
Al-Khwarizmi
Engineering

Journal
Al-Khwarizmi Engineering Journal, Vol. 5, No. 4, PP 69-98 (2009)

Windows-Based Special Applications Router

 Omar A. Athab* Ahmed S. Hadi* Sufyan T. Faraj**
 * Information and Communication Engineering Department/ Al_KhawarizmiEngineering College/ University of Baghdad

** Computer College/ Al-AnbarUniversity

(Received 16 March 2008: accepted 17 August 2009)

Abstract

 The design and implementation of an active router architecture that enables flexible network programmability based on so-

called "user components" will be presents. This active router is designed to provide maximum flexibility for the

development of future network functionality and services. The designed router concentrated mainly on the use of Windows
Operating System, enhancing the Active Network Encapsulating Protocol (ANEP). Enhancing ANEP gains a service

composition scheme which enables flexible programmability through integration of user components into the router's data

path. Also an extended program that creates and then injects data packets into the network stack of the testing machine

will be proposed, we will call this program the packet generator/injector (PGI). Finally, the success of the node

architecture and its prototype implementation is evaluated by means of a few practical applications.

Keywords: Active Network, Active Router, User Components, Windows Operating System, Active Network Encapsulation (ANEP),
Packet Generator /Injector (PGI).

1. Introduction

 "Active networks allow individual user, or

groups of users, to inject customized programs

into the nodes of the network.”Active"
architectures enable a massive increase in the

complexity and customization of the computation

that is performed within the network, e.g., that is
interposed between the communicating points."

 In traditional networks an intermediate node

executes ordinary computations on packets. All

packets are treated in the same way: nodes only
forward packets towards the right destination.

Instead, an active node makes difference between

packets. They contain programs that have to be
executed on them. The difference between a

traditional network (store-and-forwarding model)

and an active one (store-compute-and-forwarding
model) is that, in traditional network the delivery

process is static, relatively passive, because all

packets are treated individually. While in active

network delivery process is dynamic, where the
packets become smarts, i.e., they contain their

own handling instruction that enable these packets

to arrive, execute, and move to their destination

[1]. A key characteristic of this technology is the

ability to rapidly create, deploy and manage new

network services in response to user demands.

2. Literature Survey

 Since the focus of the work presented in this
paper concerns the development of active node

architecture, this section focuses primarily on

completed works in active systems design.

 D. J. Wetherall and D. L. Tennenhouse have
first pursued the idea of placing program

fragments into internet protocol (IP) packets as

part of the ActiveIP project [6, 7]. Initially, they
studied the potential of placing small programs

within the option fields of IP packets. These so-

called active options, encoded in Tcl [5] language
in their prototype implementation, were executed

by modified network nodes as the packets

traversed the network.

 Active Node Transfer System (ANTS) [8, 2],
provides a capsule programming model. Capsules

are packets that encapsulate data with a

customized forwarding code. Applications use the

Omar A. Athab Al-Khwarizmi Engineering Journal, Vol. 5, No. 4, PP 69-98 (2009)

70

network by sending and receiving capsules via
active nodes. When a capsule arrives at an active

node, the type field is used for de-multiplexing to

the corresponding forwarding routine, before the
corresponding routine is executed to forward the

capsule. ANTS provide active node application

programming interface (API) calls to query the

node environment. The demand-pull mechanism
is used to obtain code from the previous node that

the capsule visited. The ANTS prototype is

implemented in Java under UNIX operating
system.

 The Smart Packets project [9], emphasizes

particularly on applying active networking

technology to network management. It aims at
addressing scaling problems that are inherent in

typical polled managed devices rather than aiming

for general transport mechanisms such as ANTS.
Smart packets are encapsulated within ANEP

packets and ANEP packets are encapsulated

within an IP packet using a specific option (router
alert). The Smart Packets architecture expects all

programs to fit within one Ethernet maximum

transmission unit (MTU). There is no existing

language that had a compact enough
representation for Smart Packets environment. As

a result, Sprocket [10] and Spanner [11]

languages are developed as part of the Smart
Packets project.

 Switch Ware Active Network Architecture

[12], consists of three layers: active packets,
active extensions and a secure active router

infrastructure. Active packets carry programs

consisting of code and data to replace both the

header and payload of traditional packets. As a
consequence, a new programming language for

Active Networks, known as PLAN [13, 14], is

designed and implemented. Active extensions
[15], which are not mobile, form the middle layer

of SwitchWare architecture. They communicate

with other routers via active packets. It is

programmed in Caml. A secure active router
infrastructure forms the lowest layer of

SwitchWare architecture. It provides a secure

foundation on which the other two layers are built.
Secure Active Network Environment (SANE)

[16] is designed to embody secure active router

infrastructure. The role of SANE is to ensure that
the presumptions of the other system elements are

true.

 MIT's Click [17] is software architecture for

building flexible and configurable routers. A
Click router is "configured" from packet

processing modules called elements. Individual

elements support simple router functions such as
packet routing, queuing, or scheduling. A

complete router configuration is defined by a
directed graph whose nodes are the elements. A

Click router configuration is determined at

compile time. The elements are internally
represented by C++ objects that are inter-linked

with each other through object references under

Linux OS. Packet passing between functional

elements is thus simply a matter of passing
memory pointers between objects.

 Router Plugins [18], aims to build a flexible

network subsystem that offers the ability to select
implementations (or even instances of the same

implementation) of router components, called

plugins, on a "per-flow" basis. Plugins are binary

code modules that can be dynamically loaded and
unloaded into the router kernel at run-time.

NetBSD, which is used as the base platform for

Router Plugins, provides appropriate kernel
support to load modules into the kernel. The

Plugin Control Unit (PCU) provides the "glue" to

bind individual plugins to the network subsystem.
 The application level active network (ALAN)

system [19], introduces value added network

services by means of an overlay active network

infrastructure. The system is assembled from
standard IP applications and servers connected to

the Internet. Active processing "inside" the

network takes place in so-called dynamic proxy
servers (DPS). The active programs, called

proxylets [20], act as communication proxies for

data streams dispatched through the dynamic
proxy servers. ALAN requires the data streams to

be explicitly addressed to the proxy servers. The

current implementation, known as FunnelWeb

[21], is based on RMI of Java 2.
 The Lancaster Active Router Architecture

version 2 (LARA++) [22, 3] proposes an active

router architecture. The key building blocks of
LARA++ are: the active NodeOS, the policy

domains, the processing environments, and the

active and passive components. The Active

NodeOS provides low-level system service
routines and policing support to enable controlled

access to node-local resources and system

services. Policy Domains (PDs) form the
management units for resource access and

security policies which are enforced on every

active program executed within the PD.
Processing Environments (PEs) provide the

protected environments for the safe execution of

active code. Active Components (ACs) are the

units of active code processed within the PEs. To
assure platform independence, there are two

prototype LARA++ implementations for both MS

Windows and Linux being developed.

Omar A. Athab Al-Khwarizmi Engineering Journal, Vol. 5, No. 4, PP 69-98 (2009)

71

3. Work Objectives

 This work primarily aims to get the following:
1. Proposing architecture for active network

system, regarding the available tools.

2. Implementing a prototype for active router.
3. Investigation of new techniques in the

implementation. Rather than standing in the

old layering model in networking, a

component-based approach was introduced.
Also, entering the challenge of in-kernel

programming technique instead of the

common user-mode approach. In addition to
use a closed-source-code OS "windows",

which is rarely used in in-kernel network

implementations.

4. Paper Layout

 Section 5 presents the design of the active

router (AR) architecture. This central part of the
paper describes in detail how AR operates and

how the component-based active node

architecture enables network programmability
through flexible integration and extensibility of

network functionality. In addition to the basic

node design, special focus is placed on the service

composition framework.
 Section 6 then describes the ongoing

implementation efforts of developing prototype

nodes of the AR architecture. Due to the
considerable extent of the AR architecture, this

section focuses primarily on validating the key

aspects of the design through a 'proof-of-concept'
implementation.

 Section 7 continues with a qualitative and

quantitative evaluation of AR and its prototype

implementation. It evaluates how the AR
architecture satisfies the objectives and

requirements. Finally, section 8 concludes the

paper by drawing together the main arguments of
this work. It also describes further work that could

be carried out based on this line of research.

5. AR Architecture Overview

 The overall architecture of the proposed active

network has been divided into three functional

parts: the Component Distributor (CD), the Packet
Manipulator (PM) and the" Proof-of-Concept"

part.

 The first part; the component distributor
(CD),concern the transferring of user components

from a Privileged End-System (PES) or network
administrator (ADMN) system to the active router

(AR). The management of the transferred

component is also the responsibility of the CD.
 In other side, the PM functional part extends

the OS networking stack such that it can intercept

the in-bound packets that enter the AR and

discriminate among the various types of packets.
After distinguishing the type, the PM forwards the

packet to the proper component to be serviced.

 The third functional part is dedicated for the
Proof-of-Concept of the idea in this paper. It also

contains the design and implementation of Packet

Generator/Injector (PGI) system. Its main purpose

is the construction and sending of two types of
packets: Active and Traditional.

