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and its uncertainty
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Abstract

We investigate conceptually, analytically, and numerically the biases in the estimation of the b-value of the
Gutenberg-Richter Law and of its uncertainty made through the least squares technique. The biases are intro-
duced by the cumulation operation for the cumulative form of the Gutenberg-Richter Law, by the logarithmic
transformation, and by the measurement errors on the magnitude. We find that the least squares technique, ap-
plied to the cumulative and binned form of the Gutenberg-Richter Law, produces strong bias in the b-value and
its uncertainty, whose amplitudes depend on the size of the sample. Furthermore, the logarithmic transformation
produces two different endemic bends in the Log(N) versus M curve. This means that this plot might produce
fake significant departures from the Gutenberg-Richter Law. The effect of the measurement errors is negligible
compared to those of cumulation operation and logarithmic transformation. The results obtained show that the
least squares technique should never be used to determine the slope of the Gutenberg-Richter Law and its un-
certainty.

Key words b-value — seismology — least squares In the so-called binned form of the GR Law, N
technique — syntheticearthquake catalogs represents the number of events with magnitude
M, while in the cumulative form N is the num-
ber of events with magnitude larger or equal to

1. Introduction M. The constants a and b are the coefficients of
the linear relationship.

The Gutenberg-Richter Law (from now on As discussed in a previous paper (Marzoc-
GR Law) (Gutenberg and Richter, 1954) is cer- chi and Sandri, 2003, from now on MS03), the
tainly one of the most remarkable and ubiqui- scientific relevance of the GR Law is linked to
tous features of seismicity worldwide. In the its apparent ubiquity, and to the theoretical im-
most common form it reads plications and meaning of its possible univer-

sality. In particular, the value of b, representing
Log[N(M)]=a-bM . (1.1) the opposite of the slope of the linear relation-

ship in eq. (1.1), is considered very important.

In fact, in spite of a «first order» validity of the

GR Law with a constant b-value=1 observed in

a variety of tectonic settings, significant spatial

and temporal variations in the b-value are found
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ru et al., 2005; Schorlemmer et al., 2005). These
possible variations are very important from a
theoretical point of view, and for seismic hazard
studies. We refer to our previous paper (MS03)
for a deeper discussion on these issues.

As a matter of fact, a crucial aspect in infer-
ring variations or constancy of the b-value is
represented by the method used to determine
the b-value and its uncertainty, given a seismic
catalog, as shown in MS03. In that paper, we
discussed the maximum likelihood method to
estimate the b-value and its uncertainty, show-
ing that incorrect formulae based on this
method produce a bias in the b-value and an un-
derestimation of its uncertainty. The latter im-
plies that we might observe a fake variation in
the b-value only because we have underestimat-
ed the uncertainty. Intentionally, in MS03 we
did not consider the least squares (from now on,
LS) method, because it had already been recog-
nized (Page, 1968; Bender, 1983) that this tech-
nique applied to the problem of the estimation
of the b-value and of its uncertainty does not
have any statistical foundation. However, the
LS technique is still widely employed to esti-
mate these two quantities, both in the binned
and in the cumulative form, also in recent liter-
ature (e.g., Working Group on California Earth-
quake Probabilities, 2003; Gruppo di Lavoro,
2004; Lopez Pineda and Rebollar, 2005).

The main purpose of this paper is to demon-
strate, by means of conceptual issues, analitical
formulations and numerical simulations, that
the use of the LS technique in the estimation of
the b-value and of its uncertainty leads to
strongly biased estimates of these two quanti-
ties. For the correct estimation of these two
quantities, we refer to the appropriate formulae
given in MSO03 and in references therein.

2. Estimation of b and o; through the LS
technique

The LS estimation consists of applying lin-
ear regression analysis to the GR Law de-
scribed by eq. (1.1) in the binned or cumulative
form. The parameter b should be the same in
the two formulations, while the intercept a is
different in the two cases.

330

2.1. Cumulative form of the GR Law

Despite its widespread adoption in past and
recent papers (Pacheco and Sykes, 1992; Pa-
checo et al., 1992; Karnik and Klima, 1993;
Okal and Kirby, 1995; Scholz, 1997; Triep and
Sykes, 1997; Main, 2000; Working Group on
California Earthquake Probabilities, 2003; Grup-
po di Lavoro, 2004; Lopez Pineda and Rebollar,
2005), the use of LS technique to estimate the b-
value on the cumulative form of the GR Law
does not have any statistical motivation. The
strongest assumption of regression analysis, i.e.,
the independence of the observations, is clearly
violated. In practice, the cumulative form is an
integration and, therefore, it represents a filter for
the high frequency noise. As a result, the uncer-
tainty of the slope of the GR Law is certainly
strongly underestimated. In order to evaluate the
bias in the regression analysis applied to the cu-
mulative form numerically, as a function of the
number of earthquakes contained in the catalog,
we simulated 1000 seismic catalogs, for different
catalog sizes. The magnitudes M; are obtained by
binning, with a fixed bin width of 0.1, a continu-
ous random variable distributed with a probabil-
ity density function (pdf) given by equation

F(M) = bIn(10) 1020w (2.1
which is valid if the catalog contains earth-
quakes with a completeness magnitude equal to
Mmin and with a magnitude range of at least
three units (see MS03). In this way, M; is the
magnitude attached to all the synthetic seismic
events with real continuous magnitude in the
range M;—0.05<M<M;+0.05.

