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Abstract 
 

In this paper, a compact multiband printed dipole antenna is presented as a candidate for use in wireless 

communication applications. The proposed fractal antenna design is based on the second level tent transformation. The 
space-filling property of this fractal geometry permits producing longer lengths in a more compact size. Theoretical 

performance of this antenna has been calculated using the commercially available software IE3D from Zeland Software 

Inc. This electromagnetic simulator is based on the method of moments (MoM). The proposed dipole antenna has been 

found to possess a considerable size reduction compared with the conventional printed or wire dipole antenna designed 

at the same design frequency and using the same substrate specifications. Results have shown that the proposed design 

possesses a multi-band resonant behavior with adequate radiation performance with VSWR ≤ 2 (return loss ≤-10 dB) 

throughout the resonating bands. This makes the presented antenna (or its monopole counterpart) suitable for use in the 

modern multi-functions compact communication systems.   

               
Keywords: Fractal antenna, antenna miniaturization, multi-band antenna, printed dipole antenna, IFS (iteration function 

system). 

 

 

1. Introduction 
 
The word fractal comes from Latin fractus, 

which means broken lines, and Mandelbrot [1] 

first used it. Mandelbrot defined fractal as a rough 

or fragmented geometric shape that can be 
subdivided in parts, each of which is (at least 

approximately) a reduced-size copy of the whole. 

Euclidean geometries are limited to points, lines, 
sheets, and volumes and assigns an integer 

number to describe the dimension of each of these 

geometries; where the dimension of a point is 

zero, and 1, 2, and 3 are the dimensions of the 
line, sheet and volume respectively. Fractal 

geometry describes objects in nature by 

dimensions, which are not conditionally integer 
numbers as the Euclidean geometry implies. 

Euclidean geometries can be special cases from 

the more general fractal geometries.  
Fractals can be either random or deterministic. 

Most fractal objects found in nature are random, 

that have been produced randomly from a set of 

non-determined steps. Fractals that have been 
produced as a result of an iterative algorithm, 

generated by successive dilations and translations 

of an initial set, are deterministic.  

Fractals are characterized by the self-
similarity, the fractional dimension and space-

filling properties.  The concept of a fractal is most 

often related with geometrical objects satisfying 
the criteria of self-similarity. Self-similarity 

means that an object is composed of sub-units and 

sub-sub-units on multiple levels that statistically 

resemble the structure of the whole object. These 
substructures are exactly of the shape as the 

original but it may be flipped, rotated, or stretched 

depending on the generation process producing 
the fractal shape. Figs (1) and (2) demonstrate this 

property through the generation process of well-

known fractal geometries; Peano and Hilbert 
fractals.  
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Fig.1. The First Four Iteration Levels to Generate 

the Peano Pre-Fractal Curve. 

 

 

 
Fig.2.  The First Four  Iteration Levels to Generate  

the Hilbert  Pre-Fractal Curve. 

 

 
The second concept for a fractal is a fractional 

dimension. This requirement distinguishes fractals 

from the Euclidean geometries, which have 
integer dimensions. The common intuitive idea of 

dimension is referred to as topological dimension. 

A point, a line segment, a square and a cube have 

topological dimensions zero, one, two and three, 
respectively. This intuitive dimension is always 

expressed as an integer.  

In [1, 2] the Hausdroff-Besicovich dimension 
is referred to as the fractional dimension, and it is 

defined as, a real number that precisely measures 

the object’s complexity. Mandelbrot defines a 

fractal as a set for which the Hausdroff-

Besicovich dimension strictly exceeds the 
topological dimension. He refers to this dimension 

as the fractal dimension of a set. Fractional 

dimension is related to self-similarity in that; the 
easiest way to create a figure that has fractional 

dimension is through self-similarity. The 

character of non-integer dimension causes the 

fractal dimension to be useful in measurement, 
analysis and classification of many fractal shapes, 

for example, the fractal dimension provides a way 

to measure how rough fractal curves are. In 
addition, the fractal dimension can describe how 

much a fractal curve fills the space.  