 The proposed architecture is designed to

extend exiting routers by layering active network-
specific functionality on top of the router

operating system. A generic high-level active

network layer enables cross-platform
programming and processing of active programs.

Low-level functionality of the AR architecture as

provided by the active node operating system

(NodeOS) is directly integrated with the router OS
in order to maintain good performance for the

active processing. The following sections explain

in details the first two parts of the proposed AR,
which there positions are also shown in fig. 1. The

third part will be explained in section 7.

5.1. Component Distributor (CD)

 The proposed Component Distributor allows

the user to load new components in the AR, where
it is responsible for the fetching of User

Component (UC).

Fig.1. Positions of the CD and PM Units with Respect

to the Windows Layers of the Proposed AR

Omar A. Athab Al-Khwarizmi Engineering Journal, Vol. 5, No. 4, PP 69-98 (2009)

72

 The UC is a program performing either
protocol processing or value-added function to the

packet. The code of the UC is written by a

Privileged-End User (PEU) or purchased from
software third party, then sent from any PES to

the AR using the CD unit. The UCs are

distributed in the form of pre-compiled machine

code. Thus by using UC the AR is programmed
individually through out-of-hand instantiation of

active program. The UC is in the form of

Dynamic Link Library (DLL) file. The CD unit
provides the capability of reading, packing, and

then transferring the UC from a PES to the AR.

 The second function of the CD is to upload the

UC to the AR using a certain Protocol; the file
transfer protocol (FTP) [27]. The CD unit

operates in a client/server fashion. The AR

represents the server, whereas the PES represents
the client. Hence, jobs of the CD can be

summarized as: packing, uploading, and

controlling the UC.

5.2. The Packet Manipulator (PM)

 The packet manipulation begins with

intercepting the packet and ends with forwarding

it to the appropriate user component to be
processed there. Hence, in addition to catching a

packet, the PM performs a light firewalling, lifting

the packet from the kernel to the user mode,
recognizing its type, and finally (if required)

dispatching the packet to the user component that

it whishes for processing.

Fig.2. Block Diagram of PM Architecture.

 Consequently, the PM architecture was further
divided into the following functional units: The

Packet Interceptor/inJector (PIJ), Packet Filter

(PF), Packet Bridge (PB), Packet Classifier (PC)
and Packet Dispatcher (PD). It is noteworthy to

state that the packet classifier and packet

dispatcher are residing in the user-space of the

AR. The packet bridging unit behaves as a
channel between the user space units and the rest

kernel space units (interceptor and filter). A

simple block diagram of the designed PM is
shown in fig. 2. The figure also depicts paths that

may be taken by packets that passing the AR. The

following sections illustrate the PM units briefly.

5.2.1 Packet Interceptor/Injector (PIJ)

 The Packet Interceptor/injector provides the interface

between the active network environment and the data

path on the node. The Packet Interceptor (PI) is
responsible for intercepting the network traffic

traversing the node and passing it to the active

network environment for processing. The Packet
Injector (PJ), by contrast, re-injects the network data

back into the default forwarding path on the node or

sends it directly through one of the outgoing interfaces.

Fig.3. Simple Diagram of the Proposed Skeleton IM

Driver (PIJ unit).

 A network driver interface specification

intermediate (NDIS IM) network driver was proposed
to realize the PIJ under windows 2000 OS. We choose

Omar A. Athab Al-Khwarizmi Engineering Journal, Vol. 5, No. 4, PP 69-98 (2009)

73

this driver in this paper because it’s well documented
and it’s in excellent location in the stack, which will

gives a lot of control over network packets without

affecting other network protocols in the stack. A
simple diagram of the proposed skeleton IM driver

(PIJ unit) is shown in fig. 3.

 The proposed PIJ can be loaded (or unloaded)

dynamically at run-time (without interrupting the entire
system). This allows the AR to dynamically activate

(and de-activate) the active network functionality on

a node. Note that removing the packet interceptor
completely disables any AR specific processing on

the data path.

5.2.2 Packet Filter (PF)

 The proposed project provides a programmable
PF on the read handle. The PF introduces a list of

network source/destination address ranges and an

"action" to be performed on packets that match the
firewall criteria. The actions are:

Block: Have the PF drop the matching packet from the

normal packet flow.
Pass: Have the PF allow the matching packet to pass up

to the PT driver as in the normal flow.

Read: have the PF pass a copy of the received

packet to the packet bridge which is the next unit in the
AR.

5.2.3 Packet Bridge (PB)

 The paper establishes so-called Packet Bridge to
provide the means to transfer network data to and from

the UC. The PB unit targets to facilitate the

interface between the kernel and user sides of the
PM. Hence, PB consists of modules in both the

kernel and the Win32 application sides. It is

noteworthy to recall that the PIJ and PF units are

placed within the kernel space of the proposed AR.
However, to make the system more flexible it is

suggested to load the UCs in the user space of the OS.

5.2.4 Packet Classifier (PC)

 At this point a copy of complete packet has been

captured and reached the PC. The object of the PC is
the discrimination among the various types of

packets that may pass through the PM.

5.2.5 Packet Dispatcher (PD)

 The PD defines the "route" through the UC space

for the active data packets (ADPs) passing a node.

The PD plays a central role in the service

composition process. It determines based on the

set of component identifier (CID) in service
composition field of the ANEP header which UC(s) are

involved and in which order they should process the

ADP.
 After the UC(s) finished it's processing on the ADPs,

the PD returns the packet back to the windows network

stack through the PB. The PB, in turn, either injects

the packets into its previous default forwarding path
(virtual adapter) on the node or sends it (lower

adapter) directly through one of the outgoing

interfaces. If the ADP is re-injected to the virtual
adapter, the routing operation is applied. It is

performed strictly like the conventional routers.

5.3. Service Composition

 A composite service [28] is constructed from a set of
components by means of a composition method. The

composition method determines the set of software

components needed to compose a service and the
bindings to join these components. A PD is

designed to associate Active Data Packets (ADPs)

passing an active node with the appropriate active

extension (or UC). For this reason, ANEP [4] has
been proposed as a means to assign packets passing a

network node to active computations.

5.3.1. Enhancing ANEP

 The basic ANEP header [4] specifies a 16-bits field

for the type identifier (ID) of a single executing

environment (EE) that must process the ADPs in the AR.
But, in this paper, the concept of component-based

services is envisaged to achieve a good flexibility in

introducing functionalities for the ADPs. This means

that we have either multi-Execution Environment
(where each one represents a single component) or

single EE (contains all installed UCs).

 In the two assumptions there is a limitation in
determining which components(s) and in what

order are appropriate to process the ADPs.

According to the basic ANEP header, the type ID field
in the entering ADP can assign only one component to

process the packet. This is a big restriction. This will

restrain the AR to be really active and flexible.

Furthermore it may weak or omit the principal of
component-based services in the AR; services that

require more than one component can not be achieved

in such fashion. Therefore, two proposals are presented
below to enhance the original ANEP to overcome this

limitation.

Omar A. Athab Al-Khwarizmi Engineering Journal, Vol. 5, No. 4, PP 69-98 (2009)

74

5.3.1.1. ANEP Proposal 1

 Using the same ANEP structure but with giving a
unique type ID not only for each single components

but also for each combination of 2 or more components

with various sequences. For example, if there are two
components (namely A and B) installed in the AR, the

coding of the type ID field, to assign one of them or

both, appears as in table 1. The statement (A then B)

that appears in table 1 means that the active packet
like to enter component “A” processing first and then

component “B”. It is a simple service composition

method. However, the same context can be followed for
three or more components.

Table 1,

Type ID coding of active component for proposal 1.

Component Name Type ID

A 1

B 2

A then B 3

B then A 4

5.3.1.2. ANEP proposal 2

 In which the type ID field is not used to

indicate exactly the UC, instead it is exploited for

indicating the count of UCs that may be composed to
introduce the service to the active packet. The

Component ID (CID) of the component itself is

described in a new proposed variable-length field

which we call "service composition" field. It is
placed after the basic header and before the options

field. This new field consists of the CIDs of the

components that must be composed to create the required
active service.

Fig.4. Format of ANEP Proposal 2.

The order at which the CIDs appear in the service
composition field is considered as the sequence of the

components that will be composed in the active

network node. The proposed ANEP format is
shown in fig. 4. Using this format, the lack of service

composition capability in the original ANEP can be

avoided.

 Service Composition field format

 The proposed format of the service composition field

is shown in fig. 5. It is divided into subfields, each one

contains a CID of the component to be processed and its
length is 16 bits. Conceptually, the count of

components that can be assigned in the service

composition field is bounded by the count of
component (CC) field value, which is not exceeds

2
16

 as maximum edge.

Fig.5. Format of "Service Composition" Field.

 At a first glance, one may think that the 16-bits
long component ID field of each component will cause

a large overhead on the system, especially if there are a

large number of components required to be composed to
provide the suitable processing for the packet.