Then, for each synthetic catalog, we esti-
mated the b-value (from now on, using the no-
tation b for the estimated value, and b for the
theoretical value) by means of the LS technique
applied to the cumulative GR Law described by
eq. (1.1), i.e. when N is the number of events
with magnitude larger or equal to M;.

Figure 1 reports the averages of b calculated
in 1000 synthetic catalogs as a function of the
number of data, for the cases b=1 and b=2. The
95% confidence interval is attached to each av-
erage. There is a clear negative bias, that de-
creases with the number of data and ranges
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from 5% to 2%. An explanation of this bias will
be given in the following when we describe the
effects of the logarithmic transformation in the
regression analysis of the binned magnitudes.

As mentioned above, another crucial aspect
concerns the estimation of the uncertainty at-
tached to b, here indicated by 05 and estimated
as the average error on b provided by the 1000
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Fig. 1. Average of b (dashed line) calculated through cumulative LS technique in 1000 synthetic catalogs, as
a function of the catalog size, for the cases b=1 (left) and b=2 (right). At each average is attached the 95% con-
fidence interval. The solid line represents the true b-value.
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Fig. 2. F test values (see eq. (2.2)) for the case of figs. 1 and 4 (see text). The plus signs represent the cumu-
lative regression, and the squares the binned regression. The dotted line represents the critical value to reject the
null hypothesis at a significance level of 0.05. Note the logarithmic scale also on the vertical axis.
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linear regressions. In particular, we are interest-
ed in evaluating if the estimation of 6; is an un-
biased estimator of the true variance of the b es-
timation of b around its central value. This can
be done by simulating 1000 seismic catalogs as
described above. For each catalog we calculat-
ed b and 0. Then, we compared the dlspersmn
of b around its average with the average of 65,
through the Fisher test (e.g., Kalbfleisch, 1985)

Variance of the estimation of the b — value
Average of the square of the uncertainty -

2.2)

F=

The null hypothe51s we tested is that the aver-
age of 6} is equal to the variance of b.

The results, reported in fig. 2, are very inter-
esting. In particular, the Fisher test shows that
G strongly underestimates the dispersion of b,
the former being at least one order of magnitude
smaller than the latter. This confirms that the un-
certainty on the b-value estimated through the cu-
mulative LS method is strongly underestimated.

In general, the potential factors which can
bias the estimations made through the LS tech-
nique (both in the cumulative and binned form)
are the logarithmic transformation of the number
of events, and the presence of the measurement
errors on the magnitude. By taking into account
the criticism at the regression analysis applied to
the cumulative form just reported, in the follow-
ing we studied the impact of these factors only
on the estimation of the b-value made by means
of the regression analysis applied to the binned
form.

2.2. Effects of the logarithmic transformation

The expected number of events for a magni-
tude M is

Mi+AM/2

[ ranam

Mi-AM/2

Vi=np,=n 2.3)

where n is the total number of earthquakes in
the catalog, AM is the bin width used, and i)
is given by eq. (2.1). The expected fluctuations
around this value can be written as
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=ynp(1-p).

In this frame, the observed number of events N;
for a binned magnitude M; can be written as N;=
=vi(1+&;), where &; is a random variable with
zero mean and standard deviation equal to
ANj/v;. By taking into account eqs.((2.3) and
(2.4)), we can write

2.4)

AN, _ /1-p
Vi )

D (2.5)

It is easy to demonstrate that AN;/v; is a strictly
monotonic decreasing function of p;. This means
that the expected fluctuations of the variable &
are larger for lower p;, that is for large magni-
tudes.

The estimation of b in the classical linear re-
gression analysis is (see e.g., Draper and Smith,
1981)

D> M. > [Log(N)]-nY M[Log(N)]
(Z M) -ny |

b

2.6)

If we substitute N;=v;(1+&;) we obtain

ZM 2 [Log)]- nZM[Log(v,)]
(X M) -n2 M

2 M3 [Log(1+8)]- nZM[Log(1+§)]

(M) -n2 M

b=

2.7)

If we apply the expectation operator to both
sides of eq. (2.7), it is possible to verify that
the bias is zero only if E[Log(1+&;)]=0. This is
certainly not true because E[Log(1+§;)]<Log
{E[(1+£)]}=0.

