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Abstract

Some deep DC electrical soundings, performed in alpine and apenninic areas with the continuous polar dipole-
dipole spread, show apparent resistivity curves with positive slopes. Measured values of apparent resistivity
reach 30000 Qm. Applying the «surface charges» method we developed three dimensional mathematical mod-
els, by means of which we can state simple rules for determining the minimum extensions of the deep resistive
bodies, fundamental information for a more precise interpretation of the field results.
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1. Introduction

The dipole-dipole system is very useful to
execute deep DC electrical soundings (Alfano,
1974, 1980). In fact, it allows great exploration
depths to be reached without unrolling very
long cables, as is the case for Schlumberger
spreads. This has a number of advantages, both
with respect to field operations and because the
possible effects of leakage from the cable far
from the energising electrodes are limited.

The continuous polar dipole-dipole method
consists in realising an array whose scheme is
drawn in fig. la. The potentiometric dipole
MN, whose centre is the point O, is kept fixed
and the current dipoles (A and B) are moved
far away so that the direction of MN coincides
with the direction of AB (polar array) and the
position of the farthest electrode of a dipole is
the same as that of the nearest electrode of the
following dipole (continuous array).

The measurements obtained with a continu-
ous polar dipole-dipole spread are very much
affected by lateral variations, which introduce
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many problems in the interpretation stage.
However, with a mathematical operation we
can convert the results of a continuous polar
dipole-dipole array to those which would have
been obtained with a half-Schlumberger spread
(Al’pin, 1950, 1958; Patella, 1974), for which
MN is in the same position as for the double-
dipole array whereas the current poles are co-
incident with the current electrodes of the dou-
ble-dipole array (see fig. 1b). The half-Schlum-
berger diagram is smoother, less affected by
horizontal inhomogeneities and, as a conse-
quence, more useful for the interpretation in
terms of depth. However, it has been shown
that the transformation from a general dipole-
dipole diagram to the half-Schlumberger one is
valid only if the subsurface has a plane parallel
layering; in real cases the geological structures
are three-dimensional and the polar array is the
only one for which the transformation is appli-
cable (Alfano, 1980, 1993).

For a thorough and comprehensive descrip-
tion of the transformation procedure we refer
the reader to already published papers (Alfano,
1974, 1980, 1993).

In recent years several DC electrical sound-
ings with the continuous polar dipole-dipole
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Fig. 1a,b. a) Continuous polar dipole-dipole spread: O - centre of the potentiometric dipole; MN - potentio-
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Fig. 2a,b. Examples of apparent resistivity curves obtained in Northern Apennines (a) and Central Alps (b).
x: dipole-dipole curve; M @: transformed half-Schlumberger curves.
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method have been carried out both in the Cen-
tral Alps and Northern Apennines. The greatest
distance between the dipoles has been about 20
km, which corresponds to an exploration depth
of about 7 km in the most favourable cases. In
this work we consider some soundings whose
apparent resistivity diagrams have strong posi-
tive slopes (fig. 2a,b) indicating the existence
of resistive beds.

The interpretation of these soundings re-
quires not only the determination of the mini-
mum thickness of these resistive bodies but
also their minimum lateral extension. This last
datum is very important, because it can lead to
a better geophysical interpretation of the
soundings with three-dimensional structures.

For this purpose we developed mathemati-
cal models for computing half-Schlumberger
curves for a resistive body lying at some depth
and with limited lateral extension. With these
models we obtained useful information for the
interpretation of field diagrams such as those
in fig. 2a,b.