However, this is not true, because normally the

components that need to be composed may not exceed

about 10 components (i.e. about 20 bytes overhead
only out of 1500 bytes long for IP protocol packet).

5.3.2. Discussion

 Proposal 1

Advantages

1- Functionality better than the original ANEP

format since it provides a single and multi-

component service composition with controlled order.
2- Relatively, No additional processing time needed

over the original ANEP since the same fields are used.

Disadvantages

1- Type ID range available to identify components is

decreased because of the range that is wasted in
covering the multi-component service composition

IDs with various ordering.

2- The active components and the composed services are
offered by the active node designer or administrator

and not the active network user who construct the

active packet. The active node designer, for any

reason, may not offer all the probabilities of
services that may composed by different

components or he may impose a charge for specific

services. This might represent a contradiction with

0 15 16 31

version flags Component count

ANEP Header Length ANEP Packet Length

Service composition

Options

payload

0 15 16 31

1st component ID 2nd Component ID

3rd component ID ……….

…………… …………

…………

Omar A. Athab Al-Khwarizmi Engineering Journal, Vol. 5, No. 4, PP 69-98 (2009)

75

the idea of active networking that depend on, as
long as possible, moving the programmability

from the active node administrator to the

privileged users for more flexibility.

 Proposal 2

Advantages

1- Like in ANEP proposal 1, it has functionality
better than the original ANEP format since it

provides a single and multi-component

service composition with controlled order.

2- It keeps the wide range of type ID field by
providing 16-bit field for each single component

in the service composition field. This property

supports the component-based principal of the
network node by keeping the capability of

building different useful services by small

program components.

3- The PEU (or the packet producer or installer)
himself would be the composer of the services

and not the active node designer or

administrator. This evidenced that the end-user
is the first beneficial of the active network idea.

Disadvantages

1- The overhead is more than both the original

ANEP and proposal 1 formats because of the

additional service composition field.

2- It requires more processing time than both the
original ANEP and proposal 1 formats because of

the new appended service composition field and

the CC field.
 A brief comparison among the original ANEP

format and the two proposals for enhancing ANEP

is shown in table2.

Table 2,

Brief Comparison Among ANEP, ANEP Proposal 1 and 2.

ANEP Proposal

2

ANEP Proposal

1

Original ANEP Function

Single and

Multiple

Component

Services

Single and

Multiple

Component

Services

Single

Component

Services

Services

Component
1

Better

Functionality

Better

Functionality

Fair Functionality Functionality 2

Require More

Processing Time

than the Original

No Additional

Processing Time

Required the

Original ANEP

Processing Time

Processing Time 3

Wide Type ID
Range

Type ID Range
Less than Original

Wide Type ID
Range

Type ID Range 4

Services are

Flexible Because

it is Fully

Controled by the

End User

Services are

Flexible But

Offered by the

Active Node

Administrator

Services are

Restricted

Because it

Depends on

Single

Component

Flexibility Of

Services
5

Overhead is Large

thab the Original

Similar to the

Original Bit

Overhead

Original Bit

Overhead

Bit Overhead 6

5.3.3. Conclusion

 According to the above discussion, it is evident
that proposal 2 for enhancing the basic ANEP

header is preferred. Therefore, proposal 2 will be

adopted throughout the work presented in this
paper. One of the contributions, of the proposed

AR is the novel service composition scheme for

active services.

6. AR Implementation

 This section describes the ongoing efforts to
engineer a prototypical realization of the proposed

active router (AR) architecture.

6.1. Component Distributor Implementation

6.1.1. CD Server

 The CD server is implemented using the FTP

Omar A. Athab Al-Khwarizmi Engineering Journal, Vol. 5, No. 4, PP 69-98 (2009)

76

server provided by windows OS. The FTP service
is available already but not activated. To activate

this facility, information services (IIS) in the

Add/Remove Windows Components dialogue must
be chosen. In the internet IIS dialogue; the FTP

service should be selected. The default folder used

to cache the UCs in the AR is located in

C:\Inetpub\FTProot. Any FTP client can, till now,
only visit this folder, but it can not read or write files

on it. To enable the read and write on UCs in the

FTP root folder, the Read and Write boxes must be
checked in the home directory of FTP server

properties. The FTP server properties can be

reached from IIS service in the administrative tools

within the control panel.

6.1.2. CD Client

 The CD client in the PES side is realized by

exploiting the FTP client capability which is
available in with the internet explorer under Windows

OS.

 PEU can display the two side screens (FTP
client and server) in his workstation. The FTP

client in the PES side is realized with the internet

explorer under windows OS. While the FTP server

is realized by inserting the IP address of the target
AR in the address bar preceded by FTP acronym

to connect to the FTP server. UCs can be uploaded

easily by drag and drop from the PES screen to the
AR screen. PEU, also, can control (delete partially or

completely and rename) the installed UCs in the

AR. But this control capability obeys the previous
configuration of the FTP server.

6.1.3. Structure of UC

 The proposed UC is implemented as two files: code

and configuration files. Code file contains the source
code required to process the ADP actively to enforce a

certain protocol or achieve a value-added function.

The code should be written in high-level language
support Microsoft Visual Studio application

programming interfaces (APIs). In this paper, C++

language is used to program the source file.

 Concerning the code file of UC, PEU can either
upload it as it is (source code file) or convert it to a

dynamic link library (DLL) file. In this

implementation, only the latter case is adopted.
DLL is a module contains function(s) and data. A

DLL is loaded at run time by its calling module. When

a DLL is loaded, it is mapped into the address
space of the calling process. DLLs can define two

kinds of functions: exported and internal. The

exported functions can be called by other modules.
Internal functions can only be called from within

the DLL where they are defined. Although DLLs

can export data, its data is usually only used by its
functions.

 The second part of the expected UC is the

configuration file. Actually, it is an initialization

(ini) file that contains configuration data (i.e.
idiom terms) for Microsoft Windows based

applications. It allows a program to store initialization

data, which can then be easily parsed and changed.
“ini” files are used to store configuration information

for applications programs.

 To provide more flexibility for PEU, in this project

the “ini” file is created using simple C language
routine. The file consists of only a single C-language

structure (Servlnfo structure). This structure, in turn,

contains the name of code file of UC (the .dll file
name) in a string format and a control buffer with its

length. The control buffer is involved for

configuration purposes (if required).

6.2. Packet Manipulator Implementation

 The PM is implemented using IM driver (in the

kernel space), the PC and PD units are realized in the

user-space as an extension of the driver.

6.2.1. IM driver

 The foremost and significant step in realizing the

PM architecture is the implementation of a simple
"pass through" IM driver. A "pass through" (or

passthru) driver means a do-nothing pass-through IM

NDIS driver. It abstractly performs the basic principles
of initializing and setting up an IM driver. This driver

exposes a virtual adapter for each binding to a real

physical adapter. In turn, the overlying protocol

drivers can bind to these virtual adapters as if they are
real adapters.

 However, the passthru driver has been

implemented as six software modules: Main,
Adapter, NDISreq, Recv, Send and Status. In

addition, there are other auxiliary modules that are

related to power management of the driver such as

the reset and shutdown states and the plug and
play (PnP) capabilities.

 The following subsections briefly discuss the

developed passthru driver modules. The routines of
these modules may require prior knowledge of

NDIS drivers' development:

A) Main Module: This module consists of the
routines that load the passthru driver and initialize its

driver-wide data structures and resources. In

Omar A. Athab Al-Khwarizmi Engineering Journal, Vol. 5, No. 4, PP 69-98 (2009)

77

addition, the main module register and de-register
the input output control (IOCTL) interface and the

device object that are used by the user-mode

applications to communicate with the IM driver.

B) Adapter Module: The adapter module functions

are called by the NDIS wrapper, for example to
allocate and de-allocated a passthru virtual adapter

instance, to halt or shut down the driver upper edge,

to query information about the capabilities of the
passthru and to request the driver to bind (or

unbind) to an underlying MP NIC driver. Also

there are routines capable to allocate and de-
allocate a context pool to be used for exchange of

data between the adapter and the applications.

C) NDISReq Module: Mainly the functions of this

module related to NDIS requests to the passthru
driver. NDIS may query information about the

status of the IM or request changes in the state

information that the passthru maintains. Each
NDIS driver contains its own management

information block (MIB) [23]. It is an information

block in which the driver stores dynamic
configuration information and statistical

information that higher-level drivers or applications

can query or set.

D) Status Module: Status notifications initiated by
the underlying NIC MP driver are indicated using

functions of this module.

E) Send Module: NDIS calls the functions of this
module to transmit a single (or multi) packets to the

underlying NIC driver. Then, NDIS also indicates the

completion of the send operation to the IM driver.

F) Recv Module: After the underlying NIC driver
indicates a received packet to the wrapped NDIS,

the NDIS in turn indicates this packet up to the

passthru driver by calling the functions of the Recv
module.

