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Abstract: 
 
 The aerodynamic and elastic forces may cause an oscillation of the structure such as the 
high frequency of the airfoil surfaces and the dynamic instability occurring in an aircraft in flight 
and failure may occur at a speed called flutter speed. In this work, analytical and numerical 
investigations of flutter limits of thin plates have been carried out. The flutter speed of 
rectangular plates were obtained and compared with some published results. Different design 
parameters were investigated such as aspect ratio, thickness and their effects on flutter velocity. 
It was found that the structural mode shape plays an important role in the determination of the 
flutter speed and the coupling between the bending and torsional mode is the main cause of 
flutter. 
 
Key words:Flutter, Speed, Plates.  
 
Introduction: 
 
 In mechanics, there are three types of 
forces aerodynamic, elastic and inertia. The 
interaction between aeroelasticity and elastic 
forces is called static aerodynamic such as the 
divergence problem and the interaction between 
elastic, aerodynamic and the inertiaforces called 
the dynamic aero elasticity and the flutter is an 
example for this phenomena in which the 
amplitude of the oscillations may diverge 
causing failure. Therefore, this research is 
concerned with the determination of flutter 

speed for thin plates which are found in many 
aeronoutical structures. 
 R.S Srinivasan and B.J. Baba [2] studied 
the flutter analysis of cantilevered quadrilateral 
plates and the problem is solved by using a 
numerical method involving an integral equation 
based upon finding the strain and kinetic energies 
of the plate. 

E. Nissim and I. Lottat [3] suggested an 
optimization method for the determination of the 
important flutter modes. The method is based on 
the minimization of the quadratic values derived 
from the equation of motion. 

 
Al- Khwarizmi Engineering Journal Vol.3   , No.3, pp 53-65 (2007) 

                                                                                                              

 

                                                         
Al- Khwarizmi 
 Engineering       

Journal                                                                                  



Kusay H. Jabir/Al-khwarizmi Engineering Journal, Vol.3, No.3, pp 53 - 65 (2007) 
 
 

 54

R.S. Srinivasan and B.J. Baba [4] 
described the free vibration and flutter of 
laminated quadrilateral plates. They derived the 
differential equation required to obtain the 
flutter speed of simple rectangular plates. 

M.W. Kehoe [5] reviewed the test 
techniques developed over the last several 
decades for flight flutter testing of aircraft 
practical experiences and example test programs 
were presented to test the effectiveness of the 
various approaches used. 

Brain Danowsky [6] studied the 
development of an aircraft structural variation 
model, accounting for variations in structural 
mode shape as well as structural frequency, 
which has many advantages for the design of 
aircraft and aircraft flight control systems. 

J.Hoas, etal [7] described the flutter of 
circulation control wings and explained the 
flutter stability of high aspect ratio circulation 
control wing using lumped approach on 
conjunction with a modified unsteady 
aerodynamic strip analysis method. 

J.E. Sedaghat et al [8] developed to 
predict the speed and frequency at which flutter 
occur based upon the use of symbolic 
programming. The approach performs the 
computation in a single step and does not 
require the repeated calculations at various 
speeds required when using the classical V.G. 
method. 

T.S Talib [9] determined analytically 
using the damping method and calculated the 
natural frequencies and mode shapes using the 
finite element technique for subsonic wing 
structure. He showed that the flutter speed 
change with changing the skin thickness, 
material properties and the altitude. His 
calculations indicate that structural mode shape 
variation plays a significant role in the 
determination of wing flutter limits. 

In this work, the V.G. method together 
with developed finite element package will be 
adopted and the flutter speed will be defined for 
thin plates with different aspect ratios and 

thickness for both rectangular and tapered plates. 
 

Theory: 
 To determine the equation of motion, 
consider the section shown in Fig.1 with two 
degrees of freedom α and h. [9] 
 The downward displacement of any other 
point on the airfoil is: [8] 
 
Z=h±xα 
The strain energy is composed of two components 
linear and rotational parts 
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Where q=q (h,α) 
Inserting equations (1) and (2) into (3) yield the 
following characteristic equation, 
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The solution may be assumed as follows: 
iwtehh 0=   

And 
 iwte0αα = ……………..…………………(5) 
 
equation (4) is reduced to  
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The aerodynamic force and moment are given 
by [9]: 
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Then the equation of motion becomes: 
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which can be expressed as a flutter equation in 
the form: 
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Fig. 1 Airfoil restraind from bending and 
torsional motion in an airstreem by spring Kh 
and Kα, acting a distance ba aft of midehord. 
Also shown are lift L and pithing moment My 
about the axis twist.[9]   
Where  
[Kij] is the stiffness matrix  
[Mij] is the mass matrix and 
[Aij] is the aerodynamic matrix  
 
