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Abstract 

 
Self-driving automobiles are prominent in science and technology, which affect social and economic development. 

Deep learning (DL) is the most common area of study in artificial intelligence (AI). In recent years, deep learning-based 
solutions have been presented in the field of self-driving cars and have achieved outstanding results. Different studies 

investigated a variety of significant technologies for autonomous vehicles, including car navigation systems, path 

planning, environmental perception, as well as car control. End-to-end learning control directly converts sensory data into 

control commands in autonomous driving. This research aims to identify the most accurate pre-trained Deep Neural 

Network (DNN) for predicting the steering angle of a self-driving vehicle that is suitable to be applied to embedded 

automotive technologies with limited performance. Three well-known pre-trained models were compared in this study: 

AlexNet, ResNet18, and DenseNet121. 

Transfer learning was utilized by modifying the final layer of pre-trained models in order to predict the steering angle 

of the vehicle. Experiments were conducted on the dataset collected from two different tracks. According to the study's 

findings, ResNet18 and DenseNet121 have the lowest error percentage for steering angle values. Furthermore, the 

performance of the modified models was evaluated on predetermined tracks. ResNet18 outperformed DenseNet121 in 

terms of accuracy, with less deviation from the center of the track, while DenseNet121 demonstrated greater adaptability 
across multiple tracks, resulting in better performance consistency. 
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1. Introduction 
 

Self-driving cars have emerged as one of the 

most actively contested and researched topics in 
recent years. Despite their association with the 

automotive industry, these systems belong to the 

field of robotics as part of the third robotic 
revolution. [1]. 

From a philosophical and scientific standpoint, 

there are various predictions regarding how self-

driving automobiles will impact our lives. 

Automobiles play an important part in modern 
civilization, which is defined by a high level of 

mobility. It is estimated that approximately one 

billion automobiles are on the roads worldwide. 

Autonomous driving, or intelligent driver 
assistance, is expected to result in a 90% reduction 

in road accidents; a 60% reduction in carbon 

dioxide emissions (due to smart trajectory 
planning); and savings of more than 1 billion hours 

every day for commuters around the world [2][3]. 

Autonomous vehicles will not only improve the 
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mobility of those who are elderly or disabled; but 
will also reduce transportation energy consumption 

by up to 90%. [4]. 

Self-driving cars are autonomous decision-
making systems that analyze streams of 

observations obtained from multiple onboard 

sources, such as cameras, Radio Detection and 
Ranging sensors, Light Detection and Ranging 

sensors, ultrasonic sensors, Global Positioning 

System units, and/or inertial sensors, in which there 

is no human driver [5]. The camera is the most 
essential component of a vehicle's suite of sensors. 

The vast amount of data collected by a vehicle's 

cameras necessitates significant processing power 
in order to extract useful information. The only 

method for extracting information from incoming 

images is computer vision. 
Sequential pipelines (perception-planning-

action) or end-to-end learning are used to make 

driving decisions. Pipelines that follow the classic 

approach, in which first objects are recognized in 
the input image, then a path is planned, and lastly, 

the computed control values are performed. In 

contrast, the end-to-end method employs a unique 
theory to steer a vehicle, Figure 1. This strategy 

focuses on developing an AI model that mimics 

human driving. A human driver constantly makes 

steering predictions based on an immediate 
analysis of observed visuals. [6]. 

 

 
 

Fig. 1. Deep Learning-based self-driving car. 

 

 
End-to-end Learning Control, as defined in the 

implementation of autonomous driving, where an 

image provided by a front-facing camera is fed into 
a neural network that then generates the car's 

control signals such as steering angle, throttle, and 

braking [5]. The primary advantage of this 

technique is that it learns the entire function 
automatically, from raw pixels to steering angles, 

without the need for any human intervention in the 

form of feature design and selection, geometry, 

camera calibration, or manual adjustment of 
parameter values. To be more specific, the goal of 

end-to-end learning is to diminish or eliminate the 

need for human expertise in terms of feature 
extraction and to solve issues using just data [7]. 