Fractal structures have found increasing 

applications in different aspects of science and 
arts. They are successfully used in the fields of 

physics, chemistry, biology, architecture, etc… 

[3].  
The research in the field of electrodynamics 

began soon after the scientists discovered the 

practical aspects of the fractal geometry. Most 
efforts had been devoted to understand the 

physical process and mathematical background of 

the interaction between electromagnetic waves 

and fractal structures [4-6]   
In passive microwave circuits design, such in 

the design of the different types of filters, fractals 

have been used widely and extraordinary results 
were obtained. The space-filling property of 

fractals had led to producing miniaturized sizes of 

passive microwave circuits for compact wireless 
communication systems.   

In microwave antenna design, size 

miniaturization of the normal printed dipole 

antenna can be accomplished either by the use of 
high dielectric constant substrates instead of air or 

some foam materials with dielectric constant 

nearly like that of air, by the modification of the 
basic dipole shape, or by a combination of these 

two techniques [7]. 

Employing high dielectric constant substrates 

is the simplest solution, but it exhibits narrow 
bandwidth, high loss and poor efficiency due to 

surface wave excitation [7]. Fractals are supposed 

to be considered in the second category, i.e., 
antenna shape modification. In this sense, the 

space-filling property of the fractal antenna offers 

the required compact size, while its self-similarity 
makes it resonates in more than one frequency 

band, due to the many resonating substructures it 

consists of in the whole structure [8]. 

The use of fractals in microwave antenna 
design has dramatically increased in the recent 

years, where miniaturized and multiband antennas 

have to meet the challenges imposed upon the 
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modern communication systems to be compact 
and multi-functional. 

In this paper a fractal printed dipole antenna 

based on the second level (n =2) tent 
transformation has been presented as a candidate 

for use in modern compact and multi-function 

communication systems. The proposed antenna 

dimensions can be optimized to satisfy the 
compact size and the required radiation 

characteristics for the specified applications 

operation. 
  

 

2.  Fractal Dipole Antennas 
 

Since the application of the fractal concept on 

electrodynamics, much work has been devoted to 
antenna design [9-17]. The first reported small 

fractal antenna is the Koch dipole [9]. In this 

work, some of the classical features such 

bandwidth, resonance frequency, and radiation 
resistance had been improved.   Later, different 

fractal geometries, such as Hilbert, Peano, 

Minkowski, Sierpinski etc..., have been applied to 
dipole antenna design [10-17]. The reported 

designs offered astonishing results of antenna 

performance, whether in the compact size gained 
or in the multi-resonant behavior they possess. In 

Figs (1) and (2), Hilbert and Peano fractal curves 

up to the fourth iteration level, )4( n  are 

depicted, for the sake of comparison with the 
presented tent curve fractal. These fractals have 

been widely used in dipole antenna design. 

An interesting point of comparison in this 
context is the total length of the fractal in each 

iteration level as a function of the side length, L, 

of the area containing it. This factor acquires its 
importance from the fact that it mainly determines 

the lowest resonance frequency of the multi-band 

fractal dipole, and hence the reduction in size 

gained in comparison with the classical dipole 
antenna or other fractally designed dipoles. 

For the Hilbert fractal curve, the total length, 

Sn, in the n
th

 order generation level is given in [18] 
by:  

LS n

n )12(                                                …(1) 

where, L is the side length. 
While for the Peano fractal curve, the total length, 

Sn is given by [13] as: 

LS n

n )13(                                                …(2) 

where, Sn, n, and L are as defined earlier. 

      It is obvious from Equs. (1), and (2) that, the 
total length of the curve offered by Peano fractal 

is greater than that offered by Hilbert fractal of the 

same generation order with the same side length. 
This means that Peano fractal curve presents 

better antenna miniaturization than Hilbert fractal 

does, when it is used in the design of a fractal 

dipole. 
 

 

3. Fractal Tent Transformation  
 

The generation process of the fractal curve 

based on tent transformations is more complicated 
than those of the Hilbert and Peano fractals. 