Finite Element Method 
 
The plate is analyzed by using a suitable element. 
The element have 8 degrees of freedom with 5 
degrees of freedom of each node (u, v, w, θx and 
θy in the x, y and z directions) and the rotations 
about x and y axes respectively.  
The generic displacements at any point of the 
middle surface are [10]: 
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Strain–Displacement Relationship : 
 
The strain matrix         is given by : 
 
 
                                   

    ...........................(11) 
 
 
 
=  
 
And the strain displacement matrix [B] may be 
written as: 
 
 
 

 
………….…(12) 
                                                            

 
 
 
We can isolate terms in bi that multiply by        , 
then 
 
 
 
 
 
 
 
 
 
 
 
 
 
And J* is Jacobian inverse matrix. 
                                           

………..(13) 
 
 
 
 

 
Formulation of Stiffness Matrix : 
 
The element stiffness matrix [K]e for the element, 
using B matrix in eq.   (12) as follows : 
 

…...(14) 
 

 
Taking integration through thickness; eq . (14) 
becomes 
 

 Where {D} is the stress-strain matrix for 
isotropic material  
 
 
 
                                  ………………………..(15) 
 

 
 
 
 
 
 
The first part of eq (15) is due to transverse 
shearing deformation where as the second part is 
associated with flexural deformation. 
 
Formulation of Mass Matrix : 
The formulation of consistent mass matrix for 
element QPB9 becomes 
  
 
 
 
 (17) 
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The first part of eq. (17) consists of translation 
inertias and the second part gives rotational (or 
rotary) inertias. 
 
Formulation of Aerodynamic Matrix 
The Formulation of aerodynamic Matrix for 
element QPB9 becomes. 
 
 
  
 

      ζηξηξ dddJNh
B ])/[

2
∂∂+ ……….(18) 

 
For simplicity it is assumed that the air flowing 
above the panles is parallel to the X-axis as 
shown in fig. 2 and the effect of any air 
entrapped below may be neglected . By 
integrating Eq . (18) through the thickness 
produces. 
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Where 
  

 
 
             Fig.2 panal under airfolow.  
 
 

Flutter Equation and Solution Method : 
 
The flutter equation can be derived as: 

…………….(20) 
  
Where K, M and A are matrices of size (m*m) 
degrees of freedom. Here  
         Non dimentional dynamic parameter and it 
is equal to  
 

……………………(21)    
 
 
Where pa is air density, V is the free stream 
velocity, br is the half length of wing at root, D is 
the flexural rigidity of the plate and, k2 is the 
Eigen value and it is equal to [8] 
 

………….…(22) 
 
Where      is the natural frequency, ρs is the 
material density and ts is the plate thickness. 
Equation (20) is a standard eigen value problem. 
The parameters and k are non-dimensional 
quantities. Note that for zero flow velocity and k 
then represent the square of the non-dimensional 
natural frequency, so that in this case the 
eigenvalues are real. As the flow velocity 
increases from zero, two eigenvalues will usually 
approach each other and coalesce (become 
complex conjugates) to kcr at a value of 2 which is 
the critical value of dynamic pressure. For a large 
system of equation, it is a relatively difficult task 
to find the eigen values of equation (12), since in 
general the matrices involved are complex and 
asymmetric. Therefore, the problem is separated 
into two parts. First, set zero flow veiocity (w=0) 
in equation (12) and determine a finite number, 
say n,of normal modes of the structure ,where 
n<m and m is the order of the matrix K, M. At 
this point, the finite element method is used to 
calculate the modes as accurately as desired by 
selecting the proper mesh size, and a suitable 
 
 eigen value technique. Use the subspace 
technique to find the first five modes. Second, 
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after finding the eigen value and eigen vectors 
then use the normal mode method to represent 
the eigen vectors (mode shapes) in normal 
coordinates [4]. 
 
Results and Discussions 
 

The results from the finite element 
program together with the relations between the 
frequency of the plate and the eigen value at the 
point of intersection between bending and 
twisting modes which represents the critical 
case from which the flutter speed is obtained 
according to the analytical solution presented in 
this work. 
 