 Two standard functions were written to receive

the indicated packet (as recommended by driver
development kits (DDK) documentation). These are

the PtReceivePacket and PtReceivelndication

functions. The two functions must be exposed by

the passthru driver to the underlying MP driver.
Nevertheless, it may not be easy to guess which one

the NDIS will decide to use. In either case, the

passthru performs the minimum manipulation here to
just forward the packet up to the overlying PT driver.

Exposing the two receive functions is mandatory. It is

important to be noticed that the routines mentioned
above are only the essential routines that must be

included according to Microsoft DDK documents

[23].

6.2.2. PIJ Unit

 The implemented passthru IM driver simply passes

the packet data along without modification. Also, this

driver stops short of actually illustrating any
observable function. To be of any actual use, the

developer must take the next step and add

functionality of his own to the implemented skeleton
driver.

 Also, the passthru driver requires an accurate tracking

to get a copy of a complete received packet. In addition,

when gaining a copy of a packet it may be needed (after
processing, if any) to re-inject the packet again into the

IM driver to complete its passage up in the networking

stack. As stated in Recv module, PtReceivePacket
function or PtReceiveIndication function may be called

by NDIS to indicate a received packet. Internal

considerations in the operating system determine which
one is used. Other crucial considerations such as

avoiding interrupting with Windows normal activities

and take care in allocating and de-allocating of memory

storage areas must also be taken into account in the PIJ
implementation.

 However, two approaches are available in PIJ

realization (or extending IM driver, in general). The
developer either enforces the above step-by-step

(manual) implementation or using a cloned packet

approach. The cloned-packet approach has been realized
by adding a smart module called UTIL module, which

support Recv module. UTIL module consists of routines

deal with allocating and de-allocating packets, memory,

and buffer descriptors, and tracing the packet path in the
send and receive routes to aggregate its hashed portions.

Also, UTIL module support the capability of operating

with the lower-edge (lower adapter) and the upper-edge
(virtual adapter) and making read and write with these

two bindings of the IM driver in kernel level. In addition,

it provides a complete packet in a clear buffer in the

kernel-mode. Flowcharts of the implemented receive
functions (PtReceivePacket and PtRecveiveIndication) of

PIJ unit are shown in figs. 6.a - 6.m. functions preceded

by UTIL acronym are belong to PCAUSA [25] code.
After realizing the PIJ, the next step is to implement the

Packet Filter.

Omar A. Athab Al-Khwarizmi Engineering Journal, Vol. 5, No. 4, PP 69-98 (2009)

78

Fig.6.a. Flowchart of Pt Receivepacket Function.

Fig.6.b. Flowchart of IM Filter_Filter Receivepacket Function.

Omar A. Athab Al-Khwarizmi Engineering Journal, Vol. 5, No. 4, PP 69-98 (2009)

79

Fig.6.c. Flowchart of IM Filter_Getfilter Action Function.

Fig.6.d. Flowchart of UTIL_Clone Receivepacket Function.

Fig.6.e. Flowchart of UTIL_Allocatepacket Function.

Omar A. Athab Al-Khwarizmi Engineering Journal, Vol. 5, No. 4, PP 69-98 (2009)

80

Fig.6.f. Flowchart of IM Filter_ Handle Receivepacket Function.

Fig.6.g. Flowchart of Process Pending Reads Function.

Omar A. Athab Al-Khwarizmi Engineering Journal, Vol. 5, No. 4, PP 69-98 (2009)

81

Fig.6.h. Flowchart of MP Return Packet Function.

Fig.6.i. Flowchart of Pt Receive Indication Function.

Fig.6.j. Flowchart of IM Filter_ filter Receive Indication Function.

Omar A. Athab Al-Khwarizmi Engineering Journal, Vol. 5, No. 4, PP 69-98 (2009)

82

Fig.6.k. Flowchart of UTIL_Make Packet From Receive Indication Functions.

Fig.6.l. Flowchart of Pt Transfer Data Complete Function.

Omar A. Athab Al-Khwarizmi Engineering Journal, Vol. 5, No. 4, PP 69-98 (2009)

83

Fig.6.m. Flowchart of IM Filter_Handle Receive Indication Function.

6.2.3. PF unit

 This section illustrates how to extend the proposed

PIJ so that it has the capability to block the received

packets according to a pre-defined list of network IP
addresses to be blocked. The basic requirements for

IP address blocking driver are:

 Kernel-firewall: develop a kernel-space

software based on the PIJ driver that blocks packets

that are received using an IP addresses list.

 Application-control: Include a companion

Win32 application that controls and read the list of

IP addresses to be blocked. To make the matter

more explicit, dropping a packet in the IM driver is
accomplished by not forwarding it to the upper

layer. There is no NDIS API to drop a packet. This

notion may clarify some of the constraints imposed

due to in–kernel programming.

 Generally, the PF provide the capability of a
user-mode application to read a list containing the

adapter name and the IP addresses to be blocked.

The sorted list is passed to the Kernel-mode using

the PB unit. The list of IP addresses is duplicate in the
Kernel space and then saved in the FilterReserved area

of the ADAPTER structure (ADAPTER structure will

be explained in section 6.2.4).
 The starting point of this PF is the PIJ unit. The

base code was reorganized by adding a new module

(IMFilter.C) that isolates the actual filtering code
from the basic packet interception. The key functions

provided in the new module are:

A. IMFilter-SetPktFilter function: The IMFilter-

Omar A. Athab Al-Khwarizmi Engineering Journal, Vol. 5, No. 4, PP 69-98 (2009)

84

SetPktFilter function is responsible to move the
information of filter setting from the user

application to the context pool of the currently

opened adapter. The filter setting information
consists of list of Destination/Source IP address

ranges, the action of the filter (Block, Duplicate

(or read), and claim). The adapter must be priory

opened by the application before setting the filter
parameters. Then, the given filter structure that is

required to be imposed on the received packet is

drawn from the input/output request packet (IRP)
pointer. Completing the IRP request is essential to

free the resources before returning from the IMFilter-

SetPktFilter.

B. IMFilter-ResetPktFilter function: In the other
side, the IMFilter-ResetPktFilter function resets

what the IMFilter-SetPktFilter has been set. It

frees the allocated memory of the recently stored
filter structure and nulls the corresponding

parameters in the specified open context. Finally the

IMFilter-ResetPktFilter will complete the IRP
request and feedback the suitable status of the

processing.

C. IMFilter-Filter Receive Packet, IMFilter-

Handle Receive Packet, IMFilter-Filter Receive

Indication, IMFilter-Handle Receive Indication:

Jobs of theses four are illustrated previously if figs.

6.b, f, i and m, respectively. Generally, IMFilter-
Filter Receive Packet and IMFilter- Filter Receive

Indication functions are responsible to find the

required filter action for the received packet.
Whereas, IMFilter-Handle Receive Packet and

IMFilter-Handle Receive Indication functions handle

the received packet according to the found filter

action.

6.2.4. PB Unit

 The DEVMJFCN.C and WDMSUP.C are

modules in the kernel side that encapsulates the
routines related to the IOCTL interface. In user mode

side, the modules are realized in C language and then

converted to “dll” file such that they export a ready

to use APIs for the Win32 applications of the AR.
These APIs involve the following: Open Lower

Adapter API, Open Virtual Adapter API, Open Lower
Adapter By Link Address API, Open Virtual Adapter

By Link Address API, Read On Adapter API, Write

On Adapter API, Set PKT Filter API, Reset PKT
Filter API. In addition to auxiliary APIs that are

offered to facilitate Opening an adapter and querying

information, these are: Enumerate Bindings API,

Make Ndis Request API, Make Private Request API.
 In this paper, the IRP-based interface is used to

implement the user/driver programming interface. In a

consequence, applications can use the basic Win32
functions; Creat File, Devicelo Control, Read File,

Write File; and Close Handle in the user-mode side of

the interface.

 In the Main module (section 6.2.1), the driver
creates a device object and a Win32-visible symbolic

link name that can be opened in user-mode using

CreatFile. Also, at Main Module initialization, the driver
was registered IRP-based functions that are

(eventually) called to implement the kernel-mode

end of the interface. The foundation of the device
I/O control is accomplished by calling the Ndis Register

Device API from the WDM Initialize function in the

Main .C module.

 Using Creat File API, the user mode is able to open
and close a general device handles on the IM driver

file space name. A handle of the IM file object is an

ordinary handle to the device that is not associated with a
specific adapter binding. This device handle "or

control channel" is used to access global information

such as drivers binding list but not beyond that.
Nevertheless, this handle is not sufficient to make

interface with the driver. Knowing that, any IM driver

may be connected to more than one MP NIC driver and

also more than one overlying PT driver.
 The connection between the IM driver and each

one of the underlying MPs is represented by a certain

Adapter structure; we were called (ADAPTER). Each
ADAPTER structure establishes a driver-specific

context area between the IM and one of the specified

MP drivers. Most information and resources used by

the PM units such as packet pool handles, buffer pool
handles, and locks are kept in this structure.

Several members of an ADAPTER structure is

shown in fig. 7.

Omar A. Athab Al-Khwarizmi Engineering Journal, Vol. 5, No. 4, PP 69-98 (2009)

85

Fig.7. Several ADAPTER Struct Members.