The presented fractal curve is constructed by 

applying geometrical transformations of a unit 
square with a side length L, representing the well-

known tent function, Fig.(3a) using the 

transformation algorithm, which is called multiple 

reduction copy machine    (MRCM) as proposed 
by [19]. This MRCM provides a good metaphor 

for what is known as deterministic iterated 

function systems (IFS) in mathematics. The 
MRCM generates a dynamical iterated function 

system (IFS), Fig. (3b), [19]. Using such an IFS, it 

is possible to produce a generation level in which 
all line segments join up to form a single path. As 

it is clear from Fig (3b), the IFS constructs such a 

curve with five transformations, and the space-

filling property follows from the invariance of the 
initial square, the tent function, under the IFS. 

These five transformations, labeled as A, B, C, D, 

and E, which produce any fractal level from its 
preceding one, are summarized in Table1. In each 

transformation, more than one operation has to be 

performed on the original tent function, such 
stretching, flipping, and/or rotation. Figs (4a-d) 

show the generated tent fractal curve up to the 

fourth order (n = 4). 

 
Table 1  

Summary of Steps to Generate a Fractal Tent Transformation.  

Step Width Stretched by Height  Stretched by Flipping Rotation (deg.) 

A 2/3 1/3 horizontal none 
B 1/3 2/3 horizontal none 
C 1/3 2/3 horizontal 90 
D 2/3 1/3 none -90 
E 2/3 2/3 none -90 
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                                        (a)                                                                                       (b) 

Fig.3. (a); The Starting Tent Function as the Initiator Structure, and (b); the Iteration Function System 

Used to Generate the Tent Fractal Curve at the Different Iteration Levels [19]. 
 

 

     As shown in Figs (4a-d), the constructed curve 

in a certain generation level (n) is simply a collage 
of the five transformations of the previous 

level )1( n . Because the initial tent function has 

a suitable symmetry, one can easily be misled 

when applying the IFS. The IFS uses the unit 
square with the inscribed letter L as an indication 

of the orientation as the initial square, Fig (3a). 

 

 

  
                                             a                                                           b 

  
C                                                                            d 

Fig.4. The Details of the Generation Steps of the Tent Fractal Curve. Structures from (a) to (d) 

Correspond to the First Four Generation Levels. 
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     It has been found that the total length Sn, of the 
tent fractal curve at the n

th
 generation, is: 

LaS n

n

n

1)
3

7
(                                               …(3) 

where  an is a constant depending on the starting 

angle θ, of the initial tent function. 

     However, the value of this angle is bounded by 
an upper limit of θ = 63.435

º
; at which all the 

vertices of the triangle touches the square, as 

shown in Fig (5), and a lower limit of θ = 0
º
, at 

which the tent function is considered as a straight 

line of length equals to the side length, L of the 

square containing it. 

     From Fig (5), the tent function is given as: 

                     ...(4) 

And the angle θ is defined as: 

a1tan  

Thus: 
 435.630   

For which: 

La 0  

         It has also been found that an, in Equ (3), is 

varied as: 

236.21  na  

for: 
 435.630   

      It is worth to note that for θ = 63.435
º
, the tent 

curve has no longer be a fractal after the 3
rd

 

generation step, since at the 4
th

 generation step the 
resulting curve is not self-avoiding . Fig (6) shows 

an enlarged copy of Fig (4d). The two circles 

indicate that the same two points in the space have 
been visited twice. Nevertheless, the fractal curve 

can be used at this value of θ, up to the 3
rd

 

generation, since a maximum space-filling is 
gained according to Eqn. (3), and it is still self-

avoiding. 

      Practically, if fractal curves are applied, few 

numbers of iterations are enough to model an 
antenna [8,11,14]. However, to generate a tent 

fractal self-avoiding curve with higher generation 

levels, the starting angle must be reduced. 
       A comparison of Equs(1), (2), and (3) shows 

that the presented fractal curve has the best space-

filling property than both Hilbert and Peano 

fractal curves at the same generation order and the 
same side length L. For example, at n = 2, the 

total fractal curve length Sn, is given as: 

 ,           for Hilbert fractal curve 

 ,           for Peano fractal curve 

for tent fractal curve 

    This means that, the tent fractal curve will offer 
the best dipole antenna miniaturization as 

compared with the other two.   