In this paper, three well-known DL models have 

been modified to perform the task of end-to-end 
driving autonomously. The main objective of this 

study is to analyze and evaluate the modified 

models and determine the best predictive model 

among them for steering angle control using a 
dataset collected from two different tracks. In 

addition, the study decides which model is most 

suitable to be applied to low-performing hardware 
with high qualitative results. The DL models have 

been selected according to their widespread use.  

Results from the offered end-to-end learning 
network may find practical usage in applications 

like warehousing and delivery vehicle robot cars. It 

is important for practical industrial applications to 

be able to deploy well-known DNN solutions, such 
as those offered in this study, on integrated vehicle 

applications that have low-power technologies at 

low costs and compact sizes. 
The relevant work will be presented in the next 

section. Section III describes the research method. 

Section IV: Experiments and Results. The last 

portion contains the conclusion. 
 

 

2. Related Work 

This section summarizes some of the related 

works proposed to perform the task of autonomous 

end-to-end driving. End-to-end learning models 

that are trained on sensor inputs and supervised by 
humans are one of the most promising approaches 

to achieving fully autonomous performance. A 

limited number of published works have used 
DNNs as part of a complete model to command a 

real-world autonomous system. Researchers in the 

field of autonomous vehicles rely heavily on 

artificial datasets to evaluate the efficacy of DL. 
 In the paper [8], the authors describe a 

Convolutional Neural Network (CNN) that can 

solve the problem of autonomous lateral control. 
The input image size to the network is (70x160x3). 

A proper steering angle was generated using CNN, 

enabling the automobile to complete laps. On 
simulated unknown tracks, CNN's steering control 

was tested. Unfamiliar single-lane routes were 

successfully navigated 89.02 % of the time. 

However, the training dataset was small and did not 

cover a wide range of scenarios.  
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In [9], the researchers designed DL models for the 
input image size of (70x160x3) in order to carry out 

longitudinal and lateral vehicle control. Predictions 

of both speed and steering angle were made by 
developing two separate models. Max-pooling was 

employed in each convolution in DNN. The dual-

action model completed all loops of the simulation 
track without leaving the designated lanes, 

demonstrating full autonomy. However, there was 

insufficient memory for training due to the 

excessive use of threads. 
In addition, another group of researchers [10] 

developed a lightweight DNN model (J-Net) for 

car steering angle control and compared this model 
to two other models, AlexNet and Nvidia's model. 

Input images to the first convolutional layer of the 

proposed models have a size of (65x320x3). 
Successful autonomous driving was measured, 

inferred, and analyzed using a simulator 

environment. In comparison to the other two 

approaches, J-Net had the best latency and frame 
rate. The J-Net lite model, however, has not been 

implemented on an embedded platform with a 

limited number of processing cores. 
Applying DL techniques including Transfer 

Learning, [11] study compared two different 

models for accurate steering angle prediction. The 

models were a 3D convolutional model with Long 
Short-Term Memory layers and Residual Neural 

Network (ResNet50) with the input image sizes 

(120x320x3) and (224x224x3), respectively. The 
models were trained using the Udacity self-driving 

car dataset. The (ResNet50) model outperformed 

the other model with an RMSE of 0.0709. 
Nonetheless, the paper's models benefit 

from limited data augmentation, which is a 

significant limitation. The topic of steering angle 

regression is framed as a classification challenge 
with an imposed spatial connection between 

neurons in the output layer. 

Another study [12] presented a comparison 
between the three transfer learning models: Visual 

Geometry Group (VGG16), ResNet-152, Densely 

Connected Convolutional Networks (DenseNet-
201, and Nvidia’s model for steering angle control. 

The input image size for all models was 

(66x200x3). The models were trained with 25 

minutes of driving time at 30 frames per second 
using a Raspberry Pi camera. Nvidia’s model 

outperformed the other models with a Mean Square 

Error (MSE) of 0.3521. The authors used random 
videos from YouTube to visualize the performance 

of Nvidia’s model. 