6.2.5. PC Unit

 At this point, a copy of a complete, received,
filtered packet has been gained and queued in the

Pending Read Packet List in the OPEN-CONTEXT

structure.
 However, because we use the standard IP header in

implementing the AR architecture, we must

discriminate the IP which carry an ANEP header

from that which carries non-ANEP content (i.e.
discriminate active from non active packets). We were

proposed to use a special value in the protocol field of

the IP header to refer to the ADP (which contains ANEP
header). In such case, all the required to do by the PC

module is to inspect the value of the protocol field in

the IP header of the received packet. If it refers to ADP,
the packet will be passed to the PD unit.The non-ADP

value of protocol field represents either a traditional
data packet (TDP) or a component packet (CP) types,

hence the PC re-inject (write) these packets to the

virtual adapter of the PIJ to be lifted to the upper layers
for processing.

 The PC is realized in a discrete function and we call

it a CLSF function. CLSF function takes a pointer to

the received packet and its length as input parameters
and returns nonzero value if the packet is ADP.

However, CLSF function follows the following steps:

- Examine the type of Network layer protocol.
- According to the protocol type, CLSF function can

determine which field in the protocol header should

be tested to know the packet is an ADP or not.
- According to the suitable header field, if the packet is

ADP, return non zero value, else return zero value.

Omar A. Athab Al-Khwarizmi Engineering Journal, Vol. 5, No. 4, PP 69-98 (2009)

86

6.2.6. PD Unit

 After completing the filtering and classification

operations, the PC will deliver only the ADPs to the
PD. The PD is a user-mode unit. It is responsible for

directing the ADPs to their appropriate UCs.

According to the ANEP header of the ADP, the
PD can recognize which UC is required to process

the new received packet. As has been stated in

section 5.3, the ANEP header contains a Component
Count (CC) field and a service composition field.

These fields tells the PD how many and which UC

must be called to process the ADP. The order of

these UCs is also determined by the ANEP header.
 At first, PD delivers an ADP from the PC and

checks the integrity of the enhanced ANEP header.

Then, the PD pushes the ADP in a temporary
polling cycle to be processed by the appropriate UC.

If it is found that one of CIDs does not recognized,

the PD will cancel the packet. Jobs of PD unit are

implemented as three C++ functions: Serv No,
Serv ID, and Get Serv Info. Below is a brief

description of each one of them:

A) Serv No Function: The Serv No function is
dedicated to determine how many UCs must be called

and executed on the received ADP. ServNo, simply,

initialize a pointer to the CC field in the enhanced
ANEP header and return a copy of CC field value.

B) Serv ID Function: In other side, Serv ID

function targets to withdraw the CIDs of the

required UCs in a correct order. Using the packet
array and taking into account the order of the

required UC and the type of protocol headers, a

pointer to the correct CID value in the service
composition field is initialized. This value (CID) will

return to the Execution Environment Manager (EEM)

module (see the next section). Actually, the CID is used

by EEM to search the cached configuration files which,
in turn, used to call the associated UC.

C) Get Serv Info Function: The last support function

is the Get Serv Info. It is intended for getting a copy of
Serv lnfo structure from the configuration file associated

with the UC. CID integer will be inserted as input

and Serv lnfo structure is achieved as output from Get
Serv Info function.

Below is a brief description of the necessary steps

followed by Get Serv Info function:

- Define some useful variables.
- Convert the CID integer into an ASCII string.

- Search and then open the “.ini” file indicated by CID

string.
- Read and copy the file contents into a pre-allocated

structure of type Serv lnfo. This structure will be

exported as output of Get Serv Info function.

- If the above steps work OK, return a non-zero value,
otherwise return a zero.

6.3. Active Network Operation

 UCs are implemented as dynamic link libraries

under windows 2000. Since the AR prototype
implementations exploit standard link library

technique and execute active code within user-space

processes, components can be developed and tested
based on standard development tools (for example,

the visual studio IDE compiler and debugger). As DCs

can be loaded and executed in the form of binary

code, the implementation of the components is
conceptually independent from any particular

programming language. Note that this designed AR

doesn't build safety and security upon a specific
programming language or certain language constraints

(such as strong typing, range checking .. .etc). However,

since the APIs must be linked to the component at

execution time of DLL, only programming
languages for which the system API is available can

be used. At the present time, the system APIs of the

current AR prototype implementation are only available
for C and C++. The software linker between the CD

server and the PM in the AR is the EEM. The EEM is a

module designed to integrate the two running software
units, namely, the IM driver-based and the FTP-based

programs. Briefly the EEM performs the following main

jobs:

1. Declare two instances of lower and virtual
adapters to be used for network access and low-

level information.

2. Define and initialize necessary variables.
3. Define two packet arrays (TempPack and

OutPack), one for temporary processing and the

other for returning the processed packet.

4. -Declare an instance of ServInfo structure. It is
used to read and store temporarily the contents of

the configuration (.ini) file.

5. Open the lower and virtual adapters, using APIs
exported by PB unit (see section 6.2.4).

6. Read the received packet(s) and its length from

the lower adapter and store it in TempPack array.
If there is no received packet yet, EEM still wait

until one is reached to the PendingReadPacketList

buffer.

7. Call CLSF function (see section 6.2.5) to check if
the received packet is an ADP or not. CLSF

function take TempPack array and its length as

input parameters. If it is non-active packet, EEM
will write the packet directly in the virtual adapter

to be processed traditionally by Windows stack. In

this case, this packet is either a TDP or a
Component Carrying Packet. In the case of TDP,

the burden of packet-routing and forwarding is

Omar A. Athab Al-Khwarizmi Engineering Journal, Vol. 5, No. 4, PP 69-98 (2009)

87

moved to the shoulder of windows protocol layer.
Whereas, if it is a component carrying packet,

windows stack will raise it to the CD server to be

dealt with there. In other side, if the packet is an
ADP then, perform the following steps.

8. Declare a general handle to a dll file which is

expected to refer to the required UC.

9. Call the PD unit. PD will perform the following
steps:

a) Call ServNo function to get how many UCs are

required to process the ADP. According to the
count of the UCs, steps 9.b up to 12 must be

repeated.

b) Call ServID function to get the suitable CID

from the composition service field in the
Enhanced ANEP header.

c) Using the CID, the cached configuration files

(associated with UCs) are searched to get the
correct Servlnfo structure. GetServInfo function

is called to accommodate this job. Servlnfo

structure contains the name of the UC's dll file
whose its CID is given as input to

GetServInfo function.

10. Call the Component Loader (CL) function. The

CL of the EE is responsible for loading UCs into
memory, and to initialize and start them. The CL is

initiated by the EEM. However, steps

followed by the designed CL are:
a) Load the ProcPacket function from the DLL

library into memory to be executed. Calling

LoadLibrary API will attempt to locate the
DLL and then perform such loading. The code

file name (i.e. DLL name) of the UC is given

as input parameter to LoadLibrary API.

LoadLibrary Windows API maps the
specified executable module (dll) into the

address space of the calling process. The

returned value will be a specific handle to
the required DLL library that is loaded in

the memory. Remembering that a general

handle to DLL file has been declared in step

8. This handle is assigned now to the handle
dedicated to the useful UC returned from

LoadLibrary.

b) Given the dedicated DLL handle and the
name of the exported function (ProcPacket)

as inputs to the GetProcAddress API, a

pointer to the specified exported DLL
function (i.e. ProcPacket function) is returned.

ProcPacket is the Template name of the UC

function which is required to process the

received packet. The function name given to
GetProcAddress API must be identical to

that in the EXPORTS statement in the DLL's

definition (.def) file.
11. To execute ProcPacket function, TempPack

array, its length, (a control buffer and its length
if required) is passed as input parameters, and

then enforce the ProcPacket function. The

actively processed packet is returned in the
OutPacket array.

12. Decrement the count of UCs that has been read

in step 9.a. If there are more components must

be executed, repeat steps from 9.b up to this step.
If component count reaches zero move to step 13.

13. Using the developed WriteOnAdapter API,

push the processed packet again to the windows
stack through writing on the opened virtual

adapter to be routed and forwarded

conventionally there.

14. As long as there is no manual EEM exit
instruction, the program continued in step 6. If

there is an exit EEM instruction, close the

lower and virtual adapter instances and exit
program. The two support APIs (LoadLibrary and

GetProcAddress) are provided by Microsoft Visual

C++6.

7. Evaluation and Results

 This section evaluates the designed AR

qualitatively and quantitatively.

7.1. Packet Generator/Injector

 In this paper, an external program is proposed

and implemented which creates and then injects
data packets into the network stack of the testing

machine. We will call this program a Packet

Generator/Injector (PGI). The generated packets
involve ADPs and TDPs. In each testing course

the testing machine which runs the PGI software

is connected to the AR (to be tested) or even the

ES(s).
 Several ready-to-use Packet

Generators/Injectors are available as executable

software in the internet [29] [30]. All the offered
programs use Windows Socket (WinSock) [26]

capability to inject user defined packets. The use

of WinSock involves encapsulating the injected

headers (Ethernet, IP ... etc) within the Transport
layer (TCP, for example). This method obliges

users to insert virtual headers within the real

headers. Furthermore, such technique decreases
the MTU of the original protocols due to the

virtual headers overhead.