 
       

4. Antenna Design and Performance 

Evaluation 
 

Up to the author’s knowledge, the only 

published work about the use of tent fractal dipole 
antenna in the UHF band is that of Hödlmayr 

[20]. In that work, a wire dipole antenna has been 

designed and operated at this band. The 
concentration there is focused from practical point 

of view. In the present work, a 2
nd

 iteration tent 

fractal   structure has been modeled as a dipole 

antenna with two of such a structure composing 
its two arms as shown in Fig.7. The dipole is 

supposed to be printed on a material with a 

relative dielectric constant of nearly one, or just 
built in free space. This will directly permit 

frequency scaling of the modeled dipole to make 

it resonating at any desired frequency, since no 
need of material scaling is required. On the other 

hand, using a substrate with a dielectric constant 

greater than one, for the    antenna to be printed 

on, results in reduced antenna efficiency due to 
the associated losses. In such an antenna with a 

wide multiband behavior, material scaling 

becomes an impossible task over this wide 
frequency range.  

The antenna is fed with a coaxial cable of 50Ω 

characteristic impedance. The width of the dipole 
trace has been chosen to be 0.5% the dipole length 

[12, 21]. The spacing between the two arms 

constituting the dipole is found to be of less than 

5% the dipole length.  
Theoretical calculations of the antenna 

performance of the antenna and electromagnetic 

simulation are carried out using IE3D package, 
from Zeland Software Inc. This EM simulator 

performs performance calculations of 3D 

electromagnetic structures using the method of 

moments, (MoM). 
At first, a dipole has been modeled with a side 

length of 15 mm. The return loss response of this 

model shows an obvious multiband behavior with 
first resonance frequency at 7 GHz. This initial 

structure is then frequency scaled to the desired 

frequency, 2.45 GHz. The resulting dipole 
antenna has been found to have a side length of 

43.75 mm. The corresponding return loss 

response of this antenna is depicted in Fig.8. The 

first resonance takes place at a frequency of 
approximately 2.45 GHz, while other six 

resonances occur at nearly regular intervals in the 
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swept frequency range shown in the figure. For 
demonstration purposes, some of the computed 

antenna parameters such as the radiation 

efficiency, the antenna efficiency, the gain (G), 
and the directivity (D), for many frequency points 

around the first resonance frequency are listed in 

Table 2.  

 
 
Table 2 

Some Antenna Parameters around the First 

Resonant Frequency. 

Antenna 

Parameters 
Rad. 

Eff. 

(%) 

Ant. 

Eff. 

( %) 

G 
( dBi) 

D 
( dBi) Frequency 

(GHz) 

2.100 95.18 76.32 1.151 2.325 

2.214 96.21 90.69 1.379 1.804 

2.328 95.59 93.57 1.659 1.948 

2.442 95.82 95.32 2.142 2.350 

2.557 97.81 95.76 2.474 2.662 

2.671 98.59 94.42 2.533 2.782 

2.785 99.18 91.70 2.334 2.710 

2.900 99.56 91.21 2.136 2.535 

       

 

     Fig.9 shows the elevation directivity patterns at 

the first resonance frequency at  0  

and  90 . Fig.10 shows the three dimension 

radiation pattern of the modeled dipole at the 
same frequency. It is clear that the antenna 

parameters and its resulting radiation 

characteristics are acceptable for the proposed 

applications.  
 

 
Fig.5. The Tent FUNCTION with Side Length, L 

and the Starting Angle, θ. 

 

 

 
Fig.6.  An Enlarged  Copy of Fig. 4d.  The Two 

Circles Shown  Indicate that,  at the  4
th

 Iteration 

Level the Resulting Structure is not a Fractal 

Anymore, Since Two Same Points in Space have 

been Visited Twice. 