2. The «surface charges» method

A mathematical model for computing theo-
retical apparent resistivity curves requires the
solution of the equation

- - S
div j =0, with j =E/p, 2.1
- -
where j is the electrical charge flow density, E
is the electrical field and p is the electrical re-
sistivity. Equation (2.1) must be accompanied
by appropriate boundary conditions, which we
describe making reference to fig. 3. Let us con-
sider the Earth as a half-space limited by the
plane corresponding to the ground surface (So)-
Below the plane ground surface there are geo-
logical bodies with different values of electri-
cal resistivity. Let us suppose a current I is in-
jected into the Earth through a current elec-
trode at the point Q: S, denotes the surface of
the electrode. The boundary conditions are the
following:

i) null flux in the direction perpendicular to
So;
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Fig. 3. S,: Earth surface; S1: surface of the current
electrode; S,: surface at infinity.

ii) known flux for S;;

iii) null potential for S,. In fact S, is a sur-
face at the infinity and for this reason it has
been drawn as a dashed line in fig. 3.

The numerical solution to eq. (2.1) with the
above mentioned boundary conditions can be
obtained with several methods. Among others
we recall the finite difference, the finite ele-
ment and the surface charge methods.

Finite differences are not very efficient to
discretise three-dimensional domains when the
surfaces of discontinuity of electrical resistivity
are very complicated. The finite element
method is more efficient for this problem, but
there are still problems for the approximation
of the surface at infinity, S,. Moreover for both
these methods the number of unknowns is usu-
ally extremely great.

The «surface charge» method (Alfano,
1959, 1984), also known as «integral equation
method» (Dieter et al., 1969) or «boundary el-
ement method» (Okabe, 1981), is to be pre-
ferred for simulating the response of bodies
limited by closed surfaces. This is the method
that we use. The solution to eq. (2.1) is ob-
tained by separating the electrical field into
two terms: the primary field, E,, due to the
current electrode and corresponding to the field
in a homogeneous medium with p = p,, and
the secondary field, E,, which is different from
zero if discontinuities of electrical resistivity in
the subsurface exist. The secondary field is
computed by supposing that electrical charges
— induced by the electrical field — are present
on the discontinuity surfaces. If ¥ denotes the
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set of all the discontinuity surfaces and o(P) is
the surface charge density at the point P € X
o(P) must satisfy the equation

K(P) TP’ =

(2.2)

=I'(P, Q)—+j I'(P,P)oc(P’)dS(P),

where:

i) K(P) is the «reflection coefficient», given
by K(P) = (p(P,)—pP)Np(P.)+p(P)),
p(P,) and p(P_) being the values of electrical
resistivity on the two sides of the discontinuity
close to the point P;

il) 2’ = ¥-dX(P), dX(P) being an infinites-
imal area centred at the, pomt p;

iii) T'(P,P") P P n(P)/|P PP and
analogously I'(P,Q), n 7 (P) being the normal to
X at the point P.

The first term in the right hand side of eq.
(2.2) represents the normal component of the
primary field, E, (P)- Z(P) whereas the sec-
ond one is the normal 1 component of the sec-
ondary field, E (P)- n(P) Equation (2.2) is
derived from the continuity conditions for the
tangential component of E and the normal

component of j across a surface of discontinu-
ity for p (Alfano, 1959, 1984, 1993).

Generally the surface X also includes the
Earth surface, when S, is not plane. Since we
suppose the ground surface S, to be plane, we
can avoid considering the surface charge den-
sity on the Earth surface introducing the im-
ages of the underground discontinuity surfaces
with respect to S;. The surface charge density
distributed over an image area is equal to the
charge distributed on the original area. In such
a way the null flux boundary condition on S is
strictly verified. From now on, we consider X
as the set of the discontinuity surfaces below
the topographic surface and of their images
with respect to Sj.

The potential and the electrostatic field at an
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arbitrary point P are given by

Pl o1

V(P)—2——+L L swprase,
| OP| |P’P|

2.3)

E(P):Z—II gP +L Pf G(P’)dS(P").
TloPP TiPPP

In conclusion, the resolution of equation
(2.1) requires, first of all, that the surface
charge distribution, o(P), solution of eq. (2.2)
be determined. Subsequently the potential and
the electrical field are computed with eq. (2.3).