 Due to the above reasons, a novel PGI is
designed and implemented. It uses only the

original protocol headers with full control on

filling their fields. Also, the designed PGI pushes

Omar A. Athab Al-Khwarizmi Engineering Journal, Vol. 5, No. 4, PP 69-98 (2009)

88

the generated packets directly to the IM driver in
the network stack. PGI exploits the implemented

PM units. It uses the PIJ and PB units to inject our

created packets directly into the lower adapter.
Fig. 8 shows a simple block diagram for the

designed PGI.

 A new function in user-space is developed to

facilitate creating and injecting data packets by
AN users in the ES. However, it is intended

mainly for AN developers and not AN customers.

The function is implemented as stand alone
module called PGI.C.

Fig.8. Illustration of PGI Units

7.2. Evaluation Methods

 In general there are two methods used for the
evaluation of system such as that presented within

this paper, namely qualitative and quantitative

evaluation [2]. Since the main contribution of this
paper is the architecture for active routers, a

qualitative evaluation of the concepts and design

of the AR architecture has been regarded as more

meaningful. Since it has been feasible to
implement only a subset of the overall AR

architecture, a quantitative evaluation of the entire

system (with applications) cannot be provided at
this stage. Nevertheless, section 7.4 provides a

quantitative evaluation of the key units.

7.3. Qualitative Evaluation

 Issues regarding the design and concepts

behind the AR programmability are considered
here. In order to evaluate the AR architecture, an

example case study is introduced.

7.3.1. Case Study

A) System Setup: As illustrated in fig. 9, set up

assume existence of an establishment (Company,
Bank, Library, Campus ... etc) divided into

headquarter and other branches distributed around

wide area, such that they exchange information
through the internet. Headquarter may contain

multiple networks (LANs or/and WANs) such

that there is a network for each department or
section.

 It is envisioned that ARs will form the core

elements (access and gateway) of this network.

Administrator (ADMN) of the network was
decided to operate under TCP/IP suite and

running the ARs under Windows 2000 server.

Fig.9. Hypothetical Diagram of Computer Network of an Establishment.

Omar A. Athab Al-Khwarizmi Engineering Journal, Vol. 5, No. 4, PP 69-98 (2009)

89

B) The Challenge: The key challenge of the

setting is to "open up" the establishment network

and to provide public services (through internet)
to remote authorized users (RAUs). RAUs may

belong to the establishment staff or external

customers. It is required to provide sufficient

confidentiality for the transferred information
from RAUs to the establishment (headquarter or

one of the branches) services. It is decided to

provide security by the developed encryption
algorithm called "RC5" [31].

C) The Solution (Network-Level Encryption):

The focus here lies not on the solution itself, as

the concepts behind the solution are not specific
to ANs and therefore can be realized otherwise,

but on the fact that the AR provides a generic

platform that is sufficiently flexible to resolve this
problem.

 To enable remote RAU to send information to

a specific section (headquarter or branch) in the
establishment, ADP are encrypted in the ES of

RAU side. The ANEP pay load is encrypted using

RC5 algorithm [31]. Since the transferred

information targets one of the multiple sections of
the underlying establishment, all gateway routers

(which are active) must be prepared to decrypt the

arrived ADPs.
 The security system can be realized as follows:

The software department in the establishment

installs RC5 decryption component in the gateway
ARs which are belong to the establishment. The

installed UC (decryption component) has its own

CID. RAU who wish to benefit from the services

introduced by any deterministic section in the

establishment must gain the CID and the secret
key (user's-specified key). The CID can be gained

from publicly shared specifications of the running

ARs which are distributed by AN community.

The secret key is distributed securely (manually or
through network) by the software department of

the establishment to their authorized customers.

D) Prototype Realization: For prototype
implementation, the basic setting of case study is

minimized into only three computers, namely

“A”, “B” and “C”, as shown in fig. 10. Computer

“B” realizes the gateway active router whereas
computer “A” realizes two entities. Before any

information exchange, computer “A” will

represent the PES; actually it is the software
department of the establishment which will create

and install the UC (the RC5 decryption

component). After installing the UC, the function
of this computer will be replaced to represent one

of the RAUs who will send encrypted ADPs to the

establishment (computer “C”), through the

gateway AR (computer “B”). The three computers
have their own IP addresses and also their own

NIC cards. A unique MAC address is assigned to

each one. NIC cards used in this prototypical
setting are of type SURECOM 10/100M PCI

adapter and uses Fast Ethernet Protocol. Fig. 11

shows a picture for the configured computers of
the case study in the laboratory.

Fig.10. Setup of Prototype Realization of Case Study.

Omar A. Athab Al-Khwarizmi Engineering Journal, Vol. 5, No. 4, PP 69-98 (2009)

90

Fig.11. Configuration of Case Study in the Laboratory.

Fig.12. Flowchart of RC5 Encrypting and Sending of ADPs.

Omar A. Athab Al-Khwarizmi Engineering Journal, Vol. 5, No. 4, PP 69-98 (2009)

91

 In this proof-of-concept case study, RAU

realizes the RC5 encryption algorithm as a single

module (RC5.C) using VC++6 environment. A
general flowchart of RC5 module realization is

shown in fig. 12. As shown in the flowchart, after

performing RC5 encryption of ADP payload, the

RAU exploits the previously explained PGI unit
to create and then send the packet. The flowchart

addresses encrypting and sending of only one

ADP; however, this routine can be repeated as
many as required to proof the concept.

 Software department enforce accurately steps

mentioned in section 6.1.3 to implement the two

files of the UC of the RC5 decryption algorithm.
C++ language is used in programming the code

and configuration files. Concerning the control

buffer in Servlnfo structure, it is exploited to store
the users' supplied secret key. The flowcharts

shown in figs. 13, 14, and 15 are demonstrate the

steps of realizing the RC5 decryption component

in the PES.
 In the AR computer (gateway), the pre-

installed CD server receive the UC (RC5

decryption function) sent by software department

of the establishment. CD server installs the two
files (code and configuration) in a pre-defined

folder in the AR. However, EEM continue

running the Packet Manipulator for searching
whether there is a new received packet or not.

When the RAU begins send the RC5 encrypted

ADPs, EEM will perform the required processing

(decryption). The word size and number of words
are fixed to (32 and 16) respectively, in the

implemented decryption component.

Fig.13. Creating the Configuration File.

Omar A. Athab Al-Khwarizmi Engineering Journal, Vol. 5, No. 4, PP 69-98 (2009)

92

Fig.14. Steps of Construction of RC5 Decryption Component.

Fig.15. Final Step in Programming the AR.

Omar A. Athab Al-Khwarizmi Engineering Journal, Vol. 5, No. 4, PP 69-98 (2009)

93

7.3.2. Requirement Fulfillment

 Requirement 1, namely programmability, is

accomplished through the addition of ANEP-

based composition model. In this context,
programmability is merely a matter of inserting

(or removing) UCs into (from) the packet

processing chain on the proposed AR. This is

essentially done through loading (or unloading)
component's code into the EE (virtual memory)

and inserting (or removing) it's CID into (or from)

the ANEP header.
 Requirement 2, demands flexible router

functionality. While support for data plane

programmability through transparent integration

of UCs in the packet processing chain makes the
AR a highly extensible platform, the dynamic

composition framework proposed by the

architecture provides a very flexible means for
that. In addition, it is a highly dynamic process

that can be efficiently carried out at run time

without the need for restarting or even
reconfiguring the system. The

 Requirement 3, safety for active code

execution within the designed AR is achieved

through software fault isolation.
 Requirement 4, secure programmability.

Simple firewall is achieved by PF unit in PM. In

addition, user authentication is accomplished
using basic authentication of IIS server [24]

provided by Windows. Nevertheless, this is only

simple encoded user-name and password
authentication. AN demands more strong

encrypted authentication. More secure system can

be considered as a future work for this paper.

 Requirement 5, is to achieve router
performance close to the line speed of typical

edge networks. Later in this section (section 7.4),

a performance estimate of our prototype
implementation, shows that the AR has not fulfill

this requirement completely. From the

architectural point of view, there is certainly

tradeoff between modularity and performance.
Since the AR tries to maximize flexibility through

the concept of (de-) composition of active

services, it trades off performance. For example,
ADPs traversing the AR must be passed to all the

components that indicated the interest in the

packet. Furthermore, the AR architecture has been
carefully designed to maximize the performance

where possible. Because of this, the idea of

application-level active-networking has been

rejected, and a true network-level approach has
been employed instead. For the same reason, AR

enables the safe execution of efficient binary code

rather than having to rely on code interpretation.

 Requirement 6, which demands easy usability,

must be considered from the point of view of the
end-users and developers. In the case of our

particular implementation of the AR, the

development task is greatly facilitated by the

design decision to execute active code within the
user-space EE, which allows convenient

development of user-space code.