 

 
Fig.7. The Layout of the Modeled Tent Fractal 

Antenna with Respect the Coordinate System. 

 
 

 
Fig.8. The Return Loss Response of the Tent 

Fractal Dipole Antenna after Frequency Scaling to 

2.45 GHz. 
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Fig.9. The Elevation Patterns Directivity Display at a Frequency of 2.46 GHz.  

 

 

 
Fig.10. The  3D Radiation Pattern at a Frequency of 2.45 GHz. 

 
 

5.  Conclusions  
      

     The tent fractal dipole antenna has been 
presented in this paper, analyzed in details, and 

simulated. The antenna seems promising to be 

used in multi-function communication systems 

due to its good multiband response. 
     Simulation results assure the multiband 

operation of this antenna with accepted radiation 

characteristics for the proposed applications. 
Results showed that the modeled dipole antenna 

has reasonable antenna parameters at resonance. 

Much work has to be carried out to investigate its 
counterpart monopole antenna.  The effect of 

substrate parameters on antenna performance has 

to be investigated when printing the antenna on a 

microstrip substrate.  
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هوائي جذيذ ثنائي القطب مطبوع مبني على اساس الترتيب الهنذسي  

الجزئي لتحويلات دالة الخيمة لتطبيقات الاتصالات اللاسلكية 
 

جواد كاظم علي 
 انجايؼح انتكُٕنٕجٛح/ قضى ُْذصح انكٓشتاء ٔالانكتشَٔٛك

 

 

 

 الخلاصة

 antenna  printedيٍ انُٕع ثتائٙ انقطة انًطثٕع  (multiband) ٚتى اصتؼشاض ْٕائٙ يصغش يتؼذّد انُطاق انتشدد٘,فٙ ْزا انثذث 

dipoleقتشََحِ يضتُذ ػهٗ اصاس انتشتٛة انُٓذصٙ انجزئٙ.  ػهٗ اَّ يششّخ نلإصتؼًالِ فٙ تطثٛقاخِ الاتصالاخ انلاصهكٛح ًُ ٌّ تصًٛىَ انٕٓائٙ ان  إ

fractal geometryنتذٕٚمِ دانح انخًٛح  (tent function)  َٙانتٙ ٚتصف تٓا ْزا  (انفضاء)تضًَْخُ خاصٛح ايلاء انفشاؽ . يٍ انًضتٕٖ انثا

َْتاا اإالِ ااثش فٙ يضاداخ  اثش إَضغااااً  تى دضاب الأداء انُظش٘ نٓزا انٕٓائٙ  تاصتخذاو انذقٛثح انثشيجِٛح انًتٕفشجِ . انتشتٛة انُٓذصٙ  تئ

اظٓشخ  . (MoM), ٔانتٙ تضتُذ فٙ اجشاء انتقٛٛى تاصهٕب انًذاااج ػهٗ اشٚقحِ اٚجاد انؼزٔو Zeland, يٍ اَتاا يؤصضح IE3Dتجاسٚا 

ىَ فٙ َفش تشددِ انتصًٛىِ  ًّ ٔػلأج . انُتائئ تبٌ انٕٓائٙ انًقتشح  ٕٚفش تخفٛضا اثٛشا فٙ انذجى ِ يقاَسَحَ تانٕٓائٙ انثُائٙ انقطة انتقهٛذ٘  انًص

قتشََحَ ًٚتهكَ صهٕاا يتؼذّد انشٍَٛ يغ ادتفاظّ تًٕاصفاخ اشؼاع يُاصثح فٙ  َذاء اَطقح انشٍََٛ ًُ ٌّ انتصًٛىَ ان ْٔزا ٚجَْؼمُ انٕٓائٙ ثُائٙ , ػهٗ فب

يُاصثا نلإصتؼًالِ فٙ  َظًحِ الاتصالِ يتؼذدجِ انٕظائفَ انذذٚثحَ راخ الادجاو  (monopole َٔ َظٛشِ الاداد٘ انقطة )انقطة انًقتشح 

 .انًصغشج

 

 

 

 