Using a monocular self-driving car prototype, 

the authors of [13] proposed a DNN applied to a 
Raspberry Pi with an input image size of 

(120x160x3) for steering angle prediction. As a 
vehicle platform, a 1/10 scale RC car was 

employed. Data was acquired from an oval and an 

8-shaped track equipped with traffic signs. 
Experiments demonstrate that the autopilot product 

is capable of maintaining a lane with a Cross-

Entropy Cost Function accuracy of 89.04%. 
Regardless of lane markers, the vehicle's top speed 

is 5–6 km/h at 10 frames per second. Nevertheless, 

the camera used in their car prototype lagged by 

300-350 milliseconds. 
Multichannel Convolutional Neural Networks 

(M-CNNs) were utilized for vehicle speed and 

steering angle calculations in [14]. The model uses 
(227x227x3) image size from front-view camera 

recordings and feedback speed sequences as its 

input. The public Udacity dataset and the gathered 
SAIC dataset are used to evaluate the suggested 

technique. The proposed concept was contrasted 

with the updated versions of the Cg Network and 

PilotNet from Nvidia. With an MAE of 1.26 
degrees for steering angle and 0.19 meters per 

second for speed values, the M-CNNs were better 

than the implemented Nvidia PilotNet and the Cg 
Network.  

Numerous studies have focused on constructing 

DNNs from low-resolution images for deployment 

throughout low-performance embedded systems. 
This research aims to develop an end-to-end 

method for forecasting the steering angle using 

well-known DNNs that can be implemented on 
low-performance embedded systems. In addition, 

provide an overview of well-known DL models, 

such as AlexNet, ResNet18, and DenseNet-121, 
that accurately predict autonomous driving 

commands but have not previously been studied. 

To train the selected models, data were collected 

from two distinct tracks with image sizes of 
(224x224x3), which is the most frequent 

resolution. Furthermore, the presented work's 

accuracy and consistency were examined and 
compared. The following are the paper's main 

contributions: 

1. Image classification convolutional neural 

networks AlexNet, ResNet18, and 

DenseNet121 were modified and deployed for 
end-to-end autonomous driving. 

2. The Jetson Nano 2GB, a low-performance 

embedded system, was applied to evaluate the 
modified models. Consequently, it proved that 

ResNet18 and DenseNet121 are well-suited to 

be employed in low-performance embedded 
devices. 

3. The majority of data was collected from the first 

track, while some information was obtained 
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from the second. The results demonstrate that 
the robot can drive 89% of the time on an 

untrained track. 

4. The performance of ResNet18 and 
DenseNet121 was evaluated on two different 

tracks to demonstrate their suitability for 

autonomous driving. ResNet18 outperformed 
DenseNet121 in terms of precision, with less 

deviation from the center of the track. 

DenseNet121 was more adaptable across tracks, 

resulting in better consistency. 
 

 

3. Method 

  
This section explains the algorithms used in this 

work in considerable detail followed by the robot 

system architecture.  

 

3.1. Convolutional Neural Networks (CNN) 

 
CNN is utilized to classify the labels using a 

supervised learning technique [15]. The first phase 

in the CNN architecture is the convolution layer, 

where a 2D convolution operation is applied to the 
image. In convolution, the three-channel RGB with 

a 2D size image is convolved with kernels. The 

output of convolution known as Feature Map 
focuses on particular features in the input image 

regardless of their location in the image. The 

convolutions with kernels are used to extract low-

level particular features (like edges and corners of 
the road) from the previous layers and combine 

them with higher-level extracted features (full 

objects of the road) in the next hidden layers. which 
reduce the size of the image and increase the 

number of parameters (weights and biases) [16]. As 

the number of parameters increases, more training 
time is required. The activation function is applied 

after the convolution. 