To summarize, the application of the classi-
cal linear regression analysis to the logarithm of
real data (therefore affected by errors) produces
a systematic bias on the estimated slope. This is
not due to the regression analysis (because the
latter always provides an unbiased estimate), but
it is related to its application to this type of data.

The logarithmic transformation has also an-
other very important effect due to the discrete-
ness of the dependent variable N. We have just
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Fig. 3. Logarithm of the expected number of earthquakes (Log(v;); see text) according to the Gutenberg-
Richter Law (solid line) and average of the logarithm of the generated number of events in each of 1000 syn-
thetic catalogs (dotted line), plotted as a function of the magnitude, for different catalog sizes (from fop to bot-
tom: 100, 1000, 10000 events per catalog). The intersection between the solid and dotted lines represents the
point where the bending changes in sign.
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shown that the dispersion of the data around the
curve increases with magnitude. Since we can-
not compute Log(V;) if Ni=0, at large magni-
tudes, where v is low (for example v<1), the LS
technique can take into account only the «posi-
tive» fluctuations around the mean value, i.e. the
fluctuations that increase the expected number of
events. This acts as a filter for the «negative»
fluctuations, that is at large magnitudes (where it
can be computed) Log(¥;) tends to be overesti-
mated compared to Log(v;). The global effect
consists in the introduction of a systematic nega-
tive bias in the estimation of b, that is b is always
lower than b. Recalling that the amplitude of the
dispersion around the curve is higher for small
data sets, in these cases the bias should be larger.

Figure 3 reports Log(v;) (see eq. (2.3)) and
the averages of Log(¥;) obtained by 1000 syn-
thetic catalogs as a function of the magnitudes
M;. For each magnitude M;, the average of
Log(N;) is computed only on those catalogs for
whom N;=1. At lower magnitudes, in the left
part of the graph (to the left of the intersection
point between the two lines in fig. 3), Log(V))
tends to underestimate Log(v;). This bias, due to
the second addendum in the right side of eq.
(2.7), should lead to an overestimation of the b-
value. On the contrary, at large magnitudes (to
the right of the intersection point between the
two lines in fig. 3), there is a turnover in the
trend of Log(V;) with respect to Log(v;). Here,
Log(N;) tends to be larger than Log(v;). As men-
tioned above, this effect is due to the filtering of
the negative fluctuations of N; at large magni-
tudes performed by the logarithmic transforma-
tion of a discrete variable. The consequence is
an underestimation of the b-value. The results
reported in fig. 3 suggest that, when the larger
magnitudes are taken into account, this last bias
is always predominant. As argued above, this
bias is reduced by increasing the size of the da-
ta set. Instead, if the larger magnitudes are ex-
cluded (e.g., Karnik and Klima, 1993), the plot
Log(N;) versus M; shows only one bend, and the
b-value is overestimated independently on the
size of the catalog.

In other words, the global effect of the loga-
rithmic transformation of a discrete variable (the
number of seismic events) introduces two bends
in the GR curve. It is noteworthy that these dis-
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crepancies from a straight line are not linked to
any physical process, but only to the mathemati-
cal transformation. Similar considerations can be
made by looking at fig. 4 that reports the estima-
tions of the b-value as a function of the size of
the data set. The bias is very strong for small da-
ta set and it decreases as the size of the data set
increases. The bias is higher in the binned case
compared to the cumulative one (compare figs. 4
and 1). This is due to the fact that in the cumula-
tive regression there are fewer zero values in the
dependent variable. As shown in fig. 2, the un-
certainty of the b-value made in the binned re-
gression is still underestimated, even though it is
better than the strong underestimations obtained
by the cumulative regression.

2.3. Effects of the measurement errors

If we add a measurement error at the theoret-
ical magnitude (M), we obtain the «real» magni-
tude (M) as a sum of two independent random
variables

M=M+e (2.8)
where M is the earthquake magnitude devoid of
measurement errors distributed with a pdf given
by eq. (2.1), and ¢ simulates the measurement er-
rors distributed as a Gaussian noise. Let us con-
sider the number of the earthquakes with a
binned magnitude M;, that is N(M,). By adding a
Gaussian noise to each magnitude as in eq. (2.8),
some events go out of and some come into the
considered bin, as shown in fig. 5. The final
number is N(M,). The number of data which go
out of the bin is (see fig. 5)

Mo = Mor = P.N (M) (2.9)
where mor, is the number of data which go into
the adjacent left bin, mor is the number of data
that go into the adjacent right bin, and P, is the
probability that a randomly chosen event inside
the bin goes out of the bin itself when a meas-
urement error is added. P; is independent from
M; and it depends on o7 (P.—0 when 07— 0).