The integral eq. (2.2) can be solved numeri-
cally. Let us consider the discontinuity surfaces
as a collection of N small plane areas: P;, n
and S; denote, respectively, the barycentre, the
normal versor and the surface of the j-th area.
The indices i and j vary from 1 to N. Let us
substitute the surface charge density, which is
actually continuously distributed over every
area, with a point charge concentrated in the
barycentre of the area. The value of the total
charge for the i-th area is denoted by ©;S;. Un-
der these hypotheses, eq. (2.2) becomes

27r
K

r

F(P,,Q)—+2F(PI,P)0'
Jj#i

2.4)

which is a system of linear equations. The so-
lution to this linear system can be obtained
with an iterative procedure. We start with a
tentative solution, o”, and we compute the
values of the charges at the (n+1)-th iteration
by the recursive formula:

(2.5)

K;
O-i(n+l) o {F(Pz’ Q)——+2F(P,, j)o-(n

j#i

It has been proved that this iterative algo-
rithm converges (Alfano, 1959). The conver-
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gence velocity can be increased by means of
the Gauss-Seidel method (Young, 1971), which
uses all the already updated values of ¢"*" in-
stead of o™ at every stage of the computation
of o{"*" with eq. (2.5). Having solved the sys-
tem (2.4), we compute the electrical field at
every point of the domain with

I Ol PP

- P ;

Ep=20 2y B s eo
* 1oPP |P,PP’

which is a simple discretisation of the second
eq. of (2.3).

The computer code for the solution to the
linear system (2.4) and the computation of ap-
parent resistivities has been written in the C
programming language to take advantage of
the memory and velocity of modern PCs. In
particular, the code run on a PC with a 486DX/
50 processor and 16MB RAM. The computa-
tion of an apparent resistivity curve for the
most complex cases (with N = 1700) required
about 1000 s of CPU time.

3. Numerical results

In this work we consider a simple model for
the resistive body — a parallelepiped — with the
geometry shown in fig. 4. The top of the paral-
lelepiped is parallel to the ground plane and
lies at a depth & below the topographic surface.
The thickness of the parallelepiped is 10 times
h, whereas its extensions along the x and y
directions are denoted respectively by Ax and
Ay. The sounding direction is along the posi-
tive x-axis. The potentiometric dipole MN is
located at the origin of the Cartesian axes for
the cases shown in figs. 5a-c and 6, at a dis-
tance 5 h from the projection on the surface of
the border of the parallelepiped. Instead, the
results of fig. 7a-c refer to the potentiometric
dipole located at M'N’, i.e., 5 h before the
above mentioned projection. We considered an
electrical resistivity for the resistive body 100
times higher than the resistivity of surrounding
rocks: this corresponds to a «reflection coeffi-
cient» K = 0.980198.
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Fig. 4. Geometry of the model used for the numeri-
cal simulations.

The apparent resistivity curves for a half-
Schlumberger array are computed for different
values of the dimensions of the parallelepiped
both in the longitudinal (Ax) and in the
transversal (Ay) directions with respect to the
spread direction. Our purpose is to evaluate the
effects of the vertical boundaries of the body,
in order to find out simple rules to determine
the minimum extensions of resistive bodies,
whose existence is evident from field dia-
grams. Therefore we consider as a reference
the apparent resistivity curve computed for the
case of three plane parallel layers, with geo-
metrical and electrical characteristics analo-
gous to those of the model in fig. 4. In particu-
lar, we have the first layer with a thickness
h and p = py; the second layer with a thickness
10 A and p = 100 p;; and finally the semi-infi-
nite bed with p = p,.

In the following diagrams of apparent resis-
tivity we use adimensional values for lengths
and apparent resistivities. In particular, lengths
and apparent resistivities should be considered
as divided by A and p,, respectively. The re-
sults are valid for any geometrically and elec-
trically similar model: the real appropriate val-
ues for 7 and p; have to be considered.