The activation function is responsible for 

determining whether or not a neuron is fired. In 
other words, it will use simpler mathematical 

operations to decide whether or not the neuron's 

input is essential to the network. Calculating a 
weighted sum and then adding bias to it is how the 

activation function determines whether or not a 

neuron should be activated or not[17]. The 
activation function adds nonlinearity to a neuron's 

output [18]. It transforms the input, allowing it to 

learn and execute highly complicated tasks. In this 

work, the (rectified linear unit) [19] activation 
function is applied to the hidden layers because it 

requires fewer mathematical operations and thus is 

faster to compute compared to tanh and sigmoid 

and neglects the effect of gradient vanishing. If x is 
positive, it returns x and 0 if x is negative or equal 

to zero. 

The operation called pooling was next 
performed, which decreases the feature maps' 

dimensionality (resolution) and hence their output 

(the output of the convolutional layer) resolution 
[20][21]. This method helps to reduce spatial 

variance by removing unnecessary information 

from the neuron's receptive field by taking the 

maximum (max pooling) or average (average 
pooling) value of the neuron (filter window). 

Pooling not only helps in object recognition in 

images independent of their position but also 
reduces the number of parameters to train by 

reducing the number of pixels, thereby contributing 

to the prevention of overfitting. 
The two-dimensional feature vector of the final 

convolution layer is flattened into a long one-

dimensional array, which is known as a fully 

connected layer FC, or dense layer. A subset of FC 
layers maps the spatial features of convolution 

layers and pooling layers to the final outputs of the 

network, which directly predicts the steering angle 
value. 

The steering angle of each image is represented 

by a single point on the image. In this study, the 

dataset consisting of road images and steering 
angle labels is used for training purposes. The 

trained model predicts the steering angle in real-

time while detecting unlabeled images, as 
regression is the process of forecasting a value 

based on previous data. Adam is the optimizer 

implemented by CNNs in the current study. 
Optimizers modify neural network parameters 

including weights and learning rates. 

The accuracy of the model is computed employing 

loss function. As described in Section 2.5, this 
study suggests utilizing MSE loss function to train 

a regression network for the task of predicting 

continuous steering angles from models. The 
(MSE) illustrates how far away from reality 

predictions were. 

 

3.2.   CNN Models 

 
The three CNN architectures used in this work 

are ResNet18, DensNet121, and AlexNet. All three 

models take a 224* 224 image size as input. 

Residual learning was used in ResNet18 to 
overcome the loss of precision with increasing 

network depth. It has 18 layers, including 17 

convolutional layers and one FC layer with 3x3 
filters. This network also has approximately 11 

million parameters. Down sampling is performed 
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by convolutional layers with a stride of two, as 
shown in Figure 2[22]. The final FC layer and 

Softmax were removed from the original network, 

and an additional FC layer was added to convert 
512 features to one output feature (steering angle).  

DenseNet was developed to address the problem of 

vanishing gradients in high-level neural networks 
[23], which causes accuracy to decrease. The 

network has 121 layers, which are divided into four 

dense blocks made up of convolutional layers and 

transition layers in between to facilitate 
information flow between layers, as shown in 

Figure 3. DensNet121 is made up of 7.2 million 

parameters. The original network's final FC layer 
and Softmax were removed, and an additional FC 

layer was created to convert 1024 features to one 

output feature (steering angle). 
 

 
 

Fig. 2. ResNet18 architecture. 

 
 

Fig. 3. DenseNet121 architecture. 
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3.3. Robotic System Architecture 

 
The block diagram of training DNN is shown in 

Figure 4. Firstly, the required data was collected 

manually by driving the car. Secondly, data pre-

processing and data augmentation were applied 

before feeding the images to the CNN models for 
training. Finally, the trained model was used in the 

inference track for the test. The successful model 

was one that drove independently on both tracks 
while avoiding the orange bolder lines and staying 

on the centreline. 

 

 
 

Fig. 4. Block diagram of the training DNN. 

 

 

3.4. Database Acquisition 

 
Collecting, inferring, and evaluating data for 

autonomous driving was done on two tracks. Data 

were collected along the first, 3x2 meter path, 
while tests and evaluations were conducted along 

the second, 4x2 meter path with curves in the 

middle, Figure 5(B). The inference track was 
brighter than the collection track. 

