

in the PES. 
 In the AR computer (gateway), the pre-

installed CD server receive the UC (RC5 

decryption function) sent by software department 

of the establishment. CD server installs the two 
files (code and configuration) in a pre-defined 

folder in the AR. However, EEM continue 

running the Packet Manipulator for searching 
whether there is a new received packet or not. 

When the RAU begins send the RC5 encrypted 

ADPs, EEM will perform the required processing 

(decryption). The word size and number of words 
are fixed to (32 and 16) respectively, in the 

implemented decryption component. 

 

 

 
 

 

 

 
 

 

 
 

 

 
 

 

 

 
 

 

 
 

 

 

 
 

 

 
 

 

 
 

 

 
Fig.13. Creating the Configuration File. 
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Fig.14. Steps of Construction of RC5 Decryption Component. 

 
 

 

 

 
 

 

 
 

 

 
 

 
Fig.15. Final Step in Programming the AR. 
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7.3.2. Requirement Fulfillment 

 
 Requirement 1, namely programmability, is 

accomplished through the addition of ANEP-

based composition model. In this context, 
programmability is merely a matter of inserting 

(or removing) UCs into (from) the packet 

processing chain on the proposed AR. This is 

essentially done through loading (or unloading) 
component's code into the EE (virtual memory) 

and inserting (or removing) it's CID into (or from) 

the ANEP header. 
 Requirement 2, demands flexible router 

functionality. While support for data plane 

programmability through transparent integration 

of UCs in the packet processing chain makes the 
AR a highly extensible platform, the dynamic 

composition framework proposed by the 

architecture provides a very flexible means for 
that. In addition, it is a highly dynamic process 

that can be efficiently carried out at run time 

without the need for restarting or even 
reconfiguring the system. The  

 Requirement 3, safety for active code 

execution within the designed AR is achieved 

through software fault isolation.  
 Requirement 4, secure programmability. 

Simple firewall is achieved by PF unit in PM. In 

addition, user authentication is accomplished 
using basic authentication of IIS server [24] 

provided by Windows. Nevertheless, this is only 

simple encoded user-name and password 
authentication. AN demands more strong 

encrypted authentication. More secure system can 

be considered as a future work for this paper. 

 Requirement 5, is to achieve router 
performance close to the line speed of typical 

edge networks. Later in this section (section 7.4), 

a performance estimate of our prototype 
implementation, shows that the AR has not fulfill 

this requirement completely. From the 

architectural point of view, there is certainly 

tradeoff between modularity and performance. 
Since the AR tries to maximize flexibility through 

the concept of (de-) composition of active 

services, it trades off performance. For example, 
ADPs traversing the AR must be passed to all the 

components that indicated the interest in the 

packet. Furthermore, the AR architecture has been 
carefully designed to maximize the performance 

where possible. Because of this, the idea of 

application-level active-networking has been 

rejected, and a true network-level approach has 
been employed instead. For the same reason, AR 

enables the safe execution of efficient binary code 

rather than having to rely on code interpretation. 

 Requirement 6, which demands easy usability, 

must be considered from the point of view of the 
end-users and developers. In the case of our 

particular implementation of the AR, the 

development task is greatly facilitated by the 

design decision to execute active code within the 
user-space EE, which allows convenient 

development of user-space code.  

Requirement 7, scalable manageability is not 
addressed in the work throughout this paper.  

Table 3 lists the relevant requirements and 

indicates to what extent have been satisfied in the 

project. 
 
Table 3, 

Designed AR Compliance with Relevant AN 

Requirements 

Requirement Description Satisfied? 

1 Programmability yes 

2 Flexibility yes 

3 Safety yes 

4 Security partially 

5 Adequate 

Performance 

partially 

6 Easy Usability partially 

7 Scalable 

Manageability 

No 

 

 

 

7.4. Quantitative Evaluation 

 
 To evaluate the designed AR architecture and 

hence the performance of the envisaged AN, three 

types of tests were done; Control Test, AN Test, 
and Backward Compatibility Test. Three personal 

computers (we call them “A”, “B”, and “C”) are 

used to accommodate the experimental setup. 
 One of them (computer “B”) is operate as 

traditional router (in control test) and as an AR (in 

the other two tests). The other two computers 

(“A” and “C”) are used as two different LANs. 
These LAN computers are connected directly to 

the router (computer “B”) using a UTP cable. 

Actually, LAN computer represents an ES in a 
LAN. The NIC cards used is of type SURECOM 

10/100MB Fast Ethernet PCI adapter. 

 The hardware architecture of the prototype AR 

is based on a standard personal computer 
consisting of single Intel Pentium 4 
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microprocessor running at a clock speed of 2GHz, 
256 MB of RAM and two 100Mbps Fast Ethernet 

interface. The two interfaces are connected to the 

two ESs. Each NIC has its own IP and MAC 
addresses such that it belongs to one of the 

connected LANs. The types of the router's 

interfaces are similar to that of the ESs. 