Requirement 7, scalable manageability is not
addressed in the work throughout this paper.

Table 3 lists the relevant requirements and

indicates to what extent have been satisfied in the

project.

Table 3,

Designed AR Compliance with Relevant AN

Requirements

Requirement Description Satisfied?

1 Programmability yes

2 Flexibility yes

3 Safety yes

4 Security partially

5 Adequate

Performance

partially

6 Easy Usability partially

7 Scalable

Manageability

No

7.4. Quantitative Evaluation

 To evaluate the designed AR architecture and

hence the performance of the envisaged AN, three

types of tests were done; Control Test, AN Test,
and Backward Compatibility Test. Three personal

computers (we call them “A”, “B”, and “C”) are

used to accommodate the experimental setup.
 One of them (computer “B”) is operate as

traditional router (in control test) and as an AR (in

the other two tests). The other two computers

(“A” and “C”) are used as two different LANs.
These LAN computers are connected directly to

the router (computer “B”) using a UTP cable.

Actually, LAN computer represents an ES in a
LAN. The NIC cards used is of type SURECOM

10/100MB Fast Ethernet PCI adapter.

 The hardware architecture of the prototype AR

is based on a standard personal computer
consisting of single Intel Pentium 4

Omar A. Athab Al-Khwarizmi Engineering Journal, Vol. 5, No. 4, PP 69-98 (2009)

94

microprocessor running at a clock speed of 2GHz,
256 MB of RAM and two 100Mbps Fast Ethernet

interface. The two interfaces are connected to the

two ESs. Each NIC has its own IP and MAC
addresses such that it belongs to one of the

connected LANs. The types of the router's

interfaces are similar to that of the ESs.

 In the three tests, a data of 360 MB size has
been transferred from computer “A” to “C”,

through “B”, and all measurements are

accomplished at computer “B”.

7.4.1. Control Test

 The first test carried out was a control test,

which just tested the speed of the network,

operating system overhead, and network stack
overhead without installing the developed AR

software.

 In control test, computer “B” running
Windows 2000 server, and it is configured

appropriately to operate as a traditional router.

Packets of TDP type are used in this
measurement. The resulting average throughput

and CPU loading at computer “B” are shown in

table 4.

Table 4,

Results of quantitative evaluation tests.

Test

Sequence

Test Type Throughput

(Packet/Sec)

% CPU

Usage

1 Control Test 5679.8 30.2

2

AN

Test

PM Test 2902.6 78.8

5 UCs

Test

914.9 84.1

10 UCs

Test

453.1 86.7

15 UCs

Test

335.8 89.8

3 Backward

Compatibility

Test

4041.3 75.2

 The control test is selected to be a reference

gauge, because it represents the actual normal

operation of traditional data, router, and protocol.
The next two tests, which involve the active

enhancement software, will be compared with

control test to measure how much degradation and

processing cost is paid for active
programmability.

7.4.2. Active Network Test

 In this test, all the implemented software,
which has been explained in section 6, is installed

in computer B which still running Windows 2000

server. The object of this test is to gauge
throughput and CPU usage required to achieve the

active programmability of the router. AN test

involves two parts, the first one evaluates the cost

of PM and the second measures how many UCs
can be processed with keeping reasonable

throughput and consuming acceptable CPU time.

The developed PGI software is used in computer
“A” to construct and send the required ADPs in

each part of AN tests.

A) PM Test: In the first part of AN test, the

measurements try to quantify the, processing
speed and load needed in PM units (namely, PIJ,

PF, PB, PC and PD). The Component Loader

(CL) is suppressed temporarily from the EEM to
accomplish this target. The resultant throughput

and %CPU usage is tabulated in table 4.

B) UC Test: This test aims to check how many
UCs can be used in each service such that the AR

is not saturated. However, the evaluation in this

paper is directed to evaluate the architecture only

and not tied to a specific service or application.
Hence, applying a specific UCs to implement a

certain application or protocol will not fulfils the

target of this evaluation, as it is intended to
specialized application.

 Five, ten, and fifteen user components are used

in three measurement steps. The resultant
averages are also shown in table 4.

7.4.3. Backward Compatibility Test

 In this test, the developed AR software is also

installed in computer “B” under Windows 2000
server. A stream of TDPs (IP packets) is sent from

computer “A” toward computer C through the

AR. The purpose of this test is to ensure the
backward compatibility to the current traditional

routers and check the quantity of degradation in

throughput and the cost in processing time when

AR is used to route TDPs rather than traditional
router. The results are listed in table 4, too.

7.4.4. Discussion

 The relative high throughput and low % CPU
usage in the first experiment, control test,

represent the capability of the three computers

(namely “A”, “B”, and “C”) during normal

Omar A. Athab Al-Khwarizmi Engineering Journal, Vol. 5, No. 4, PP 69-98 (2009)

95

networking operation without effects of the driver.
It reflects the behavior of in-kernel processing of

traditional routing of packets.

 The first part of AN test, namely PM test,
gives expected result when it takes approximately

double processing time and half throughput with

respect to the control test. We can argue that this

change is the price that must be paid to transport
to the user-level processing of the PM stage (i.e.

PB, PC and PD). Because of the PIJ and PF units

are operate within the kernel of the router, their
effects are negligible. It is agreeable [24] to state

that kernel mode processing is faster than the user

mode one.

 Concerning the second part of AN test (i.e. UC
test), the values of measurements refer to the

capability of dealing with about 5 user

components, acceptably, for each ADP. But tests
of 10 and 15 UCs show high throughput

degradation accompanied by consuming of most

processing power. Practically, it is also possible to
conclude that the system in its current state

(experimental) is not extensible when more than

15 UCs are added to the path of ADPs. This

doesn't really affect the validity of the system. It
can be solved, for example, by pulling the PC and

PD units down to the kernel space which will lead

to two times increase in throughput. Using multi-
processor router (as in current traditional routers)

or upgrading router's hardware by field

programmable gate array (FPGA) technology may
also contribute in solving this shortcoming.

 The last test "backward compatibility test" is

succeeded in proving the compatibility with the

current available traditional routers in two aspects.
From one side, the AR routes and forwards the

TDPs (IP packets) correctly without any error or

side effects. From the other side, it is not severely
affects the standard throughput obtained in control

test. The relative little degradation in throughput

is due to the overhead of PM units (except PD

unit) with paying double processing time.

8. Conclusions and Future Works

8.1. Conclusions

 Several conclusions about the development of AR

architecture can be drawn from this work:

 Component-based active router architecture

enables network programmability through
extensibility of router functionality and services.

 Active network programmability demands sever

safety mechanisms to protect the nodes from

malicious or erroneous active code.

 Reuse of the standard 'process technology' of

today's operating systems as safe execution
environments for active code has proven to be

very practical.

 A split implementation across both kernel and

user space of the underlying system appears to
be a good choice. This approach takes advantage

of the high flexibly programming environment in

user-mode and sophisticated protection and safety

mechanisms of today's OSs.

 Standard user-space implementations for active

networks typically suffer largely from the

performance hit resulting from the copy

operations required to pass the network traffic "up"
into user-space and back "down" again. As far as

possible, packet processing must be in kernel

space.

8.2. Future Works

 Future work presented in this section focuses

on the ongoing development efforts to complete the

AR prototype implementation and on using and
extending it in order to build and experiment with

novel AN services:

a) The use of poor security scheme is considered one
of the shortcomings of this paper. To address this

disadvantage, authentication within the AR may

be built on public key encryption mechanisms such

as RSA or DSA. The user installing a component
(or code producer developing a component)

encrypts its identity (i.e. user name or company

name) with its private key. Public key
encryption ensures that the encrypted message

can only be decrypted with the public key assigned

to the user.
b) Demand-push is the base at which the developed

AR depends to install a new UC. To lift the

burden from the user's shoulder, it is more

pragmatic to distribute a number of component
cache servers throughout the AN. All that required

by the AN users is to instruct the suitable UC to be

downloaded from the server to the target router.
For example, when ADP arrives to the AR, the

CID will excite a certain program in the AR to

download the required UC from the nearest
server. This scheme is called a demand-pull

mechanism in transferring UCs.

c) Further decrease in throughput and increase in

CPU usage is envisaged with each excess in the
number of networks or nodes attached to the

designed AR. Hence, improvement in AN

performance still crucial. To decrease the effects
of this issue, it is possible to pull the PC and

PD down to the kernel level.

Omar A. Athab Al-Khwarizmi Engineering Journal, Vol. 5, No. 4, PP 69-98 (2009)

96

d) The designed AR in this paper demands
processing only one active packet at a time. To

get more efficient use of processing resources and

Windows OS capabilities, it is useful to
implement multi-packet processing in the EEM.

Multi-Packet processing demands allocating a

dedicated EE for each packet or uses one EE with

some form of preemptive scheduling
mechanism that allows the low-level system to

interrupt active programs that exceed their

scheduling quantum.

9. References

[1] DARPA Agency, "Active Network project", 1998.