The dataset's features are represented by 

images, with the corresponding steering angles 

serving as labels. The Jetracer robot was placed on 
the representative track to collect data for the 

training process. Continuous orange lines on the 

borders and dashed white lines in the center define 
the track. A single camera was installed instead of 

three cameras to capture frames in three different 

positions (center, left, and right). The objective was 

to keep the car in the center of the road. As a result, 
the images from the camera at the same level in the 

middle, left, and right were taken with the same 

steering measurement value. The measurements 
are manually entered from a remote PC while the 

images are being captured by clicking the desired 

XY coordinates on each frame as shown in Figure 
6. The X-axis latitude represents the amount of 

angle from left to right and is controlled by the 

servo motor with a range of -1.0 to 1.0. As a result, 
a unique dataset is created for the training process. 

To obtain high-quality results, the images and 

measurements should be collected manually while 
driving in the manner we expect during testing. 

Data augmentation has been used to improve 

training results as well as drive the robot clockwise 

and counterclockwise[24][25]. The term 
"augmentation" refers to the technique of 

improving the training data without affecting the 

dataset's essential characteristics. The amount of 
data in the training directory is increased by adding 

slightly modified copies of pre-existing data. The 

augmentation procedure in our work involves only 

flipping the images around vertical access. The 
steering angle should be inverted while flipping 

each frame. Therefore, the new steering angle 

equals: 

𝑆𝑡𝑒𝑒𝑟𝑖𝑛𝑔 𝑎𝑛𝑔𝑙𝑒 𝑎𝑓𝑡𝑒𝑟 𝑓𝑙𝑖𝑝𝑝𝑖𝑛𝑔 
=  (−1) ∗  𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙 𝑠𝑡𝑒𝑒𝑟𝑖𝑛𝑔 𝑎𝑛𝑔𝑙𝑒           … (1) 



Yahya Ghufran Khidhir                                 Al-Khwarizmi Engineering Journal, Vol. 18, No. 4, P.P. 45- 59 (2022) 

 

51 

So as to adapt the robot’s throttle to its high 
speed in a straightforward path and slower speed in 

turns, the throttle is equal to: 

𝑌 =  1 –  𝑎𝑏𝑠 (𝑋)                                               … (2) 

As a result, when the car is driving in the center 
of the path, x = 0, the throttle is at its maximum 

value, and in sharp turns, the throttle is at its 

minimum value. 

 

 
                                                              (A)                                               (B) 

Fig. 5. Database Acquisition tracks 

(A) Data collection track (B). Inference track 

 

 
 

Fig. 6. Database Acquisition. 

 

 

The number of images collected from the first 

track in Figure 5(A) was 681 in total. 83 samples 

from track b's inside turns were added to the dataset 
to enable the robot to drive on both tracks, Figure 

5(B). The images' resolution was (224x224x3). 

(224 pixels width, 224 pixels height, and 3 

channels of RGB colors). The number of images 

increased to 1528 samples after data augmentation. 

The dataset was divided into two portions: 80% for 
training and 20% for validation. Figure 7 depicts 

the normalized steering angles associated with 

each frame. 
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Fig. 7. Dataset of Normalized Steering Angles. 

 

 

3.5. Training and Hyper-Parameter 

 
On the Google Colab platform, the three models 

were trained in the Python programming language. 

Color jitter data pre-processing was used in 

addition to data normalization because of the 
difference in color brightness between data 

collection and inference tracks. Each model was 

trained separately with the same hyperparameters. 
The Adam [26] optimizer utilized with an initial 

learning rate of (0.0005). To avoid missing local 

optima, it's recommended to keep the learning rate 
low because it's more stable. In spite of the above 

fact, it is possible that a minimal learning rate could 

lead to overfitting. The number of epochs was 70, 

with early stopping patience of 10 epochs. The 
batch size was set to 8. As the batch size is reduced, 

the end losses are reduced too. As a suitable loss 

function for regression networks, (MSE) [27] was 
selected to minimize the error between the steering 

forecast and the steering measurements. MSE is 

calculated by taking the average of the squared 

difference between the expected value and the 
actual value. 