 In the three tests, a data of 360 MB size has 
been transferred from computer “A” to “C”, 

through “B”, and all measurements are 

accomplished at computer “B”. 
 

7.4.1. Control Test 

 
 The first test carried out was a control test, 

which just tested the speed of the network, 

operating system overhead, and network stack 
overhead without installing the developed AR 

software. 

 In control test, computer “B” running 
Windows 2000 server, and it is configured 

appropriately to operate as a traditional router. 

Packets of TDP type are used in this 
measurement. The resulting average throughput 

and CPU loading at computer “B” are shown in 

table 4. 

 
Table 4, 

Results of quantitative evaluation tests. 

Test 

Sequence 

Test Type Throughput 

(Packet/Sec) 

% CPU 

Usage 

1 Control Test 5679.8 30.2 

2  

AN 

Test 

PM Test 2902.6 78.8 

5 UCs 

Test 

914.9 84.1 

10 UCs 

Test 

453.1 86.7 

15 UCs 

Test 

335.8 89.8 

3 Backward 

Compatibility 

Test 

4041.3 75.2 

 

 
 The control test is selected to be a reference 

gauge, because it represents the actual normal 

operation of traditional data, router, and protocol. 
The next two tests, which involve the active 

enhancement software, will be compared with 

control test to measure how much degradation and 

processing cost is paid for active 
programmability. 

 

 

7.4.2. Active Network Test 

 
 In this test, all the implemented software, 
which has been explained in section 6, is installed 

in computer B which still running Windows 2000 

server. The object of this test is to gauge 
throughput and CPU usage required to achieve the 

active programmability of the router. AN test 

involves two parts, the first one evaluates the cost 

of PM and the second measures how many UCs 
can be processed with keeping reasonable 

throughput and consuming acceptable CPU time. 

The developed PGI software is used in computer 
“A” to construct and send the required ADPs in 

each part of AN tests. 

A) PM Test: In the first part of AN test, the 

measurements try to quantify the, processing 
speed and load needed in PM units (namely, PIJ, 

PF, PB, PC and PD). The Component Loader 

(CL) is suppressed temporarily from the EEM to 
accomplish this target. The resultant throughput 

and %CPU usage is tabulated in table 4. 

B) UC Test: This test aims to check how many 
UCs can be used in each service such that the AR 

is not saturated. However, the evaluation in this 

paper is directed to evaluate the architecture only 

and not tied to a specific service or application. 
Hence, applying a specific UCs to implement a 

certain application or protocol will not fulfils the 

target of this evaluation, as it is intended to 
specialized application. 

 Five, ten, and fifteen user components are used 

in three measurement steps. The resultant 
averages are also shown in table 4. 

 

7.4.3. Backward Compatibility Test 

 
 In this  test, the developed AR software is also 

installed in computer “B” under Windows 2000 
server. A stream of TDPs (IP packets) is sent from 

computer “A” toward computer C through the 

AR. The purpose of this test is to ensure the 
backward compatibility to the current traditional 

routers and check the quantity of degradation in 

throughput and the cost in processing time when 

AR is used to route TDPs rather than traditional 
router. The results are listed in table 4, too. 

 

7.4.4. Discussion 

 
 The relative high throughput and low % CPU 
usage in the first experiment, control test, 

represent the capability of the three computers 

(namely “A”, “B”, and “C”) during normal 
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networking operation without effects of the driver. 
It reflects the behavior of in-kernel processing of 

traditional routing of packets. 

 The first part of AN test, namely PM test, 
gives expected result when it takes approximately 

double processing time and half throughput with 

respect to the control test. We can argue that this 

change is the price that must be paid to transport 
to the user-level processing of the PM stage (i.e. 

PB, PC and PD). Because of the PIJ and PF units 

are operate within the kernel of the router, their 
effects are negligible. It is agreeable [24] to state 

that kernel mode processing is faster than the user 

mode one. 

 Concerning the second part of AN test (i.e. UC 
test), the values of measurements refer to the 

capability of dealing with about 5 user 

components, acceptably, for each ADP. But tests 
of 10 and 15 UCs show high throughput 

degradation accompanied by consuming of most 

processing power. Practically, it is also possible to 
conclude that the system in its current state 

(experimental) is not extensible when more than 

15 UCs are added to the path of ADPs. This 

doesn't really affect the validity of the system. It 
can be solved, for example, by pulling the PC and 

PD units down to the kernel space which will lead 

to two times increase in throughput. Using multi-
processor router (as in current traditional routers) 

or upgrading router's hardware by field 

programmable gate array (FPGA) technology may 
also contribute in solving this shortcoming. 

 The last test "backward compatibility test" is 

succeeded in proving the compatibility with the 

current available traditional routers in two aspects. 
From one side, the AR routes and forwards the 

TDPs (IP packets) correctly without any error or 

side effects. From the other side, it is not severely 
affects the standard throughput obtained in control 

test. The relative little degradation in throughput 

is due to the overhead of PM units (except PD 

unit) with paying double processing time. 
 