Available at:
http://www.darpa.mil/ito/research/anets/

[2] D. J. Wetherall, "Service Introduction in an Active

Network", PhD thesis, Department of Electrical
Engineering and Computer Science,Massachusetts

Institute of Technology, USA, 1999.

[3] S. Schmid, "LARA++ Design Specification",
Work in progress report on the next generation

active router architecture of Lancaster University,

Computing Department, Lancaster University,

UK, 2000.
[4] D.S. Alexander et al, "Active Network

Encapsulation Protocol (ANEP)", Internet draft,

IETF, July 1997.
[5] A. Fuggetta, G.P Picco, and G. Vigna,

"Understanding Code Mobility", IEEE Trans. on

Software Engineering, 24(5):342-361, May 1998.
Available at:

http://www.polito.it/~picco/listpub.html.

[6] D. J. Wetherall and D. L. Tennenhouse, "The

ACTIVE IP option", In 7th ACM SIGOPS
European Workshop, Ireland, September 1996.

www.tns.lcs.mit.edu/publications/sigops/ws.html.

[7] K. Psounis, "Active networks: Applications,
Security, Safety, and Architectures", IEEE

Communications Surveys, First Quarter, 1999.

Available at: www.comsoc.org/pubs/surveys.

[8] D. J. Wetherall, J. Guttag and D. L. Tennenhouse,
"ANTS: A toolkit for building and dynamically

deploying network protocols," IEEE

OPENARCH, pp. 117-129, April 1998.
[9] B. Schwartz, W. Zhou, A. W. Jackson, W. T.

Strayer and D. Rockwell, "Smart Packets for

Active Networks.", In 2nd Conf. on Open
Architectures and Network Programming,

OPENARCH'99, NY, Mar.1999. Available at:

www.ir.bbn.com/~bschwart.

[10] B. Schwartz, "Sprocket language description for
the Smart Packets project," Technical paper,

September 1999. Available at:

www.ir.bbn.com/documents/techmemos/TM
l 221 .ps.

[11] B. Schwartz, "Introduction to Spanner:

assembly language for the Smart Packets
project," Technical paper, September 1999.

Available at: www.ir. bbn.com\ documents\

techmemos\ TM1220. ps.

[12] D. S. Alexander, W. A. Arbaugh, M. Hicks, P.
Kakkar, and J. M. Smith, "The Switch Ware

active network architecture," IEEE Network,

vol. 12, pp. 29-36, May/June 1998.
[13] M. Hicks, P. Kakkar, J. T. Moore,.C.l A.

Gunter, and S. Nettles, "Network Programming

Using PLAN", Project supported by DARPA,

and University of Pennsylvania, 1997. Available
at: www.dsl.cis.upenn. edu.

[14] M. O. Stehr, C. L. Talcott, "Plan in Maude:

Specifying an Active Network Programming
Language", Electronic notes in theoretical

computer science 71(2002), Published by

Elsevier Science B. V., Germany, 2002.
Available at:

www.elsevier.nl/locate/entcs/volume71.

html.

[15] D. S. Alexander, M. Shaw, S. M. Nettles, and J.
M. Smith, "Active bridging," SIGCOMM

conference, pp. 101-111, 1997.

[16] D. S. Alexander, W. A. Arbaugh, A. D.
Keromytis, and J. M. Smith, "A secure active

network environment architecture: realization in

Switch Ware," IEEE network, vol. 12, pp. 37-
45, May/June 1998.

[17] R. Morris, E. Kohler, J. Jannotti, and M.F.

Kaashoek, "The Click modular router", In

Proceedings of the 17th ACM Symposium on
Operating Systems Principles (SOSP), pages

217-231, December 1999.

[18] D. Decasper, Z. Dittia, G. Parulkar, B. Plattner,
"Router Plugins: A Modular and Extensible

Software Framework for Modern High

Performance Integrated Services Routers".

Project at: Computer Engineering and Networks
Laboratory, ETH Zurich, Switzerland and

Applied Research Laboratory, Washington

University, St. Louis, USA, 1999. Available at:
www.tik.ee.ethz.ch & www.arl.wustl.edu.

[19] M. Fry and A. Ghosh, "Application level active

networking,", Computer Networks, 31 (7)
(1999) pp. 655-667. Available at:

http://dmir.socs.uts. edu.au/ projects/ alan/

papers/cnis.ps.

[20] K. T. Krishnakumar and M. Sloman,
"Constraint-Based Configuration of Proxylets

for Programmable Networks", Proc. 8th

(IDMS'2001), Lancaster, UK, 4-7 Sep 2001.
[21] A. Ghosh, "FunnelWeb v2.0.1", Online

http://www.darpa.mil/ito/research/anets/
http://www.polito.it/~picco/listpub.html
http://www.tns.lcs.mit.edu/publications/sigops/ws.html
http://www.comsoc.org/pubs/surveys
http://www.ir.bbn.com/
http://www.ir/

Omar A. Athab Al-Khwarizmi Engineering Journal, Vol. 5, No. 4, PP 69-98 (2009)

97

reference, 2000. Available at:
http://dmir.socs.uts.edu.au/projects/ alan.htm.

[22] R. Cardoe, J. Finney, A.C. Scott, and W.D.

Shepherd, "LARA: A prototype system for
supporting high performance active

networking", In Proceedings of the First

International Working Conference on Active

Networks (IWAN), volume LNCS 1653, pages
117-131, Berlin, Germany, 1999.

[23] Microsoft Corporation, Microsoft Windows

2000 Driver Development Kit, "Network
Drivers", 2000.

[24] D. A. Solomon and M. E. Russinovich, "Inside

Microsoft Windows 2000", Third Edition,

Microsoft Press, 2000.
[25] T. F. Divine, "NDIS IM driver samples for

windows NT and higher", Online article, USA,

2006. Available at: www.pcausa.com.
[26] Microsoft Corporation, Microsoft Development

Network, Platform SDK, "Networking and
distributed services: Winsock version 2", 2000.

[27] J. Postel and J. Reyonlds, "File Transfer

Protocol", RFC959, IETF,1985.
[28] T. Wolf, et. al., "Tags for High Performance

Active Networks", Applied Research Lab.,

Washington University, USA, 2001. Available

at: www.arl. wustl.edu.
[29] Jeff Nathan, "Nemesis packet injection utility",

2003. Available at: www. packetfactory.net

/projects /nemesis/ windows.
[30] Subversive Technologies and Counter-

measures Corp., "Network packet generator",

Online software, 2006. Avilable at:

www.wikistc.org/w/ images /3/3c /Npgl
.3.0.zip.

[31] R. L. Rivest, "The RC5 encryption algorithm",

MIT Lab. for computer science, USA, 1995.

http://dmir.socs.uts.edu.au/projects/%20alan
http://www.pcausa.com/
http://www.packetfactory.net/projects/nemesis/windows
http://www.packetfactory.net/projects/nemesis/windows
http://www.wikistc.org/w/

 98-69، صفحة 4، العذد 5مجلة الخىارسمً الهنذسٍة المجلذ عمز عذاب
(200 9)

98

 مىجه شبكات لتطبٍقات خاصة بالاعتماد على نظام ونذوس

 ** سفٍان تاٌه فزج*احمذ ستار هادي *عمز علً عذاب
 جايعت بغذاد / هُذست انخىارسيًال/ انًعهىياث والاتصالاث هُذست قسى*

 جايعت الاَبار/ كهٍت انذاسباث **

الخلاصة

قهب هذا . تى عًم تًذٍص نهُظى وانتقٍُاث انًزافقت نهشبكت انفعانت انًىجىدة دانٍا. هذا انبذث بذأ بىصف الانٍاث الاساسٍت نهذصىل عهى انشبكت انفعانت

هذا انًىجه ". ودذاث بُاء انًستخذو" فعال جذٌذ وانذي ًٌكٍ بزيجت انشبكت بًزوَت بالاعتًاد عهى (router)انبذث ٌقذو تصًٍى وتُفٍذ نًعًارٌت يىجه

 وتعشٌش بزوتىكىل windowsفً هذا انًىجه تى استخذاو َظاو انتشغٍم وٌُذوس. انفعال صًى نٍىفز اقصى يزوَت نتًٍُت يهاو وخذياث انشبكت انًستقبهٍت

ANEP . اٌ تعشٌشANEP جعم طزٌقت بُاء انخذيت فً هذا انًىجه ٌسًخ بانبزيجت انًزَت يٍ خلال انتجًٍع انشفاف نىدذاث بُاء انًستخذو فً طزٌق

كذنك سُقذو وَطبق بزَايج نتشكٍم ودقٍ باكٍتاث انًعهىياث فً طبقاث انشبكت نًاكُت انفذص، سىف َذعى هذا انبزَايج بًىنذ . انبٍاَاث انذاخهت نهًىجت

 .اخٍزا، َجاح يعًارٌت انعقذة وتُفٍذها الابتذائً تى تقىًٌه باستخذاو بعض انتطبٍقاث انعًهٍت. وداقٍ انباكٍتاث