𝑀𝑒𝑎𝑛𝑆𝑞𝑢𝑎𝑟𝑒𝑑𝐸𝑟𝑟𝑜𝑟 =
1

𝑁
∑(𝑦𝑗 − �̂�𝑗)

2
   … (3)

𝑁

𝑗=1

 

The vector �̂�𝑗 represents the values of N 

forecasts and 𝑦𝑗 is a vector that contains N true 

values. 
In order to get fast inference performance with 

a simple workflow, the models were converted and 

optimized using the PyTorch to TensorRT 
converter (torch2trt) to be applied to the Jetson 

Nano embedded system. All three models were 

trained with the same hyper-parameters and 

datasets, differing only in the number of epochs. 

These differences arose from early stopping to 
reduce the overfitting. The model was saved 

automatically if there was no progress in validation 

loss for 10 epochs. 
The performance of the models was evaluated 

by their ability to navigate a robot through 

predetermined tracks. The models were determined 

to be successful based on their ability to drive 
autonomously on both predetermined tracks. As 

such, the model was determined to be a failure if 

the car deviated from the path of the predetermined 
tracks. The robots were driven through each track 

three times. Their paths were recorded by different 

colored markers that were affixed to the back of the 
robot. 

Images were captured from the paths and the 

trajectories were converted into XY coordinates in 

pixels. The Frechet distance theorem was used to 
measure how different the drawn paths were from 

each other in relation to the centre of the 

track.[28][29] 
The Frechet distance between two curves can be 

defined mathematically as: 

 
 

𝛿𝐹(𝑃, 𝑄) = min {max 𝑑 (𝑃(𝛼(𝑡)), 𝑄(𝛽(𝑡)))}

𝛼[0,1] → [0, N] 𝑡 ∈ [0,1]

𝛽[0,1] → [0, M]

 

 …(4)  
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Where 𝑃 and 𝑄 are polygonal curves of length N 

and M, 𝛼(𝑡) and 𝛽(𝑡) are two continuous and 

increasing functions, and 𝑑 (𝑃(𝛼(𝑡)), 𝑄(𝛽(𝑡))) 

is the Euclidian distance between 

𝑃(𝛼(𝑡)) and 𝑄(𝛽(𝑡)). 

According to equation (4), the Frechet distance 

algorithm first determines the maximum 

distance that can exist between curves 𝑃 and 𝑄 

as they progress along their respective paths 

for each value of the functions 𝛼(𝑡) and 𝛽(𝑡), 

then maintains the minimum distance that can 

exist between them.  

 
 

4. Experiments and Results 

 
When the findings of this research were 

compared to those of similar studies, it was 

revealed that the metrics and datasets utilized were 

not standardized, and there was a lack of 
transparency in the presentation of the results. For 

instance, the percentage of switching lanes over 

time on multi-line tracks is quantified as a "degree 

of autonomy" in [8], [9]. The sample sizes in the 
training, validation, and testing sets in the 

simulated data presented in [8], [9], and [10] are 

significantly different. In studies, the following 
metrics were employed: [10], [12] MSE, [13] 

Cross-Entropy, [14] MAE, and [11] RMSE. MSE 

was implemented to evaluate the performance of 
the proposed architectures on the validation dataset 

in this study. As shown in Table 1, DesneNet121 

has the best overall performance, with a score of 

0.0057. However, ResNet18's value of 0.0058 is 
quite close to DenseNet121's value. Among the 

two remaining models, ResNet18 and 

DenseNet121, ResNet18 had the larger file size. 
The size of the model indicates the complexity of 

the model. After training three CNN architectures 

on Google Colab, testing for the AlexNet model 
was suspended since its 217 MB size exceeded the 

storage capacity of the Jetson Nano 2G. As a result, 

this model was not considered for further 

examination. Only ResNet18 and DenseNet121 
were tested on the aforementioned tracks using the 

Jetson Nano 2G. 