Figure Sa-c shows the computed diagrams
of apparent resistivity, when the potentiometric
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Fig. 5a-c. Apparent resistivity curves: the longitudinal — Ax — and transversal — Ay — extensions of the resis-

tive body are shown in the legend. Apparent resistivities and lengths are adimensional (see text for
details).
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Fig. 6. Comparison among diagrams of apparent resistivities computed with different approximations. Appar-
ent resistivities and lengths are adimensional (see text for details).

dipole is in MN (see fig. 4). In particular, fig.
5a compares the three-layers curve with the
curves obtained when Ax = 10 4 and Ay varies,
i.e., for parallelepipeds with a limited exten-
sion along the profile. Figure 5a shows that the
curves for the parallelepiped can be distin-
guished from the three-layers one for distances
of about 2 A. Figure 5b refers to Ax = 20 h.
The curve for the smallest body (Ay = 10 h)
differs from the three-layers curve at distances
of about 3 h, whereas the curves for Ay=20h
and Ay = 30 & follow the trend of the three-lay-
ers curve up to distances of the order of 7 &
and 10 A, respectively, i.e., at about 8 4 and 15
h from the projection of the border of the par-
allelepiped on the Earth’s surface. Figure 5c
corresponds o Ax = 30 h. Once again the
curve for Ay = 10 & differs from the three-lay-
ers case at distances of about 3 h, whereas the
other curves are still close to the reference
curve up to 7 h and 12 h, respectively.

One of the most important problems is the
validity of the approximations introduced to
discretise the integral eq. (2.2) by means of eq.
(2.4). In this case we control the validity of the
obtained solutions checking the consistency of
the computing procedure. Above all for the
greatest bodies, when approximations are
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greater, we consider different discretisations,
varying the number, the geometrical form and
the dimensions of the areas used to discretise
the discontinuity surface. The results for some
trial experiments are represented in fig. 6. Ev-
ery curve of apparent resistivity actually con-
sists of three curves. The superposition of the
computed values is so good that the three
curves cannot be easily distinguished. We be-
lieve that this check of the algorithm and of the
computer code shows that the results are confi-
dent and not affected by discretisation errors.

Figure Sa-c shows the sharp variation of ap-
parent resistivity when the border of the paral-
lelepiped is crossed. This variation cannot be
reproduced by any theoretical diagram related
to a pure plane-parallel layering with infinite
lateral extension. This is even more evident in
fig. 7a-c, which shows the results when the po-
tentiometric dipole is displaced 5 4 before the
border of the parallelepiped at the position de-
noted by M'N” in fig. 4. We clearly observe the
sharp variations of apparent resistivity corre-
sponding to discontinuities which are perpen-
dicular to the profile. The effect of the discon-
tinuities elongated in a direction parallel to the
profile is less evident and similar to the varia-
tions induced by horizontal layering.
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Fig. 7a-c. Apparent resistivity curves for the potentiometric dipole at M'N’ (see fig. 4): the longitudinal — Ax —
and transversal — Ay — extensions of the body are shown in the legend. Apparent resistivities and lengths are
adimensional (see text for details).
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4. Conclusions

The numerical results presented in this pa-
per have an important effect upon the interpre-
tation of field measurements. In fact, if we g0
back to the examples of field diagrams shown
in fig. 2, which put in evidence the existence
of resistive beds, we can introduce simple rules
for determining the minimum areal extension
of such resistive bodies.

In particular, if the top of the resistive bed
is at a depth 2 = 1 km and if the diagrams of
apparent resistivity for half-Schlumberger
spread show a positive slope for distances up
to 10 km, we can state that the resistive body
causing this effect is extended for at least 5 km
along the profile and for at least 20 km in the
transversal direction. If the positive slope is ev-
ident for distances greater than 15 km, we con-
clude that the resistive body extends for more
than 10 and 30 km, respectively, longitudinally
and transversally to the profile.

These results were obtained for particular
dimensions of the anomalous body, but they
can be extended to geometrically and electri-
cally similar cases.

As a confirmation of known results, it is
also evident from our models that the effect of
a discontinuity which intersects the profile is
very different from the effect of discontinuities
which are elongated in the same direction as
the profile. Namely, apparent resistivity shows
sharp variations where the profile intersects the
projection of the discontinuities on the surface
(fig. 7a-c): these variations are even more evi-
dent in a dipole sounding.
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