Validity  of the work 
 
The plate shown in Fig. 2 is solved by using 
different F.E meshes  
 (2x2) 128 d.o.f , (3x3) 264 d.o.f , (4x4) 550 
d.o.f , (5x5) 488 d.o.f 
The geometry and material properties are as 
follows: 
Modulus of elasticity E = 40 Gpa 
Poisson's ratio υ =0.25 
Den
sity 
of 
the 
mat
erial 
= 

1500 kg/ m3 

Thickness t = 16 mm 
Width b = 0.5m 
Air density = 0.46 kg /m3 
It is found that the first fundamental frequency 
was 1.683 rad/S. The convergence study is shown 
in Fig. 3. 
Therefore, this mesh is used to analyze the flutter 
speed. To obtain the flutter speed, two cases are 
investigated  

1) Aspect ratio AR = 
br
L

2
 

Where L= 4m , br = 0.5m 

  AR = 4
5.02

4
=

x
 

 
2) AR= 1.5 
The results of the finite element program 
together with results of the used analytical 
method,  are shown in table 1. 
 
Table 1: F.E Results – Natural Frequencies of 
the plate with aspect ratio=1.5 

 

Mode Freq. (Hz) Freq. (Hz) 

FEM Analytical FEM Analytical 

1 1.68 1.75 12.03 13.3 

2 10.6 11.01 14.48 15.2 

3 13.85 14.5 75.4 76.02 

4 32.12 33.05 140.6 142.31 

5 43.12 44.30 189.25 190.25 

AR = 4 AR = 1.5 
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The eigan value λ = 252 
From equn (21) and by using  fV  =33.2 
m/s 
the flutter speed becomes: 

fw = 5.7 rad/s 
 

Compared to the results obtained 
from [3], in which ωf =6.8 rad/s and fV  
= 34 m/s, therefore, the percentage of 
discrepancy will be 2.35% which gives a 
confidence in using the developed finite 
element program and analytical 
investigations. 

 
Tapered plate 
 

The Tapered plate shown in Fig.4 
with the following geometry and 
material properties. 

Steel of modulus of elasticity E= 
207 GPa poisson's ratio  ν= 0.3 
 
 
 
 
 
Case 1 
Aspect ratio  = 

AR = 2.1
027.0

)18.0( 2

==
A

LZ  

 
 
And the Air properties are: 
Density = 1.2256 Kg/m3 at sea 

leves with sonic speed = 340m/s at 20oC, 
therefore a = 20.04 T  

λ critical = 2

2
1 vaρ  

With Mach no. =
a
v  

 
 The finite element mesh used for 

the previous problem was employed her. 
Different thicknesses was used and the  

corresponding modes were inserted 
in table 2, as obtained from the finite 
element program. The corresponding 
λ cr were obtained from the 
corresponding mode shapes for each 
case for both , bending and torsional 
modes and their point of coupling 
defines λ cr from which the flutter speed 
and the flutter frequency. 

 
 Case 2 
 

 λ = 1.671.9, ωf =28.628 rad/s and 
the flutter speed fV =108 rad/s are 
obtained. 

Four thicknesses were tried 0.5, 
1.0, 1.5 and 2 mm as shown in figures 
4,5, 6 and 7. 

It is seen that as the thicknesses is 
increased λ  or is decreased and the 
flutter velocity is decreased and the 
flutter frequency is decreased. This is 
again due to the increasing in the 
flexibility in reducing the thickness and 
decreasing the stiffness when the 
thickness is increased, the stiffness and 
the mass, both are increased and the 
flutter speed is decreased. Therefore the 
limits of the flutter speed depend upon 
material properties and geometry. 

It can be concluded that increasing 
the aspect ratio, the flutter speed is 
increased. This is because the flexibility 
of the plate is increased when the aspect 
ratio is increased. 
 
 
 

 

Table 2: F.E Results of the Tapered plate 
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Thickness 
(mm) 

Modes λ cr Flutter 

velocity 

(m/s) 

FEM 

V-G 

Method 

Discrc 

-pancy 

% 

Mach 

No. 

Flutter 

frequency 

(Hz) FEM 

V-G 

Method 

Discrc

-pancy 

% 

0.5 14.2 
42.8 
84.8 

137.00 

27382.4 668.5 690.6 3.200 
 

1.966 28.2 30.5 7.541 
 

1.0 28.4 
85.5 
169.7 
274.9 

135851 472.6 488 3.155 
 

1.39 56.4 58.2 3.092 
 

1.5 42.62 
128.24 
254.42 
410.6 

91167.7 385.7 405.6 4.906 
 

1.13 84.2 88.4 4.751 
 

2.0 56.8 
170.92 
399.1 
547.0 

68306.4 333.87 345.6 3.394 
 

0.98 112.8 115.3 2.168 
 

Case 1 Case 2 

 
 
Conclusions  
 
1. For flat plates, the flutter speed is 

decreased, when the thickness is 
increased. This is because the stiffness 
is increased and weight penalty is 
introduced and a compromise between 
the required flutter speed limitation and 
the thickness of the plate. 