 

Table 1, 

MSE and Model Size 

Network MSE Model Size 

ResNet18 0.0058 42.7 MB 

DenseNet121 0.0057 27.1 MB 

AlexNet 0.1333 217 MB 

 

 

In order to compare the models' accuracy and 
repeatability. Due to the simplicity, three full laps 

of driving were recorded at a constant speed. 

Figure 8 shows the drawn paths of the robot as it 

navigates each predetermined path, whether using 
the ResNet18 model or the DenseNet121. 

Recorded trajectories suggest that both ResNet18 

and DenseNet121 guided the robot through both of 
the predetermined paths. However, there were 

some differences between the two models. The 

Frechet distance was applied to show how both 

models' curves deviated from the centerline. In the 
initial step of the Frechet distance algorithm, it 

calculates the maximum distance between two 

pairing points of each model's drawn path and the 
centerline path. In addition to this, it selects the 

smallest distance from all maximum pairwise 

distances to demonstrate the dissimilarity between 
the two paths. Figures 8 (a) and (b) show the paths 

drawn by the ResNet18 model for three full laps on 

both trajectories. Figures 8 (c) and (d) show the 

paths drawn by DenseNet121 for three full laps on 
both tracks. 

Table 2 shows the calculated dissimilarity 

distances between each curve and the centerline for 
three turns. Table 2 shows that when comparing 

ResNet18 and DenseNet121, the former has 

relatively small dissimilarity distances. 
ResNet18 demonstrated an average distance of 

3.26 cm from the track's centerline on the first 

track. On the same track, DenseNet121 achieved an 

average distance of 4.39 cm. ResNet18 achieved an 
average distance of 4.12 cm on the second track. 

DenseNet121 achieved an average distance of 4.38 

cm on the same track. ResNet18 appeared to be less 
accurate on the second track when compared to the 

first. DenseNet121, on the other hand, produced 

comparable results on both tracks. This means that 

ResNet18 is more accurate than DenseNet121, but 
DenseNet121 can adapt to different tracks and 

perform more consistently.  
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Fig. 8. The drawn paths for three full laps on both tracks using ResNet18 and DenseNet121. 

(a) The drawn paths of ResNet18 on the first track. (b) The drawn paths ResNet18 model on the second track. (c) 

The drawn paths of the DenseNet121 Model on the first track. (d) The drawn paths DenseNet121 model on the 

second track. 

 
Table 2, 

The dissimilarity between curves and centerline using discrete Frechet distance.

                                    First track                                           Second track 

Num of turns ResNet18 DenseNet121 ResNet18 DenseNet121 

First turn 1.81 cm 2.69 cm 3.57 cm 3.12 cm 

Second turn 3.21 cm 4.76 cm 4.39 cm 4.89 cm 

Third turn 4.77 cm 5.731 cm 4.41 cm 5.13 cm 

 

 

Figure 9 shows the predicted steering with 

frames for each model as a performance measure. 
Figure 9 also depicts three types of driving paths: 

(a) internal turns, (b) straightforward paths, and (c) 

long-end turns. The two large oscillations depict 

the long end turns with high deviation from the 
track center as the car drives counterclockwise. 

With less oscillation, the straightforward path is 

depicted. The small upside-down oscillations 
represent short internal turns in the middle of the 

path. Furthermore, as shown in Figure 9, both 

DenseNet121 and ResNet18 have higher steering 
angle deviation compared to the collected dataset 

in Figure 7. Based on the trained dataset, Resent18 

outperforms than DenseNet121, as evidenced by its 

higher steering angle of 0.8 (i.e., closer to the 
center of the track). The steering angle of 

DenseNet121 was approximately 0.98, indicating 

that it was quite distant from the track's center. 
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Fig. 9. Relative deviation from the center of the trajectory per one full lap of autonomous driving using ResNet18 

and DenseNet121. 
 

(a) Internal turns (b) Straightforward path (c) Long-end turns. 