 

8. Conclusions and Future Works 

8.1. Conclusions 

 
 Several conclusions about the development of AR 

architecture can be drawn from this work: 

 Component-based active router architecture 

enables network programmability through 
extensibility of router functionality and services. 

 Active network programmability demands sever 

safety mechanisms to protect the nodes from 

malicious or erroneous active code. 

 Reuse of the standard 'process technology' of 

today's operating systems as safe execution 
environments for active code has proven to be 

very practical. 

 A split implementation across both kernel and 

user space of the underlying system appears to 
be a good choice. This approach takes advantage 

of the high flexibly programming environment in 

user-mode and sophisticated protection and safety 

mechanisms of today's OSs. 

 Standard user-space implementations for active 

networks typically suffer largely from the 

performance hit resulting from the copy 

operations required to pass the network traffic "up" 
into user-space and back "down" again. As far as 

possible, packet processing must be in kernel 

space. 

 

8.2. Future Works 

 
 Future work presented in this section focuses 

on the ongoing development efforts to complete the 

AR prototype implementation and on using and 
extending it in order to build and experiment with 

novel AN services: 

a) The use of poor security scheme is considered one 
of the shortcomings of this paper. To address this 

disadvantage, authentication within the AR may 

be built on public key encryption mechanisms such 

as RSA or DSA. The user installing a component 
(or code producer developing a component) 

encrypts its identity (i.e. user name or company 

name) with its private key. Public key 
encryption ensures that the encrypted message 

can only be decrypted with the public key assigned 

to the user. 
b) Demand-push is the base at which the developed 

AR depends to install a new UC. To lift the 

burden from the user's shoulder, it is more 

pragmatic to distribute a number of component 
cache servers throughout the AN. All that required 

by the AN users is to instruct the suitable UC to be 

downloaded from the server to the target router. 
For example, when ADP arrives to the AR, the 

CID will excite a certain program in the AR to 

download the required UC from the nearest 
server. This scheme is called a demand-pull 

mechanism in transferring UCs. 

c) Further decrease in throughput and increase in 

CPU usage is envisaged with each excess in the 
number of networks or nodes attached to the 

designed AR. Hence, improvement in AN 

performance still crucial. To decrease the effects 
of this issue, it is possible to pull the PC and 

PD down to the kernel level. 
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d) The designed AR in this paper demands 
processing only one active packet at a time. To 

get more efficient use of processing resources and 

Windows OS capabilities, it is useful to 
implement multi-packet processing in the EEM. 

Multi-Packet processing demands allocating a 

dedicated EE for each packet or uses one EE with 

some form of preemptive scheduling 
mechanism that allows the low-level system to 

interrupt active programs that exceed their 

scheduling quantum. 
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 مىجه شبكات لتطبٍقات خاصة بالاعتماد على نظام ونذوس
 

 **           سفٍان تاٌه فزج*احمذ ستار هادي           *عمز علً عذاب
 جايعت بغذاد / هُذست انخىارسيًال/  انًعهىياث والاتصالاث هُذست قسى*

 جايعت الاَبار/ كهٍت انذاسباث ** 

 

 

 

الخلاصة 

قهب هذا . تى عًم تًذٍص نهُظى وانتقٍُاث انًزافقت نهشبكت انفعانت انًىجىدة دانٍا. هذا انبذث بذأ بىصف الانٍاث الاساسٍت نهذصىل عهى انشبكت انفعانت 

هذا انًىجه ". ودذاث بُاء انًستخذو" فعال جذٌذ وانذي ًٌكٍ بزيجت انشبكت بًزوَت بالاعتًاد عهى (router)انبذث ٌقذو تصًٍى وتُفٍذ نًعًارٌت يىجه 

 وتعشٌش بزوتىكىل  windowsفً هذا انًىجه تى استخذاو َظاو انتشغٍم وٌُذوس. انفعال صًى نٍىفز اقصى يزوَت نتًٍُت يهاو وخذياث انشبكت انًستقبهٍت

ANEP . اٌ تعشٌشANEP جعم طزٌقت بُاء انخذيت فً هذا انًىجه ٌسًخ بانبزيجت انًزَت يٍ خلال انتجًٍع انشفاف نىدذاث بُاء انًستخذو فً طزٌق 

كذنك سُقذو وَطبق بزَايج نتشكٍم ودقٍ باكٍتاث انًعهىياث فً طبقاث انشبكت نًاكُت انفذص، سىف َذعى هذا انبزَايج بًىنذ . انبٍاَاث انذاخهت نهًىجت

  .اخٍزا، َجاح يعًارٌت انعقذة وتُفٍذها الابتذائً تى تقىًٌه باستخذاو بعض انتطبٍقاث انعًهٍت. وداقٍ انباكٍتاث

 

 