 
 
2. For tapered plate similar conclusion is 

obtained i.e about 50% flutter speed 
reduction when using thickness = 2mm 
instead of using  sheet thickness = 0.5 
mm 

3. The interaction between the finite 
element and the flutter characteristic is 

a powerful technique to predict the 
flutter of the plates. 

S = 0.00000000
r = 1.00000000

DOF

W
n

100.0 150.0 200.0 250.0 300.0 350.0 400.0 450.0 500.0 550.0 600.0
1.40
1.60

1.80
2.00

2.20

2.40

2.60
2.80

3.00

3.20

 
 

Fig.3 convergences study of the finite 
element results 

Sinusoidal Fit: Wn=a+b X cos(cx+d) 
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Coefficient Data: 
a = 9.2770748 
b = 7.5451525 
c = 0.0013603357 
d = 2.397878 
 
 
 
 
 
 
 

 
 

Fig.4 Tapered cantilever plate.    
Material: steel, ρ=7800 kg/m3, E=210GPa, 
ν=0.3, AR=180/180=1 
Air property: ρa=1.2256 kg/m3, sonic 
speed=340m/s at 20 oC, λcr =1/2 ρa.v2 

 
 
The results shown in table 2 have an 
acceptable agreement between the finite 
element results and the V-C Method, with 
maximum discrepancy Increasing thickness 
from 0.5mm to 2mm gives a reduction in 
the flutter speed. This is because that 
increasing the thicknesses given as 
increasing in the stiffness which decreases 
the flutter speed. The results are shown in 
Fig. 9. 
 
 

 

 
 
Fig.5 The bending and torsional modes for 
the cantilever tapered plate with thickness 

0.5mm. 
 
 

 
 
 
 

Fig.6 The bending and torsional modes for 
the cantilever tapered plate with thickness 

1mm. 
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Fig.7 The bending and torsional modes for 
the cantilever tapered plate with thickness 
1.5mm. 
 
 

 
 

Fig.8 The bending and torsional modes for 
the cantilever tapered plate with thickness 

2mm. 
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Fig. 9 
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Nomenclature  

Symbol Meaning Units 

F 
h 
 
m 
Sα  
T 
U 
Wα 
[Kij] 
[Mij] 
[Aij] 
Iα 
 
Kh  
Kα 
M 
x 
 
Z 
α 
ρ 

Total force 
The vertical coordinate of the axis of rotation 
Mass of wing 
First moment of inertia 
Kinetic energy 
Strain energy 
Up-wash velocity of the airfoil 
Stiffness matrix, 
Mass matrix and 
Aerodynamic matrix 
Second moment of inertia about shear center. 
Stiffness for translation spring 
Stiffness for tensional spring 
Total moment 
The distance measured from the shear center 
Downward displacement of the airfoil  
Angular displacement for wing 
Air density 

N 
M 
 
Kg 
Kg.m 
N.m 
N.m 
m/s 
 
 
 
kg.m2  
 
N/m 
N/m 
N.m 
m 
 
m 
rad 
kg/m3 
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 حدود سرعة الرفرفة للصفائح المسلوبة و المستطیلة الناتئة

 
 قصي حاتم جبر

 
بغداد- الكلیة التقنیة/  ھیئة التعلیم التقني  

 
 

:الخلاصة  
  

یمكن أن تس بب الق وى الإیرودینامیكی ة والمرن ة تذب ذبا للھیك ل حی ث تول د ت ردد ع الي لأس طح المطی ار                          
تحدث ف ي الط ائرة أثن اء الطی ران والت ي یمك ن أن تس بب إنھی اراً بس رعة تس مى بس رعة             إضافة الى اللاإستقراریة التي

ت م بح ث   . ة الرفرف ة للص فائح المس تطیلة وت م مقارنتھ ا م ع نت ائج منش ورة        ـفي ھذا البحث تم إیجاد حدود سرع  . الرفرفة
د بأن النس ق الھیكل ي یلع ب دورا    وج. عدة عناصر تصمیمیة مثل النسبة الباعیة والسمك وتأثیراتھا على سرعة الرفرفة

      .مھما في إیجاد سرعة الرفرفة والتقارن بین نسق الإنحناء والإلتواء السبب الرئیس في الرفرفة
 
 