 

 

5. Conclusion 

 
In this study, a comparison of three transfer 

learning models (AlexNet, ResNet18, and 
DenseNet121), which are capable of handling the 

task of autonomous driving, was conducted. In 

addition, the modifications of the pertained models' 

designs and the system architecture for the 
prediction of steering angle have been described. 

Three architectures were applied and evaluated on 

two featured paths. Through a comparative 
analysis of three well-known DL models. The main 

goal of this study is to determine the best DL model 

for predicting steering angle.  The numerical 

results based on the loss function (MSE) and the 
Frechet distance were discussed. The main idea of 

this research is to determine whether the better 

result for the steering angle prediction problem can 
be obtained by employing less sophisticated 

algorithms that can be implemented on low-

performance hardware. The results show that both 

ResNet18 and DenseNet121 are compatible with 

the Jeston Nano 2G embedded system. The results 
demonstrate that the ResNet18 is more accuracy 

than DenseNet121, whilst DenseNet121 are able to 

adapt new tracks and keep the performance stable 

over time. On the other hand, Resent18's is 
achieved a good fitted line with the trained dataset, 

as indicated by its higher steering angle of 0.8 (i.e., 

closer to the center of the track). DenseNet121's 
steering angle was about 0.98, which is an 

extremely wide divergence from the track's center.  

In addition, different experiments were carried out 

in order to investigate how the training dataset 
affected driving performance. The results 

demonstrate that the best driving performance was 

obtained when the validation loss was less than 1% 
and the vehicle was capable of handling abrupt 

curves while remaining on the centerline. The 

biggest obstacle in the end-to-end DL technique is 
its reliance on clean and extensive training data. 
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The future idea is to add an IMU sensor to 
measure the robot's actual orientations along the 

path in order to use them to find the difference 

between the neural network's expected steering 
angle and the IMU sensor's output. 
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 الخلاصة

 
( حاليًا أحد أهم مجالات DLوتؤثر على التنمية الاجتماعية والاقتصادية. يعد التعلم العميق ) والتكنولوجيا،السيارات ذاتية القيادة لها مكانة بارزة في العلوم 

ات ذاتية القيادة وحققت نتائج باهرة. تدرس تم تقديم حلول قائمة على التعلم العميق في مجال السيار الأخيرة،(. في السنوات AIالدراسة في الذكاء الاصطناعي )

والتحكم  البيئي،والإدراك  المسار،وتخطيط  السيارات،بما في ذلك أنظمة الملاحة في  القيادة،هذه الدراسات مجموعة متنوعة من التقنيات المهمة للمركبات ذاتية 

سية إلى أوامر تحكم في القيادة الذاتية. تهدف هذه الدراسة إلى تحديد الشبكة العصبية في السيارة. التحكم في التعلم الشامل هو التحويل المباشر للبيانات الح

امل يمكن ( الأكثر دقة التي تم تدريبها مسبقًا للتنبؤ بزاوية التوجيه لمركبة مستقلة. الهدف من هذا المشروع هو إنشاء قدرات قيادة ذاتية بالكDNNالعميقة )

 ResNet18و AlexNetقمنا بمقارنة ثلاثة نماذج معروفة جيداً:  اقتراحنا،المدمجة ذات الأداء المحدود. في استخدامها مع تقنيات السيارات 

جارب على . تم استخدام تعلم النقل من خلال تعديل الطبقة النهائية من النماذج المدربة مسبقًا من أجل التنبؤ بزاوية توجيه السيارة. أجريت التDenseNet121و

لديهما أقل نسبة خطأ لقيمة زاوية التوجيه.  DenseNet121و ResNet18فإن  الدراسة،نات التي تم جمعها من مسارين مختلفين. وفقاً لنتائج مجموعة البيا

مع انحراف  الدقة،من حيث  DenseNet121أفضل من  ResNet18تم فحص أداء النماذج المعدلة على مسارات محددة مسبقاً. كان أداء  ذلك،علاوة على 

 .مما أدى إلى أداء أكثر اتساقاً المختلفة،أكثر مرونة عبر المسارات  DenseNet121أقل عن مركز المسار، بينما كان 
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