The number of data which come in from the
left bin is (see fig. 5)
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my = PN(M.) = PN(M,~AM).  (2.10)

The number of data which come in from the
right bin is (see fig. 5)

If eq. (1.1) holds, eq. (2.12) can be rewritten as

N(V) = N(M) + P 10"(107 + 10" - 2) .
(2.13)

mg = BN(M,,)) = BN(M,+ AM) (2.11) For b=1 and AM=0.1, as in most of the practi-
cal cases, the term of eq. (2.13) inside the round
Then, we have brackets is =0. In these case N(M))=N (M),
therefore the calculation of b is only slightly
NI = N P.[N(M, + AM) affected by the measurement error. At the op-
(M) (M) + PIN(M,+ (2.12) posite, when AM is large and/or b> 1, the term
+N(M,- AM) - 2N (M)]. inside the round brackets cannot be neglected
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Fig. 4. Average of b (dashed line) calculated through binned LS technique in 1000 synthetic catalogs, as a func-
tion of the catalog size, for the cases b=1 (left) and b=2 (right). At each average is attached the 95% confidence

interval. The solid line represents the true b-value.
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Fig. 5. Effect of the measurement errors on the number of earthquakes with binned magnitude M;. Adding the
measurement errors, the number of events that come into the bin with central magnitude M; from the adjacent
left bin is mu, while those coming from the adjacent right bin is mr. The number of events that go out of the bin
with central magnitude M; towards the adjacent left bin is mor, while those going out towards the adjacent right

bin is MOR.
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Fig. 6. Averages of b (dashed lines) calculated through binned LS technique in 1000 synthetic catalogs as a
function of the catalog size, for the cases b=1 (fop) and b=2 (bottom). The magnitudes have measurement errors
of standard deviation 0,=0.1, 0.3, 0.5 (from left to right). At each average is attached the 95% confidence inter-
val. The solid line represents the true b-value.

and N(M;)=N (M,). This obviously introduces a largest difference with the case without meas-
further bias in the b-value estimation. urement errors reported in fig. 4 is for b=2,

Figure 6 reports the effect of the added where the term of eq. (2.13) inside the round
measurement errors. As argued before, the brackets is significantly different from zero.
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Since P. depends on the amplitude of the
measurement error (0;), eq. (2.13) explains al-
so the proportionality of the bias with o, not-
ed in fig. 6. As regards the estimation of the

uncertainty of the b-value, the results reported
in fig. 7 show that the addition of the meas-
urement errors does not produce any further
bias.
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Fig. 7. F test values (see eq. (2.2)) for the case of fig. 6 (see text). The dotted line represents the critical value

to reject the null hypothesis at a significance level of 0.05.
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3. Final remarks

We have studied conceptually, analytically,
and numerically the biases introduced by some
factors (the cumulation operation, the logarith-
mic transformation, and the measurement er-
rors on the magnitudes) on the estimation of the
b-value and of its uncertainty by means of the
least squares technique. We have found many
problems.

First, besides violating a basic assumption of
the regression analysis, the use of the cumula-
tive form of the Gutenberg-Richter Law leads to
a very strong underestimation of the uncertainty
of the b-value, due to the filtering effect of the
cumulation operation.

Secondly, the logarithmic transformation of
the discrete random number of events produces a
significant bias in the estimation of the b-value
both for the cumulative and binned form of the
Gutenberg-Richter Law. Moreover, the bias
strongly depends on the size of the data set; this
means that two samples of different sizes coming
from the same statistical distribution will have a
significant difference in the b-value estimated. The
same logarithmic transformation produces two en-
demic bends of different signs in the Log(N) ver-
sus M plot. These bends are not linked to the phys-
ical process. This means that some departures
from a straight line in the plot Log(N) versus M do
not invalidate the Gutenberg-Richter Law.

Finally, the influence of the measurement er-
rors appears to be less important than the bias in-
troduced by the logarithmic transformation.

The main purpose of this paper was to show
that the estimation of the b-value by means of the
least squares method is strongly biased and its un-
certainty results heavily underestimated. In this
view, this work intended to make clear why this
method should not be used to determine the slope
of the Gutenberg-Richter Law, and to make infer-
ences about its constancy or variations. In practice,
any spatial or temporal variation of the b-value ob-
tained by this method has to be regarded with a
strong skepticism. On the other hand, unbiased es-
timates of the b-value and of its uncertainty can be
obtained by using the correct formulae, based on
the maximum likelihood method, that have been
analitically and numerically tested in Marzocchi
and Sandri (2003) (see also references therein).
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